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Preface 
In these lectures we want to give an introduction to the sub-field of condensed matter that is 
generally referred to as ‘soft matter’ or ‘complex fluids’. This part (marked with an *) serves 
as a Masters course at the Utrecht University. In addition, we will treat colloids, already 
studied in Utrecht for 100 (!) years at a high level, in a PhD course in more depth. We will 
introduce the main systems that are studied in this fields, colloids, polymers, surfactants and 
liquid crystals. In soft matter physics  ≅ 0 (however, see Section 1.5), kT ≅ 1 and at least one 
characteristic length scale, l, falls in the range: several nm < l < several µm. As we will 
explain this relatively large length scale implies that we can integrate out degrees of freedom 
that are on faster and smaller length scales. In order to understand the procedures that we will 
apply in (approximate) derivations of the interactions between colloids, we will introduce and 
recall the (statistical) thermodynamics necessary. This will include an introduction to the 
treatment of liquids. Existing knowledge of statistical and classical thermodynamics is strictly 
required, but is highly recommended. The level of mathematical background necessary to 
follow the lectures is similar to what is needed to follow introductory level lectures on 
mechanics and Maxwell theory. We will see that some of the complex fluid systems presented 
are actually some of the most versatile experimental systems by which conventional 
condensed matter can be studied on a fundamental level and by which new advanced 
materials can be designed. Of great help in both understanding the properties of soft matter 
systems in general and of the implications of a theoretical coarse-grained description, are 
computer simulations, which are introduced as well. Scattering techniques and the strongly 
advancing quantitative real space microscopy techniques will be treated next to experimental 
methods used to measure forces in this domain of physics. Applied soft matter science has 
strong links to the emerging field of nano-science and is also delivering more and more 
materials of which the properties can be changed dynamically, so-called advanced or smart 
materials, some examples of which will be given. The effects of a fluid flow or shear and the 
dynamics of colloids together with their phase behavior are treated in the advanced part of the 
course. 

Also, soft matter science is truly multidisciplinary. For instance, the increased level of 
control achieved in the synthesis of many of these systems is what recently is driving rapid 
progress. As an illustration, an introduction to the synthesis of colloids is given in this course. 
Subjects that overlap with (micro) biology are not treated, despite the fact that many subjects 
studied in the field of biology inspired physics nowadays draw heavily on knowledge and 
techniques from the field of soft matter. A reverse influence is starting to appear as well. An 
example is research in which the complementarity of DNA strands is used to create specific 
colloidal interactions. The influence of soft matter science on materials science and more 
specifically nano-science and the design of ‘smart’ materials is touched upon. The same is 
true for the increasing role of soft matter systems as model system for investigating 
fundamental condensed matter questions such as melting, freezing and the glass transition.  

The Problems after each chapter are intended to deepen understanding on the subject 
treated and to bring forward the general principles behind the phenomena discussed and are 
part of problem classes accompanying the lectures.  
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1.   Introduction 
 
1.1 Soft Condensed Matter vs. Complex Fluids 
An important distinction between conventional or ‘simple’ liquids and solids is that the 
former quickly take the shape of the container in which they are kept, while the latter maintain 
their shape indefinitely. Almost all ‘complex fluids’ are intermediate between a solid and a 
liquid: while they maintain their shape for some time, they eventually flow. They are solids 
on a short time scale and liquids at long times: they are viscoelastic. Clearly, this rough 
definition is connected to a human time scale through the designation ‘for some time’. 
Glaciers do ‘flow’ on geological time scales and solids such as metals creep under large loads 
by defect motion. Nevertheless, these time scales are so far separated compared to the human 
lifespan that it does make sense to define a class of materials based upon their ability to flow 
or not during a (human) experiment, or said in another way, of having mechanical properties 
in between that of simple liquids and solids. Examples of such ‘complex liquids’ that are also 
treated in these lectures are: polymers, colloids, (micro-) emulsions, foams and surfactant 
solutions. 

There are also complex fluids that change from solid-like to liquid-like, or vice versa, 
when subjected to a small deformation. Examples of these are different kind of gels that can 
consist of many of the examples mentioned above. Some fluids change to solids after 
application of an external electric or magnetic field; these are called electro- or magneto-
rheological fluids. Classical solids or liquids do not in general change state in response to a 
weak field.  

Another important distinction between classical solids and liquids is that the former 
have properties that depend on the orientation of the crystallographic axes of the material, 
these properties, like elastic constants, are anisotropic, while the latter are the same in all 
directions, isotropic. Liquid Crystals (LC’s) take the shape of the container they are in 
immediately, because they flow like liquids, but their mechanical properties are anisotropic 
like that of crystals (see Fig. 1.1). Just as there are many types of crystalline symmetries, there 
are also many types of liquid crystal phases depending on the number of degrees of freedom 
that are solid- or liquid- like. These macroscopic anisotropic properties are the manifestation 
of some kind of microscopic anisotropy. This can be the shape of the molecules forming the 
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Figure 1.1 Rod-like molecules can display a gradual decrease of positional and orientational order. Left 
shows some of the possible liquid crystalline phases that are possible, right shows the three fundamental 
anisotropic modes of deformation of a nematic liquid crystal that has only long-range order in the 
orientation of the rods. 
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liquid crystal, but can also be on larger length scales involving self-organized subunits of 
surfactant molecules or colloidal particles as will be explained below.  

A distinguishing feature of complex fluids compared to ordinary condensed matter is, 
that there always is a length scale involved that is large with respect to the size of individual 
atoms or small molecules. This separation of length scales makes it possible to integrate out 
many degrees of freedom and give a more simplified description of the problem. It basically 
means that the ordinary approach of statistical mechanics to treat a complicated many-body 
system, such as simple liquids, is taken a few steps further. Usually simplifying the 
description. Essential to our definition of complex fluids or soft matter is that a final 
description can be based on statistical mechanics. This sets a limit on the larger end of the 
length scale that can be included as will become clear below and from the rest of the course. 
Crossing this upper length scale gets us into the domain of granular matter. In this very 
interesting and, active field a simple connection with a statistical thermodynamic description 
cannot be made (at present). It should therefore be mentioned that there are researchers that 
also include slurries, like cement or wet sand, and foams with mm size air pockets to the 
realm of complex liquids. Through the general definition given above one can argue that they 
do belong to this class. However, as mentioned we would like to treat these granular matter 
systems as separate from the systems that can be dealt with using a thermodynamic 
description. In a strict sense liquid crystals consisting of small anisotropic molecules do not 
have a large length scale associated with them, nevertheless the defect structures that are part 
of these phases determine in a lot of cases their properties (and thus most of the times also 
their behavior in applications). The length scales of the defects include many molecular sizes 

(Fig. 1.2).  

 
 

Figure 1.2  Defect structures made visible through crossed polarizers. Different intensities are caused 
by different local orientation of the molecules, image several mm2. 

Colloidal particles dispersed in a medium encompass a large class of complex fluids. 
They are ‘solutions’ of one phase of matter (solid, liquid, gas), the colloidal particle, into 
another that acts as the continuous phase (liquid, gas). Roughly, the sizes of the particles are 
between several nm and several µm (see the section below on time and length scales). The 
name for solutions of particles in this size range is a dispersion; in the case that the 
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continuous phase is a gas such a dispersions is also called an aerosol. In case the particle is a 
liquid the colloidal system is called an (micro)-emulsion. The distinction between micro-
emulsion and ‘ordinary’ emulsion is made on its thermodynamic stability. Micro-emulsions 
are thermodynamically stable and form spontaneously; emulsions need input of external free 
energy (e.g., in the form of violent stirring) to be formed and are metastable (although they 
can be very long lived). Dispersions of a gas in a liquid are called foams, while one can also 
disperse gases in gases through (soap) films. Again, for completion we mention that, based on 
the colloidal size range, some researchers also consider porous matter (liquid dispersed in a 
solid), solid suspensions (solid in a solid, e.g. wood) and solid foams (gas in a solid) as part of 
colloidal systems. We do not, because also in this case the description of these systems can 
generally not be made by a (coarse grained) thermodynamical approach.  

 
Figure 1.3  The simplest polymer molecules are macromolecules consisting of covalently linked 

monomers. 

Polymers are macromolecules that consist of many subunits connected to each other 
through chemical bonds (Fig. 1.3). More and more complex polymers are manmade, but still 
by far the most advanced types are found in nature. In the cell polymers are not only the 
carriers of the genetic code (DNA, RNA) they also catalyze or, literally, do all the work in the 
form of proteins. When polymer chains are in a collapsed state they form so-called polymer 
colloids or latex particles. However, the distinction between a polymer in a solution is not so 
clear. Generally, the synthetic pathways man has developed to make polymers renders them 
with a relatively broad length distribution, i.e., they are polydisperse in length. This is in stark 
contrast with many biopolymers which are exact copies of one another, a property referred to 
as monodisperse. However, recent new synthetic approaches making use of self-similar 
structures called dendrimers or architectures where polymer arms are attached to a central 
core-unit (so called star polymers) can also lead to monodisperse polymer colloids. 
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Surfactants are molecules with a ‘schizophrenic’ character in the sense that part of the 
molecule is happy in oil, usually an alkane-like tail, while another part of the molecule, 
usually with dissociable or polar groups, likes water (Fig. 1.4). The distinction between ‘oil’ 
and a polar solvent, usually water, is made because generally liquids that have such a large 
difference in polarity, pay a large enthalpic price if they would mix and that is why they will 
not, despite the favorable entropic contribution to mixing. This explains the word amphiphile 
(from the greek ‘loving both’) that is often also used to describe these molecules. Therefore, if 
an oil and immiscible polar liquid like water are into contact the amphiphilic molecules go to 
the interface with their polar part in the water and apolar part in the oil (chapter 3). In the 
process they lower the free energy of the interface between the two phases significantly, i.e., 

they lower the surface tension. In the case where the surface tension gets really low and 
almost vanishes, the entropy of mixing can become large enough that even a 
thermodynamically stable mixture of water droplets in oil or oil droplets in water (water 
should be read here as ‘immiscible polar solvent’) can result: a micro-emulsion. For this to 
occur, it turns out that the droplets need to be very small (~nm’s) to give enough mixing 
entropy and the surface free energy very small as the created interface surface is large. Under 
some conditions the amount of the phase of oil or water inside the droplets can be extremely 
small or even absent. In the case of solutions of surfactant in pure liquids; the colloidal 
entities that than form are called micelles (Fig. 1.4). The more general term referring to these 

 
Figure 1.4  Amphiphiles are molecules with a ‘water loving’ part (dark color) and ‘oil loving’ part 

(light); these are found in nature or are man-made and can even be polymeric. At higher 
concentrations they form complex shapes some of which are shown on the right. Not 
shown are the droplets of water in oil or vice verse that these ‘schizophrenic’ molecules 
can also stabilize: (micro)emulsions. 
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kind of systems, which do not necessarily need to be spheres is: association colloids. The 
non-droplet phases that can form, are characterized by the symmetry of the way the one phase 
is dispersed in the other or, in the case of only one solvent, according to the shape of the 
association colloid. Thus bi-continuous or even liquid crystalline arrangements of surfactant 
arranged matter is known. To distinguish the liquid crystals made up from self-organized 
amphiphiles from those consisting of anisotropic molecules, the former are referred to as 
lyotropic (‘placement of liquid’) and the second as thermotropic. The term thermotropic 
comes from the principle way to change the phase behavior: a change in temperature. And as 
mentioned, there are also liquid crystals where the smallest anisotropic units giving rise to the 
liquid crystalline behavior are colloidal particles; consequently these LC’s are called colloidal 
liquid crystals (chapter 12).  

Droplets for which the surface tension is not low enough that they form 
thermodynamically stable phases can still be dispersed in another liquid by the action of 
surface-active molecules. In this case mechanic energy is needed to overcome the energy 
barrier necessary to form the surface between the two phases. As the amount of forces that 
can be applied on a liquid droplet in a violently flowing liquid determines the size of the 
droplets, they can generally not be smaller in size than ~100 nm and have usually a broad 
distribution in sizes (are polydisperse). Because these emulsion droplets would lower their 
free energy by merging together and reduce the total surface area, a mechanism needs to be in 
place preventing two droplets from coming into contact and coalesce. This is achieved either 
by charge repulsion or a so-called steric repulsion between the surfactant molecules, or a 
combination of both these two mechanisms.  

All the examples of complex fluids mentioned above will be introduced in these 
lectures. The trend nowadays is however, mostly because of increased level of our ability to 
synthesize and control these systems on an ever-increasing level, to ‘mix’ these basic soft 
matter constituents in all kinds of new ways. Some of which will be mentioned briefly in 
chapter 15 of these lecture notes that deals with new materials made from soft matter and the 
use of colloids as condensed matter model system. Examples of these more complex complex 
fluids are: emulsions of thermotropic liquid crystals, amphiphilic and self-associating 
polymers, polymers with liquid crystalline (side) groups, dispersions of colloidal particles 
inside thermotropic liquid crystals, emulsions stabilized by colloidal particles etc. etc.  

The use of the term complex fluids to describe the field as explained above can also be 
seen in a more negative light. With some exaggeration: physicists are used to describing the 
hydrogen atom and consider anything larger as ‘complex’. This is a like the author that just 
finished his new textbook and proudly names it ‘Modern Mathematics’ to set it aside from 
everything written previously. Because of this possible negative connotation, we prefer the 
term soft matter to describe this research field. Our preference may also indicate that we are 
from Europe, as there is a strong preference on this side of the Atlantic for use of the term soft 
matter, while Americans usually prefer complex fluids. In any case, also the term soft matter 
needs an explanation, which we will give by focusing on the high-density phases of colloidal 
particles. The explanation has to do with the large length scale that is, as argued above, also a 
characteristic of soft matter. Colloidal particles at sufficiently high osmotic pressure, the 
equivalent in the colloidal domain of mechanical pressure (see Section 1.2), will crystallize 
forming 3D regular structures in ways that are completely analogous to how molecules freeze 
as will be explained in more detail in chapter 12 of these notes. Next to having lattice 
constants that are now in the range of the wavelength of visible light and time scales of 
crystallization that are much closer to the human time scale, there is another important 
consequence of the very large size of colloidal particles compared to atomic dimensions. 
Compared to molecular crystals colloidal crystals are tremendously soft. Nothing will happen 
to a collection of salt crystals if you put them in a jar and shake it. A colloidal crystal will not 
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survive such a treatment and will be completely destroyed. This dramatic difference is caused 
by the ~1012 difference in the characteristic quantities, the elastic moduli, that determine the 
strength of a crystal. A solid is characterized by the fact that it keeps its shape if a small force 
is applied to it. The proportionality constant between the deformation or stress and the applied 
force per unit area or strain are called elastic moduli. Depending on the direction of the forces 
with respect to the deformation, one can distinguish different kind of constants describing the 
relation between stress and strain. These are the 3D analogs of the spring constant that 
according to Hook’s law describes the proportionality between the force and displacement 
from its equilibrium position for a harmonic spring. In case the force per area (stress) is given 
as in Fig. 1.5, the resulting relative deformation (strain) is a twisting of the body that does not 
change its volume. This kind of stress-strain situation is called shear. The elastic constant 
describing it is called the shear modulus, µ, and is defined by: 

 

 2
pF L

L L
µ ∆

=  (1.1) 

∆L

L 

Fp

Fp

 
Figure 1.5 Crystal with dimension L3 deformed by shear forces parallel to the two opposing faces. 

 
Here Fp is the shear force of a crystal with linear size L and ∆L is the crystal deformation (Fig. 
1.5). Thus, the shear modulus has the dimension of a pressure or energy/(length)3. Intuitively, 
it is clear that the strength of a crystal is originating from the forces that bind the particles 
together in their 3D arrangement. This energy density is proportional to the number of these 
bonds in the crystal per unit of volume. As colloidal particles are about 103-104 as large as 
atoms, the elastic modulus is a factor 109-1012 less; soft matter indeed!  

The association of small energy densities with large length scales is similar in other 
manifestations of soft matter and is accompanied by a dramatically increased sensitivity to 
external fields such as the already mentioned flow fields (shear), or electric and gravitational 
fields.  

 
 
1.2 Historical notes 
It goes much too far to give here a detailed historic account of the main sub fields of soft 
matter. It is however, important to know something about when certain phenomena were first 
studied, why certain names were given to certain fields and what the impact was of 
understanding gained in one field to other disciplines. Again, because of space we can only 

 7

- 9 -



touch upon these issues and have to refer to text books for a more elaborate description. 
However, really historical accounts dealing specifically with soft matter are rare. We also 
arbitrarily do not mention those developments here that took place less than 50 years ago.  

Therefore, although particle systems were important for human civilization much 
through all of history, be it in the form of making ceramics, paints, inks or later to make steel, 
it is appropriate to start by the researcher who coined the word colloid. This was Thomas 
Graham who in 1861 studied solutions and classified that what could pass through, what we 
would now call a semi-permeable, membrane and what did not. What did not pass he called 
colloids after the Greek κολλα meaning glue. This reflected the fact that many of the 
substances that Graham dissolved and that did not pass his membrane were polymeric in 
nature and often displayed a sticky behavior when dried.  

As a small aside, we mention here some other experiments performed with semi-
permeable membranes, in this case on dilute molecular solutions, because they lead in the 
mid-1880’s van ‘t Hoff in Amsterdam to a law that now bears his name: 

 
 V nRTΠ =  (1.2) 

 
This equation, which bears great resemblance to the ideal gas law, describes the relation, for a 
dilute amount of n moles of dissolved molecules, between the osmotic pressure, Π, the 
volume, V, and the temperature, T. So what is the osmotic pressure? It is the excess pressure 
that is needed to achieve equilibrium between a solution containing n moles of molecules that 
cannot pass a (stiff) membrane that separates this solution with a compartment containing 
pure solvent. When brought into contact with each other through the membrane, solvent will 
start to stream from the compartment with the pure liquid into the compartment containing the 
dissolved species, thereby increasing the pressure, until equilibrium is reached. This excess 
pressure is called the osmotic pressure and assures that the flows of solvent going both ways 
through the membrane become equal again. It is no coincidence that van ‘t Hoff’s law states 
that this excess pressure exactly equals the pressure an amount of n moles of ideal gas would 
have exerted were it to be placed in a compartment of the same volume and temperature.  

However, before the term ‘colloid’ was coined by Graham, important experiments with 
colloidal particles had already been performed. In 1827 the botanist Robert Brown studied the 
thermal motion of pollen grains he observed through a microscope. Contrary to others who 
had tried to explain this erratic motion before him, he correctly concluded by studying a range 
of finely divided substances that this motion had nothing to do with life or a ‘life force’. It 
took till Albert Einstein derived in 1905 the relationship between the diffusive Brownian 
motion and the thermal energy of the solvent molecules that causes it (see Eq. (1.8) in the next 
Section) this correct conclusion was given a theoretical basis. It is much less known that in 
the same year, and independently, W. Sutherland from Australia derived the same relation. 
Despite this fact Eq. (1.8) is generally referred to as the Stokes-Einstein relation. In 1910 
Perrin used it to experimentally determine Avogadro’s number by analyzing the diffusive 
motion observed through a microscope of a model dispersion of colloidal spheres he had 
painstakingly had made monodisperse by repeated centrifugation. These and other 
experiments he performed to determine this fundamental quantity earned him in 1926 the 
Nobel prize in Physics for putting ‘a definite end to the long struggle regarding the real 
existence of molecules’ (committee report).  

Important experiments before Graham were also performed by Faraday (1791-1867) on 
gold sols which he flocculated by adding salt. Without salt however, they can be quite stable; 
several of Faraday’s gold sols are still on display in the British museum. Faraday also 
discovered that small particles could be detected by focusing light into a conical region. This 
lead tot the development of the utramicroscope by Zsigmondy & Siedentopf in 1903, later 
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used by Perrin. The theory for the scattering of particles small compared to the wavelength 
was developed by Lord Rayleigh (1881) and finally as a general solution to Maxwell’s 
equations by G. Mie (1908). Because of the increased length scale characterizing soft matter 
(light) scattering is an important technique that will also be treated in these notes in chapter 5.  

It took until after the development of Quantum Mechanics in the 1940’s before the first 
general description of the interaction forces between two colloidal particles were given. This 
theory was developed independently of each other by Derjaguin and Landau in the former 
Soviet Union and Verwey and Overbeek in the Netherlands. This so-called DLVO theory 
describes the interactions resulting from the (between identical particles) attractive Van der 
Waals forces and the (between identical particles) repulsive forces resulting from charges 
residing on the particles surfaces (Fig. 1.6). This potential is still a cornerstone of colloid 
science and experimental ways to measure it will be presented in chapter 9, together with its 
derivation.  

 
Figure 1.6 Many colloidal particles are stabilized against the attractive Van der Waals forces by 

repulsion of charges on the particles surface (left). After addition of salt this repulsion 
cannot prevent aggregation. On the right a fractal-like aggregate of gold colloids (20 nm) 
after addition of salt (. The potential describing these interactions is the DLVO potential.  

Significant contributions on the study of surfactants (chapter 3) can be traced back to 
Benjamin Franklin’s observations in 1757 of pouring oil on turbulent waters. He noticed that 
the wakes behind ships were calmed after the cook dumped greasy material in the water. 
Although he did obtain patents on this effect, they did not turn out to be too practical. It was 
Agnes Pockels who at the end of the 19th century studied and build the apparatus to measure 
the pressure versus area curves for monolayers of surfactants. This set the stage for 
Langmuir’s work on the same subject in the beginning of the 20th century and our ability to 
characterize and understand the very complex phase behavior of amphiphiles. 

In 1920 H. Staudinger showed that polymers (chapter 6) are not micellar aggregates, but 
real macromolecules, in which the monomers from which they formed are held together by 
covalent bonds. In 1931 Carothers produces the first nylon polymers. Soon thereafter W. 
Kuhn derives in 1934 the probability distribution for the average size and shape of a random 
coil.  
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Early studies on liquid crystals include those of another botanist L. Reinitzer who in 
1888 observed two separate melting temperatures in cholesterol nonanoate. The term liquid 
crystal was coined by the physicist Otto Lehmann, who demonstrated that Reinitzer's phase 
changes were thermodynamic transitions. In the early 1920’s work on the identification of 
many of the new LC phases took place, while also a description of the unusual defects and 
textures present in these phases was started. Most notably among the scientists studying LC’s 
at that time was G. Friedel. 
 
 
1.3 Separation of Time- and Length-Scales: Coarse Graining and Characteristic Forces 
In this section we will focus on colloidal spheres with a radius R, but a lot of the reasoning is 
valid for most of the other soft matter systems as well. The fact that in the description of the 
properties of a dispersion one can take a so-called coarse grained approach is actually what 
defines the colloidal domain, as Evans and Wennerström call the size range between a few 
nm and a few µm. It also sets it apart from the molecular world on the one hand and granular 
matter on the other. If there is still a well-defined set of thermodynamical variables, the 
following approach in the statistical mechanical description can be taken. Coarse graining 
means averaging over a set of variables. If there is a large separation of length and time scales 
between the variables describing the constituents of the dispersed phase (the liquid or gas) and 
that what is dispersed in it (the colloid) one can average over, in other words trace-out, the 
fast variables that change on small length scales. This means we can, for instance, use 
continuum descriptions of the mechanical response of the dispersion medium 
(hydrodynamics). This approach simplifies both theories describing structure and dynamics of 
colloidal matter as it does computer simulations of these systems. On the other hand it is 
equally important for describing these properties and for that matter of what we define to be 
soft matter that not all thermodynamic variables are integrated out. In a physical description it 
means that there is a connection between the thermodynamics of the continuous phase with 
that of the dispersed particles. For instance, by linking the same fluctuations that cause 
Brownian motion to the dissipation that is characterized by the viscosity (first example of a 
fluctuation-dissipation relationship). It is exactly this loss of connection that makes ‘sand in 
water’ not a colloidal dispersion and instead a granular matter system; contrary to a solution 
of glass beads the size of 1 µm. It also means that the description of sand piles or slurries of 
sand in water is much harder and actually at this moment in time even lacks a general 
accepted theoretical framework to tackle this problem. The description of the properties of the 
~1000 times smaller glass colloids, on the other hand, can be dealt with through the usual 
statistical mechanical approach. This is also why the first chapters (2-3) of these lecture notes 
on soft matter will start with both a recapitulation of statistical mechanics and an introduction 
to the description of liquids. These theoretical foundations are necessary to understand the 
methods for deriving, for instance, potentials between colloidal particles that do not contain 
the details of the liquid in which they are dispersed. In the case of charged colloids interacting 
through Van der Waals forces and (screened) Coulombic forces from charges residing on the 
particle surface, we will perform, or more accurately stated, sketch, such a derivation resulting 
in the DLVO potential after those that first derived it (Derjaguin, Landau, Verwey and 
Overbeek, chapter 9).  

Interestingly, the size range that is defined as colloidal is dependant on those who do the 
observations, not through a collapse of a wave function, but by defining the time scale of 
experimental observations. Statistical mechanics shows that if an object has a well-defined 
thermodynamic temperature it has 0.5 kT of kinetic energy per degree of freedom (equi-
partition theorem) where k stands for Boltzmann’s constant (1,381 x 10-23 J/K) and T the 
absolute temperature. This thermal energy leads on the scale of molecules to kinetic chaos 
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that on the particle level, characterized by a radius R, can be interpreted as a Brownian force 
with a magnitude of O(kT/R). Before we can continue our analysis of relevant time and length 
scales and the role of different interactions that are of importance in a colloidal dispersion, we 
first have to take a short digression to that part of continuum physics that describes the laws 
of Newton in a continuous medium like a fluid or gas: hydrodynamics.  

First, let us consider what happens to a fluid of which the density does not change, a so-
called incompressible fluid (∇•U = 0, usually a very good approximation), when we apply the 
same shear stress Fp /L

2 as in the shear deformation of the crystal mentioned above in Section 
1.1. In the deformation of the solid described by Eq. (1.1) in that section we saw that the shear 
strain was, for small values, proportional to the shear strain. In a fluid the shear strain 
increases continuously and without limit as long as the force is applied: a fluid flows (Fig. 
1.7). Therefore, the stress does not depend on the shear strain, but on its rate of change also 
called the strain rate or the shear rate (usually depicted by γ). The viscosity of a fluid, η, is 
defined as the ratio of the shear stress, to the strain rate:  
 

 
2 Shear stress

Strain rate

pF
L

v
L

η = =  (1.3) 

 
For a Newtonian fluid the viscosity does not depend on the speed v (or the shear rate) making 
the speed directly proportional to the applied force (stress). The viscosity, or as it is also 
called the ‘internal friction’, determines for a fluid how easy a liquid will flow by an applied 
force and how much energy is dissipated as heat. Viscous forces oppose the motion of one 
portion of a liquid relative to another. The equations that describe an incompressible 

Newtonian liquid are called the Navier-Stokes equations. These describe the momentum 
conservation principles of elementary physics, for a system that includes friction, as applied to 
a stationary control volume through which fluid may enter or leave. Similarly as in Eq. (1.3), 
a sphere with a stick boundary condition on which a constant force is applied will obtain a 
constant speed. A stick boundary condition means that the fluid just adjacent to the particles 
surface does not move with respect to the particle. Again the proportionality constant is given 
by the viscosity and by the particle size. This friction factor, f, has Stokes’ name associated 
with it, because it follows as a solution to the Stokes hydrodynamic equations.  

Figure 1.7 Shear forces applied onto a liquid lead to a shear rate characterized by a viscosity.

 
 6πf Rη=  (1.4) 
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The Stokes equations are a limit of the Navier-Stokes equations and are obtained by 
neglecting effects of inertia. Inertia and viscous forces affect a mechanical mass-point system 
in similar ways as in a hydrodynamical description. The Brownian time, τB, is defined as the 
relaxation time of momentum of a particle. It is given by the ratio of the mass and the friction 
factor and describes the time it takes a particle with mass m on which a force works to obtain 
its steady state velocity as dictated by the Stokes friction factor:  
 

 
6π RB

m m

f
τ

η
= =  (1.5) 

 
The importance of inertia, as given by O(R2ρU2), with U a typical velocity, relative to viscous 
forces, O(ηRU), is given by the dimensionless group called the Reynolds number: 
 

 e

UR
R

ρ
η

≡  (1.6) 

 
If we fill in some typical numbers (see Table 1.1 for values chosen) we find 2 x 10-10 s for the 
Brownian time and 10-6 for the Reynolds number. Because of its small mass, momentum 
transferred to a Brownian particle is very quickly lost and inertial effects can be neglected for 
all relevant velocities. As our day-to-day experience with hydrodynamics, for instance while 
swimming or paddling a canoe, is in the limit where inertia effects cannot be neglected, one 
has to be careful when applying human intuition to the colloidal domain. For instance, if we 
shrink a person swimming to the size of a µm, his mass is so small that it becomes impossible 
to swim. Swimming relies heavily on pushing oneself off against the water to gain forward 
momentum, something that is not possible in the colloidal domain.  

Filling in Eq. (1.5) for a solvent molecule tells us that on the molecular scale momentum 
is relaxed in 10-15 s. This is the time scale on which the solvent exerts forces on the colloidal 
particle. Before Perrin scientists tried to infer from the Brownian motion observed through a 
microscope the mean velocities of the particle. In principle the mean kinetic energy of a 
colloidal particle <0.5mv2>=1.5kT, 0.5kT per degree of translational freedom as stated earlier. 
However, through our estimates of the relevant time and length scales we can now see that 
this method of analyzing Brownian motion is doomed to fail. It would mean accessing the 
particle displacements on time scales much shorter than τB, and length scales much shorter 
than can be resolved through a light microscope. What one observes through a microscope is 
already the result of many different uncorrelated forces on the particle. A process that is 
characterized by a great many realizations of uncorrelated events is a diffusion process 
characterized by a diffusion coefficient Do. We will revisit diffusion not only in chapter 13 on 
the dynamics of colloids, but also find that it describes the basic shape of a polymer molecule 
(chapter 6). The subscript ‘0’ here designates that we are dealing with single particle 
diffusion, not influenced by other particles. In a diffusion process particle displacements are 
not proportional to time as in Newtonian free flight, but instead scale with the square root of 
time: 

 
 2

0( ) 2x t D= t  (1.7) 
 

Eq. (1.7) describes the mean square displacement, <x2(t)>, as a function of time, t, for a 1D 
process. For each extra dimension a factor 2 needs to be added. It was Einstein who was the 
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first to derive a value for the diffusion coefficient by connecting the random diffusion process 
with the average kinetic energy of the colloids:  
 

 0 6π R
kT kT

D
f η

= =  (1.8) 

 
In his derivation Einstein used the Stokes friction factor, Eq. (1.4), van ‘t Hoff’s law, Eq. (1.2) 
and the fact that Brownian motion is described by a diffusion process, Eq. (1.7).  

The time it takes a Brownian particle to diffuse a distance 2R, τI, is thus given by:  
 

 
2 32 12

I

R f R

kT kT

π ητ = =  (1.9) 

 
This time is sometimes called the interaction time and we can use it to calculate the mean 
particle velocity resulting from the Brownian force as manifested through the irregular 
bombardment of solvent molecules, we find: kT/(Rf) and thus indeed that the Brownian force 
is of O(kT/R).  

The interaction time, τI, also has physical meaning in a concentrated dispersion; it is the 
time it takes for a collectoin of colloidal particles that are close together to significantly 
change their configuration. The colloids experience direct interactions with their neighbors in 
addition to hydrodynamic friction in the process. This is not to say that the presence of the 
neighbors is not felt at shorter times. On the contrary, because hydrodynamic interactions are 
very long-range and very fast, as we will see shortly, the Brownian particle feels already the 
presence of the other particles on the so-called hydrodynamic time scale, τH: 

 

 
2

H

Rρτ
η

=  (1.10) 

 
This hydrodynamic time, which is on the order of the time it takes a hydrodynamic shear 
wave to traverse a distance R, comes naturally out of the (Navier-Stokes) equations describing 
the hydrodynamics in which temporal accelerations are taken into account. After some 
thought it is not surprising that this hydrodynamic time, after some rearrangements turns out 
to be of the same order as the Brownian time, τB, defined earlier. Similarly as we did before 
we can calculate that the distance a Brownian particle diffuses in this time, lB, equals: 
 

 2
B

mkT
l

f
=  (1.11) 

 
Filling in our usual assumptions gives, lB ≈ 0.1 nm, which is as was already stated, very short. 
Thus, for times (much) longer than τB and distances (much) further than lB we can forget 
about the transients and consider velocities as determined by the friction factor. Said in 
another way: for distances longer than lB colloidal motions are overdamped. These facts make 
the calculation of hydrodynamic effects, which is still a formidable, many body problem, a lot 
easier and is also at the basis of a computer simulation technique called Brownian dynamics 
(chapters 7 & 12).  

As we will see in chapter 9 it is actually almost always the case that particles dispersed 
in a liquid acquire a net charge. Although we will also derive in that chapter that the 
interaction between two charged spheres is mediated in important ways by the ions in solution 
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that reside around the particle because of its electric potential, an order of magnitude estimate 
from just a Coulombic repulsion of two spheres with a surface potential of ζ, is given by 
εε0ζ2, here ε0 is the dielectric permittivity of free space (8.85 x 10-12 C/Vm). As seen in Table 
1.1 the electrical forces are usually larger than the Brownian forces thus explaining why these 
repulsions can protect two colloids from the attractive Van der Waals forces. As we will also 
see in chapter 9, additivity of the Van der Waals forces between molecules will lead to 
interactions between colloids that are always attrictive between identical particles and that are 
characterized by the Hamaker constant, Aeff. This constant, which has a unit of [energy], 
depends on the dielectric properties of both the particles and the intervening dispersion 
medium and gives rise to a Van der Waals force of O(Aeff/R).  

Lastly, as was already mentioned, soft matter is much more amendable to external fields 
than conventional condensed matter. Here we will look at one field, gravity, that on earth is 
always present and is an important factor limiting experiments on particles that are larger than 
several µm, next of course to the time restraint a human lifetime puts on the time an 
experiment can run. The result of gravity is sedimentation: and the velocity a single colloidal 
sphere in a dilute dispersion will attain either moving down or up under the influence of this 
external field is given by the sedimentation velocity, Us. If ∆ρ is the density difference 
between the particle and the solvent, the gravitational force is O(R3∆ρg) with g the 
gravitational acceleration (9.89 m/s2), than balancing frictional and gravitational forces gives: 
 

 
22
9s

R g
U

ρ
η
∆

=  (1.12) 

 
With Eq. (1.6) we can check that indeed for typical values the Reynolds number is still small 
for all sedimentation processes. Another dimensionless number the Peclet number, here for 
sedimentation, gives the relative importance of diffusion as compared to sedimentation: 
 

 
0

2 s
e

RU
P

D
=  (1.13) 

 
Even gas molecules experience the gravitational pull of the earth resulting in a barometric 
height distribution in which the gas density is characterized by an exponential. The decay 
length of this exponential distribution is called the gravitational length, lg, and gives the height 
one has to lift a particle of (buoyant) mass ∆m to raise its potential energy in the gravitational 
field by kT:  
 

 g

kT
l

mg
=
∆

 (1.14) 

 
For an ideal gas this equation is easily derived by assuming local mechanical equilibrium: the 
gas pressure at a certain height should be the same as the weight of the gas above that point, 
i.e., hydrostatic pressure balance. Similarly, but now taking the osmotic pressure as given by 
Van ‘t Hoff’s law instead of the ideal gas law, we can derive an exponential density 
distribution for colloids if they behave ideally as well. However, while for an ideal gas the 
gravitational height is several km, for colloids it can be even on the order of a particle size or 
smaller. Measuring the gravitational height of a colloidal dispersion was another way in 
which Perrin determined Avogadro’s number.  
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Table 1.1 summarizes the importance of several forces for our chosen example 
parameters. Firstly, for all colloids inertia effects can generally be neglected and for almost all 
time and length scales one can assume diffusive motions and velocities governed by a friction 
factor. As mentioned, electrical forces keep it suspended and stable against aggregation by 
attractive Van der Waals forces, while stirring or a modest speed results in viscous forces that 
are of the same order as those exerted on the particle by thermal motion of the solvent 
molecules. Gravity effects are not dominant, but can in the long run not be neglected. 
However useful these quick order-of-magnitude estimates are, it should also not be forgotten 
that all the forces mentioned have very different dependencies on distance, decaying with 
different power laws or even exponentially. This is why the derivation of some of these laws 
will be dealt with in coming chapters as well as the experimental methods to measure them.  

 
Table 1.1 Order of Magnitude of Characteristic Forces:  
R = 1 µm, η = 10-3 kg/ms, U = 1 µm/s, ρ = 103 kg/m3, ∆ρ/ρ = 10-2, 
g = 10 m/s2, Aeff = 10-20 J, ζ = 50 mV, ε = 102
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1.4 Crossroad of Disciplines and Fields 
The Colloidal Domain: where Physics, Chemistry, Biology and Technology meet. This is the 
appropriate title of a recent textbook on colloid science. Even in recent years this statement is 
gaining more and more momentum, as it is driven by a rapid increase in synthetic methods, 
increased power of computer simulations and an increasing theoretical understanding 
combined with powerful methods, including quantitative 3D microscopy, to study and 
manipulate soft matter. As this course is intended for those who in principle have never heard 
of complex fluids, our focus is on the physics of both the theoretical basis behind the 
approach to describe soft matter and on the physics of the experimental and computer 
simulation tools that are used to study this field. We have limited our focus further to an 
equilibrium treatment for the Masters subjects (marked with an *), and leave phenomena that 
have to do with soft matter under flow conditions (shear) and interacting diffusing systems for 
the advanced part of the course. We can only touch upon the very interesting physical 
chemical or chemical physical processes that underlie many of the synthetic approaches used 
to design soft matter systems. The reason is that without a basic understanding of the forces 
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and phase behavior of the systems in question it is not possible to describe a synthetic 
pathway in any detail. For instance, the route used most in industry to produce polymers, 
emulsion polymerization, illustrates this point nicely. The reaction heat that comes free during 
the chemical routes used to make polymers is large, but more problematically it comes free in 
a short amount of time. Without going into too much detail, this is mostly due to the fact that 
the reaction pathways are autocatalytic and therefore have a tendency to ‘run away’. One way 
to prevent the reactions to get out of hand is to perform them in small droplets of monomers 
in a sea of an inert (heat absorbing) liquid, such as water. To keep the emulsion droplets from 
creaming, they have to be stabilized by a surfactant. Subsequently, an initiator has to start the 
reaction by diffusing from the water phase into the droplets of monomers. A complex set of 
conditions depending on the diffusion constants of the species involved, the phase behavior of 
the growing polymer in the monomer liquid and the details of the chemical reactions, etc., 
now determine the final size of the polymers and the distribution of their length. In short, 
many synthetic pathways for soft matter components are complicated soft matter research 
issues where by far not all problems have been solved and where a lot of active research is 
going on. It is however important to understand how the increased length scale that is present 
in soft matter systems gives chemical control over the properties. To take colloids as an 
example: quantum mechanics dictates the interactions between molecules, while for a 
colloidal spheres with a radius R the interaction potential can be tailored to a very large 

degree both by changing the properties of the particle surface (and/or bulk) and by changing 
the properties of the dispersion medium. Using particles with core-shell structures even 
increases the possibilities.  

 
Figure 1.8 Twisted nematic liquid crystal display. Two surfaces that are treated to align the rod-like 
molecules in such a way that they make a 90o twist in the average direction in which they are 
pointing. This twist is followed by the polarization vector of the light that passes thus allowing light 
to transmit the device even for crossed polarizers. After switching on a moderate electric field, all 
molecules align reversibly perpendicular to the polarizer planes and the pixel becomes dark.  

In many industrial processes soft matter systems play a role, this is clear if they are the 
main components such as in paints, polymers, cosmetics or foods, but is often also less 
obvious such as in oil recovery, or in the making of IC’s. Almost all these systems are very 
complex involving many soft matter components that all interact with each other. This is why 
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most of these systems are not treated in this introductory course. It is certainly true however, 
that progress in the field of soft matter is being made at such a pace that the ‘model’ systems 
being studied are starting to become more and more complex as well, bridging the gap 
between the academic and industrial labs. Moreover, the progress mentioned is also creating a 
whole new class of materials that are directly based on the model systems with their well-
controlled properties. These are advanced materials of which the properties can be adjusted 
dynamically by external stimuli such as: liquid crystal displays (Fig. 1.8), sensors based on 
photonic crystals or electro-rheological fluids. These materials are also called ‘smart’ 
materials (chapter 15).  

As already mentioned, almost all the important content of every cell falls in the colloidal 
domain. This includes on the small end proteins and on the large end red blood cells. Despite 
a lot of recent research that uses almost exclusively theoretical and experimental techniques 
that were developed by soft matter researches, there is still a lot not known. For instance, even 
a simple question like: how does the cell or its components exert forces, is largely unknown 

 
Figure 1.9 Cross-fertilization between the (micro)biology inspired physics and soft condensed 
matter fields. Top: Mixture of monodisperse colloidal rods (virus particles) and spheres show an 
intriguing and complex phase behavior, next to schematic pictures the phases are demonstrated 
with (polarization)microscopy images (M. Adams, et al., Nature, 393, 349-352 (1998)). Bottom: 
Optical tweezers grabbing colloidal latex spheres with an biological actin filament attched 
(explained in Chapter 9) are used to measure forces of molecular motors attached to another 
colloidal particle.  
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and an active field of research. It is fair to say that because of the large number of researchers 
in this field of biology inspired physics, there is also a flow of knowledge starting to go the 
other way (Fig. 1.9). One nice example is the possibility to induce specific, temperature 
reversible, interactions between colloids by coating them with single strands of DNA that will 
only interact with other particles that are coated with the complementary sequence. Similar 
cross-fertilization is also starting in the field of biology inspired (soft) materials science.  
 

 
Figure 1.10 Self-assembled array of spherical di-block domains are used in lithographic 
procedures to make a pattern of holes or pillars in silicon nitride with dimensions of only a 
few nm. (M. Park, et al., Science, 276, 1401 (1997)). 

 
1.5 Connection with NanoScience and NanoTechnology 
The (materials) science ‘buzzword’ at present is certainly anything that has ‘nano’ in it. Not 
only have the promises of ‘nanoscience’ and ‘nanotechnology’ inspired governments to 
increase funding in this area, the general public is starting to become aware of this ‘new field’ 
of science as well. Already, there are serious warnings in editorials in the journal Nature to 
the scientists working in this field that ‘objections and worries about the dangers of this 
emerging field need to be taken seriously’. By definition anything that has at least one 
dimension with feature sizes under 100 nm is determined to be part of nano-science. This 
length scale is chosen completely arbitrarily. Part of the motivation to study systems below 
this size is that this is roughly the size at which commercial IC’s are produced at the moment. 
And although it has already been predicted for over 20 years, there will indeed be an end to 
the doubling of the number of transistors on a silicon chip every (now) two years. Also 
without the ‘hype’ it is fair to say that the ability to make and design structures below 100 nm 
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is increasing rapidly. As may be clear from the above, soft matter scientists are playing an 
important role in this field.  

Another reason for increased expectations is that new effects arise when one enters 
dimension truly close to a nm. For particles of this size one can no longer state that  = 0 and 
quantum mechanical effects manifest itself. This can be understood qualitatively by 
considering the QM description of an electron in a box. Confinement of the wave function 
leads to a discrete spectrum of energy levels where the spacing is determined by the size of 
the box. This explains why metal particles or semiconductor crystals with sizes of several nm 
have strong size dependant properties and why, for instance their absorption spectrum shows 
discrete absorption bands. In similar ways as we can tune the interparticle interactions for 
larger colloids, one can now chemically tune the wave function of these ‘quantum dots’ 
(chapter 8).  

What we have hoped to have achieved after following these SCM lectures is the ability 
to understand why in nano-science is not is not possible to just scale down a steam engine to a 
micron size and expect it to still work. It is amazing how many ‘serious’ scientists do not 
realize this. 
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Origin Figures 
All figures in this chapter have been obtained from the Timeline of soft condensed matter that 
was presented at the 100 year APS celebration, a version of this timeline can be found at:  
http://www.nat.vu.nl/~fcm/ComplexFluids/ComplexFluids.html 
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2.1. Introduction 
 

Many properties of soft condensed matter can be described accurately by considering 
the dispersing liquid, or solvent, as a continuum, which is characterized by bulk macroscopic 
properties such as the viscosity and the permittivity. In this approach the colloidal particles 
play the role of molecules. In such a ‘supramolecular fluid’ the colloids interact via effective 
forces that are mediated by collections of ions and molecules. This is possible thanks to the 
large separation in length and time scales between the colloidal particles of interest and the 
‘true’ molecules of which the system exists. For example, the interaction between two 
electrically charged colloidal particles in a solvent is really an interaction between collections 
of ions distributed over the particles and in their immediate surroundings. But because the 
latter move much faster they are (almost) always in equilibrium with the pair. Thus, at every 
instant the so-called ‘mean force’ between the colloids arises from the statistical average over 
the equilibrium ensemble of possible configurations of ions around the fixed colloids. 

In many systems of interest the number of colloidal particles is still much too large, so 
that we will need to turn to statistical mechanics to obtain a description of their macroscopic 
behavior. The statistical mechanics of fluids was developed for molecular liquids and gases. 
But the results can be directly transplanted to soft condensed matter systems by considering 
them as supramolecular fluids. This has been a very successful approach in the study of 
concentrated dispersions. In this chapter we will present the main results from this theory. 
When we speak of ‘particles’ in this chapter, therefore, they can be either the ‘ordinary’ atoms 
or molecules for which the theory was originally intended, or the larger particles that make up 
the supramolecular fluid. It should be kept in mind, however, that the analogy is valid only for 
a system’s equilibrium properties. Dynamical properties, such as diffusion and flow of 
particles, must be derived from a different set of starting equations, which reflect the fact that 
they move not through a vacuum but through a low molecular, viscous liquid. This lies mostly 
outside the scope of this course. 

2.2. Van der Waals theory 
One of the oldest and best known theories of the liquid state is that of van der Waals 

(1873). We start with it because it shows the connection between molecular properties on the 
one hand and the macroscopic phase behavior on the other. It will set the stage for the more 
modern treatments of fluids in the following sections. 

The classical ideal gas laws1 p NkT V  and 3 2U NkT  do not hold for real gases at 
finite density N V  . Van der Waals realized that this is caused by interactions between 
the molecules. It is remarkable that he sought to describe both gas and liquid phases in one 
equation of state.  He distinguished two intermolecular forces: a short ranged steep (“hard”) 
repulsion due to the finite size of the molecules, and a longer ranged (“soft”) attraction that is 
responsible for the cohesion of liquids. The repulsion reduces the space available to the 
molecules by an amount bN . The attraction reduces the pressure exerted on the walls of a 
container by an amount proportional to the number of pairs of molecules, or 2a . The van der 
Waals equation of state is therefore 

 2
2 1

kT a kT
p a

v b v b

 


   
 

, (2.1) 

where 1v V N   is the volume per molecule. The van der Waals constants a and b are 
dependent on the type of gas. Figure 2.1 shows the dependence of the pressure on density. At 
                                                 
1 Here, p is the pressure, N the number of molecules, V the volume, k Boltzmann’s constant, U the internal 
energy, and T the temperature. 
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high enough temperatures the pressure increases monotonically and there is no difference 
between the gas and liquid phase. But for sufficiently low temperatures there is a “van der 
Waals loop”: along an isotherm the pressure decreases when the density is raised. This is 
where the system is unstable and phase separates into a dilute (gas) and a dense (liquid) phase.  

The critical isotherm separates the two regimes. It has a point where the first and second 
derivatives both vanish, known as the critical point: 
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. (2.2) 

Using Eq. (2.2) we can introduce the reduced variables cp p p , cv v v , cT T T . 

Subsitution into Eq. (2.1) produces the result 
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. (2.3) 

This is known as the law of corresponding states. Its importance is in the fact that van der 
Waals was able to classify a large number of systems with just a single equation of state: 
different gases behave the same if the reduced parameters are the same. 

 
Figure 2.1. Van der Waals equation of state for a number of different temperatures. 

The densities of the coexisting phases can be found (ad hoc) by the so-called Maxwell equal 
area construction: the segment of the isotherm where the loop occurs must be replaced by a 
horizontal line that is chosen such that the two shaded areas are equal. This can be seen as 
follows: In equilibrium, the isothermal transfer of an infinitesimal amount of material from 
the coexisting liquid (L) to the coexisting gas (G) phase should result in a zero change in 
Gibbs free energy:   ,

0
T N

dG Vdp  . Thus, 

   0
G G

G

L
L L

Vdp pV pdV    , (2.4) 

from which the Maxwell construction follows immediately. 
Although the van der Waals equation is only qualitatively valid, it is useful to consider 

how it manages to capture molecular interactions. The parameter b is the excluded volume per 
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molecule. A spherical particle of diameter d excludes a spherical volume of radius d to 
another particle, so per particle  

 32
3b d . (2.5) 

The interpretation of a can be found by first deriving the equation of state for the internal 
energy of the van der Waals gas. By differentiating dU TdS pdV   with respect to V at 
constant T we find 
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            
    

 (2.6) 

The last equality follows from the equation for the Helmholtz free energy: dA SdT pdV   . 
Making use of (2.1) we find  
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. (2.7) 

Realizing that v V N , we obtain 

  
2N a

U f T
V

   . (2.8) 

The second term in this equation is an unknown function of temperature. The first term 
depends only on the density of the fluid. It is the average potential energy of the molecules, 
which changes only if the distance between them changes. This “configurational energy” can 
be estimated with a molecular picture: Suppose that the potential energy of two molecules at a 
separation r is  r and that the local density of surrounding molecules is constant  for r d . 

Then the average potential energy of a molecule in the field its neighbors is 

   2

2
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r r dr  


 . (2.9) 

Then the configurational energy is  

   2
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2 d
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   , (2.10) 

where the factor ½ avoids double counting. Comparing this expression with (2.8) we find 

   21
4

2 d

a r r dr 


   . (2.11) 

The magnitude of this constant can therefore be calculated if an expression is known for the 
pair interaction between molecules. We now call this the van der Waals interaction. 

2.3. Virial expansion of the pressure 
For temperatures above the critical point and at low densities Kamerling Onnes (1901) 

proposed a general series expansion of the pressure: 
     2

2 31p kT B T B T       (2.12) 

The temperature dependent coefficient iB  is called the i-th virial coefficient. It is possible, for 

example, to expand the van der Waals equation in a Taylor series. This gives 
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The second virial coefficient has a repulsive and an attractive component. With decreasing 
temperature 2B  can become zero (at the Boyle temperature), or even negative. With the help 

of statistical thermodynamics it is possible to derive general expressions for the virial 
coefficients. We will show how this is done for 2B .  

Using the canonical ensemble the Helmholtz free energy A is given by 
 ln NA kT Z  , (2.14) 

in which 

 

3

2

int2

1 2

!

N
N

N N

mkT
Z q Q

N h

   
 

, (2.15) 

  1 1exp , ,N N N

V

Q kT d d    r r r r  . (2.16) 

Here, h is Planck’s constant and m the mass of a particle. qint is the partition function of a 
single particle and accounts for vibrations and rotations. The configurational integral QN 
contains the potential energy   of the collection of molecules as a function of their positions 
ri; each of the N integrals is over the system volume V. Clearly, for an ideal gas 0   so that 
we find N

NQ V . The pressure is then given by 

 
,

ln N

N T

QA N
p kT kT kT

V V V
              

, (2.17) 

as expected. 
With increasing density intermolecular forces will start to give ever more important 

contributions to the pressure. First, interactions between the  1
2 1N N   pairs of molecules 

become important. We let  ijr  again be the interaction between the pair of molecules i and j 

separated by the distance ij j ir  r r . Then we can write 

      
pairs pairs

exp exp expij ijkT r kT r kT 
           
  . (2.18) 

If we now define the Mayer function  

  exp 1ij ijf r kT     , (2.19) 

then it is clear that fij is small compared to unity, unless the particles approach each other 
closely (at high densities). Continuing with (2.18), 

    
pairspairs

exp 1 1 terms like ij ij ij klkT f f f f       (2.20) 

Ignoring the second and higher order terms we find after substitution in Eq. (2.16): 

 

   

1
pairs

21
12 12 1 22

1

1

N N ij

V

N N

V V

Q d d f

V N N V f r d d

 
  

 

   



 

r r

r r




 (2.21) 

Since f12 only depends on the distance 2 1 r r r , but not on the two positions separately, we 

can perform one more integration over V. We end up with 

 
   12

1
1

2
N

N

V

N N
Q V f r d

V

 
   

 
 r  . (2.22) 

If we differentiate ln NQ  the same way as in Eq. (2.17) we finally find 
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  2
2p kT B     (2.23) 

with 

 

 

  

1
2 122

1
2 1 exp .

V

V

B f r d

r kT d

 

    





r

r
 (2.24) 

This is the general expression we were looking for. A derivation of the higher order virial 
coefficients starts from the grand canonical ensemble, but we will not pursue that here.  

It is straightforward to show that for hard spherical particles 
 32

2 3B d . (2.25) 

Compare this with the van der Waals results Eqs. (2.5) and (2.13).  
Notice that if the hard spheres also have a long range interaction that is weak, such that 

 r kT   for r d , the exponential in Eq. (2.24) can be linearized and we recover the van 

der Waals result of Eqs. (2.13) and (2.11). Hence, if we neglect interactions between three and 
more particles, and we assume that the attractive interactions are weak, then the van der 
Waals equation is obtained. In practice, this equation is an improvement of the ideal gas law 
(above Tc) and it qualitatively describes liquid-gas phase separation (below Tc). In the 
following we will consider methods to derive equations of a more general validity starting 
from statistical mechanics. But first we have to make a few remarks on the application of 
these methods to supramolecular fluids. 

2.4. Osmotic pressure 
The statistical mechanical formalism introduced above, Eq. (2.15), can of course also be 

applied to a much wider class of systems such as solutions of colloids or macromolecules. 
These solutions consist of a low molecular liquid (or a solution of low molecular components) 
in which a component of much larger size is dissolved (or dispersed). Their size is typically 
between a nanometer and a micrometer. The lower limit should be larger than the size of the 
low molecular components so that these form a continuous background. The upper limit 
should not be so large that the particles sediment before they have had the time to reach a 
thermodynamic equilibrium. This way such solutions resemble a gas or a liquid of giant 
atoms floating in a continuous background. This view reduces the number of particles 
enormously by removing those in which we are not interested. Nevertheless, the number of 
supramolecular particles is still so large that statistical mechanical methods are needed. 

In such a treatment the usual thermodynamic parameters, such as the temperature and 
the system volume, still apply. Only the pressure has to be replaced by the osmotic pressure. 
A natural way to introduce it is by considering a membrane equilibrium, as shown 
schematically in Figure 2.2. The colloids are separated from a reservoir containing the solvent 
by means of a semipermeable membrane. The membrane must be permeable to the low 
molecular components and impermeable to the colloids or macromolecules. When the system 
is in equilibrium the chemical potentials of the low molecular components on both sides of 
the membrane are equal and there is a pressure difference across the membrane: the osmotic 
pressure  . It can be measured from the liquid rise in the colloid phase and the mass density 
of the suspension: 

 colloid reservoirp p    (2.26) 
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Figure 2.2. Membrane equilibrium between a macromolecular solution (white) and its solvent 

(grey) separated by a semipermeable membrane (dashed line). 

For the statistical mechanical formulation of the problem the size of the particles 
enclosed by the membrane is of no consequence for the osmotic pressure (as Einstein argued 
for the first time). So, for dilute solutions as well as dilute suspensions van ’t Hoff’s law is 
valid: 

 kT  . (2.27) 
Osmotic pressures for colloidal systems will therefore tend to be significantly smaller than for 
molecular solutions. For higher concentrations we can use a virial expansion analogous to 
(2.12):  

     2
2 31kT B T B T       . (2.28) 

We have seen that the second virial coefficient depends on the interactions between a pair of 
particles, see Eq. (2.24). We only need to describe the meaning of the potential energy  r  

in that expression. It is the reversible work (at constant T) needed to move a particle from an 
infinite distance to a distance r of another particle. During the move the molecular 
components of the suspension (solvent, ions, etc.) always remain in equilibrium with the pair 
of particles. Put differently, d dr  is the statistically averaged force that the particles exert 
on each other at the separation r. Therefore,   is called the potential of mean force. As we 
will see in a later chapter this force has its origin in the forces between electric double layers, 
London-van der Waals forces, and steric forces that may arise from the presence of polymers 
on the particle surface. 

Colloidal dispersions often contain several low molecular components that can pass the 
membrane, such as electrolytes. This is called the Donnan equilibrium. Apart from an osmotic 
pressure difference there is now also an electric potential difference, the Donnan potential  . 
An elementary derivation that assumes ideal solution behavior of the monovalent ions shows 
that 

   2

e e2 1 2 1kT Z          
, (2.29) 

  21
i e e2 1 2Z Z           , (2.30) 

 i eln
kT

e
       . (2.31) 

In these equations, the colloid carries Z negative charges, e is the elementary charge unit, e  

the electrolyte concentration (number density) in the reservoir, and i
   the concentration of 

the cations/anions inside the membrane.  
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Figure 2.3. Typical radial distribution functions for (a) a gas, (b) a liquid, and (c) a solid. They 
have been calculated using a molecular dynamics simulation for atoms interaction through a 

Lennard-Jones potential. The state parameters are: 2 , , 0.2T k k k   and 3d  0.05, 0.8, 
0.9, respectively. From: Barrat and Hansen, Basic concepts for simple and complex liquids, 2003. 

2.5. Distribution functions in dense fluids 
We now ask ourselves the question how particles in a concentrated fluid are distributed 

in space. It will qualitatively be clear that this will be different in gases, liquids, and solids 
(see Figure 2.3). In gases (and dilute colloids) the particles rarely interact with each other, and 
when they do, no more than two particles will interact with each other. The positional 
ordering will be extremely small. In liquids (and concentrated colloids) the particles will 
interact much more often and with many particles at the same time. The particles will be 
ordered over a distance of a few particle diameters, because the neighbors of a given particle 
have to stay at least one diameter away, and the next-neighbors two diameters. The order will 
only be short-lived because the positions of particles are not fixed due to thermal motion. In 
solids the order becomes long ranged. The particles even assume positions that are periodic in 
space. The order is also long-lived.  

In this section we will introduce a number of distribution functions that are used to 
quantify the order just described. We will see that some of them can be measured, for 
example with light scattering, and that they are directly related to thermodynamic quantities. 

We again consider a system of N particles in a volume V at a constant temperature T 
(canonical ensemble). The probability of finding a specified particle, say particle 1, in a 
volume element 1dr , and another specified particle, say particle 2, in volume element 2dr , 

etc., is equal to (compare Eq. (2.16)) 

 
     1 1

spec 1 1

exp , ,
, ,N N N

N N
N

kT d d
d d

Q


   
r r r r

r r r r
 

  . (2.32) 

The function  
spec

N  is an example of a probability density function. But it is much too detailed. 

More useful is a function describing a configuration of fewer particles, say of the first n. This 
is the probability density function 

    ( )
spec 1 1 1

1
, , exp , ,n

n N n N
N V

kT d d
Q

    r r r r r r    (2.33) 

It is clear from the normalization that 
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    spec 1 1, , 1n
n n

V

d d  r r r r  . (2.34) 

Real particles cannot be labeled, so it is more realistic to ask for the probability to find any 
particle in 1dr , any other particle in 2dr , etc. … This probability is 

      
   1 spec 1

!
, , , ,

!
n n

n n

N

N n
 


r r r r  . (2.35) 

From (2.34) the normalization follows: 

      1 1

!
, ,

!
n

n n

V

N
d d

N n
 

 r r r r  . (2.36) 

Case n = 1: 
The function    1 r  is called the singlet distribution. For a crystal it has sharp peaks, in 

an inhomogeneous fluid it is a smooth function of r, and in a homogeneous fluid it is a 
constant. In the latter case it follows from (2.36) that 

  1 N

V
   . (2.37) 

Case n = 2: 

The function    2
1 2, r r  in this very important case is called the pair distribution 

function. It is the probability to find any particle in 1dr  and at the same time any other particle 

in 2dr . We often want to compare this probability with the case of non-interacting particles at 

the same density. This defines the (dimensionless) pair correlation function  

    
   

       

2
2 1 2

1 2 1 1
1 2

,
,g


 


r r

r r
r r

. (2.38) 

In homogeneous fluids    2
1 2,g r r  must be translationally invariant, and so it can only depend 

on the distance 12 2 1r  r r  between the particles: 

        2 2
12 1 2,g r g r r  (2.39) 

This function is called the radial distribution function. Often the subscripts are dropped. If 

 g r  has, for example, the value 2 at some distance then the probability to find two particles 

at that distance from each other is twice as high as it would have been for an ideal gas at the 
same density  . From (2.36), (2.37), and (2.38) we see that the normalization is 

      2
12 1 2 2

1

V V

N N
g r d d




  r r . (2.40) 

General case: 
In general we can define triplet, quadruplet, etc. … correlation functions as 

    
   

           
1

1 1 1 1
1 2

, ,
, ,

n
n n

n

n

n
g

n n n


r r
r r

r r r





. (2.41) 

These are mainly used in finding approximative equations for the pair correlation function 
(so-called closures) and we will not consider them in the following. 
 
Some examples: 
1. The most important of the distribution functions is the pair distribution function. 
Calculation of this function (let alone that of the higher ones) is not an easy task. The most 
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accurate method is to solve the problem numerically, using computer simulations. Examples 
were shown in Figure 2.3 for a Lennard-Jones (LJ) fluid, the particles of which interact 
through 

  
12 6

LJ 4
d d

r
r r

 
              

.  (2.42) 

This potential has a repulsive part and an attractive part. The parameter  characterizes the 
strength of the interactions. The LJ interaction describes the behavior of small quasi-spherical 
atoms such as argon quite well. 

2. Another example is shown in Figure 2.4 for the case of hard spheres (HS), which form 
an important reference system. Their pair interaction potential is 

  
 
 HS

0

r d
r

r d


  


. (2.43) 

The density was chosen such that the volume fraction of particles was 3
6 0.49d   . This 

is just below the volume fraction of 0.494, where the hard sphere fluid is known to begin 
forming a crystalline solid. 

3. Although the distribution functions are hard to calculate, they are (relatively) easy to 
measure experimentally. Scattering methods have been used the most, but more recently 3D 
confocal microscopy is also used to measure    2

12g r . In Figure 2.5 an example is shown of 

colloids interacting through an electric double layer. The interactions were modeled with the 
hard-core Yukawa interaction, which correctly describes weak double layer overlap: 

 

 
   Yuk exp

r d

r d
r d

r d

 


 


      


 (2.44) 

It consists of a hard sphere interaction dressed with a repulsive region characterized by a 
width  and strength . Monte Carlo simulations were used to find the parameter values that 
best fitted all radial distribution functions simultaneously. This was the case with 140kT   
and 5d  . 
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Figure 2.4. The radial distribution function of a hard-sphere fluid close to the liquid-solid 

transition. The curve is a calculation using the Percus-Yevick approximation and the points are 
the results of a Monte Carlo simulation. From: Hansen and McDonald, Theory of simple liquids, 

3rd ed., 2005. 

 

   

 
Figure 2.5. Snapshots taken from a 3D confocal microscopy dataset of charged colloids at 

volume fractions of 0.011, 0.058, and 0.094. Below are the radial distribution functions 
calculated from these data (points) and Monte Carlo simulations using the Yukawa potential 

with 140kT   and 5d  . Scale bars are 10 µm. From: Royall et al., J. Phys.: Condens. Matt. 
15, S3581 (2003). 
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2.6. Relation between    2
12g r  and thermodynamic quantities 

Apart from direct measurements of    2
12g r  it is also possible to measure 

thermodynamic quantities, for example the pressure as a function of density. There are three 
independent routes that relate the pair correlation function to thermodynamic state functions. 
The first two routes assume pairwise additive interactions, the third does not. Pairwise 
additive means that the potential energy of the system can be written as 

    1, , N ij
i j

r


 r r . (2.45) 

2.6.1. The caloric route 

The first route is derived by calculating the internal energy using the canonical ensemble, Eq. 
(2.15). Ignoring the internal degrees of freedom of the particles, 

 
 

   

,

1 1 1

ln

1

3 1
, , exp , , .

2

N

N V

N N N
N V

Z
U

kT

NkT kT d d
Q

 
    

      r r r r r r  

 (2.46) 

The first term is the average kinetic energy (it is the equipartition theorem). The second term 
is the average potential energy in the system. We assume pairwise additivity, and since all 
particles are identical the second term becomes 

 

     

     

     

12 3 1 2

2
12 1 2 1 2

22
12 1 2 1 2

1 1
1 exp

2

1
,

2

1
,

2

N
NV V

V

V

N N r kT d d d d
Q

r d d

r g d d



 

 

 





 





r r r r

r r r r

r r r r



  

where we made use of (2.33), (2.35), and (2.38). Assuming a homogeneous fluid, (2.39), we 
can perform one more integration to obtain 

    3 1

2 2 V

U NkT N r g r d    r . (2.47) 

This derivation was rather formal, but the result can be derived more simply: The probability 
of finding a particle in a volume element dr from a given particle is per our definition

 g r d r . The average interaction energy is therefore    r g r d r . Integrating this over all 

space, summing over all particles, and correcting for double counting we find (2.47). 
Compare the second term with (2.10): we now see that for the van der Waals gas it is assumed 
that   1g r  . 

2.6.2. The virial theorem 

Another route is found by calculating the pressure from   ,
ln N T N

p kT Z V   . Assuming 

pairwise interactions this leads to (see problems) 

  
2

6 V

d
p kT r g r d

dr

    r . (2.48) 
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2.6.3. The compressibility equation 

The third route relates to the compressibility of the system. To calculate this quantity we must 
allow the number of molecules in the system to fluctuate. We imagine the system to be a fixed 
subvolume in a large reservoir that can exchange particles at constant temperature and 
chemical potential µ. This is the situation in, for example, a scattering experiment where a 
part of the sample is illuminated by a beam of radiation. There is a direct relationship between 
the isothermal compressibility T  and the fluctuations in the number of particles in a 

subvolume V: 

 

22

2

1
T

T

N NV

p kT N




 
   

. (2.49) 

On the right hand side we recognize the variance in particle number. It is derived in the 
appendix. This relation shows that a large compressibility is directly related to large density 
fluctuations. This is understandable, because in order to get a more than average number of 
particles in V pressure work has to be done. This work is large if the compressibility is low. 
Conversely, spontaneous fluctuations will be smaller if more work is needed to produce them. 
Increased fluctuations are a sign of an approaching phase separation and even diverge at the 
critical point. Recall Figure 2.1; the critical isotherm has a zero slope at the critical point, so 
here the compressibility diverges. 

Using this relation and the normalization of the pair distribution function, Eq. (2.40), 
Ornstein and Zernike derived the important compressibility theorem: 

   1 1
VT

kT d g r
p

 
 

    
 r . (2.50) 

It is also derived in the appendix and remains valid even if the interactions cannot be written 
as pairwise contributions. It should be remembered that in a colloidal system the pressure p is 
to be interpreted as the osmotic pressure . It is then the isothermal osmotic compressibility 
that is directly related to the radial distribution function. In the next chapter we will see that it 
is also related to the forward scattering of radiation and can therefore be measured. The 
increased scattering near the critical point is called critical opalescence.  

2.7. Potential of mean force 
The formalism developed in the previous section can of course be used for colloidal 

systems if we use the potential of mean force for the pair interactions, and replace the pressure 
p with the osmotic pressure . One can ask whether the concept of potential of mean force 
could also be extended to a concentrated system, rather than to a pair of particles. Consider 
two particles, either molecules or colloids, among a large number of others. What is the 
average force that these particles, say 1 and 2, exert on each other when they are kept at fixed 
positions? Denoting  1 1 1 1, ,x y z        , the force on particle 1 is 
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   
 
 

 
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g r
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  

  




 







 







F

r r

r r

r r

r r








  

Therefore, the potential of mean force is 
    12 12; , ln ; ,V r T kT g r T   , (2.51) 

where we made explicit that it depends on the density and temperature. It is the reversible 
work we have to do when bringing particle 1 to a distance 12r  from infinity, while keeping 

particle 2 fixed and allowing all the other particles to remain at equilibrium. Note that for low 
density the contribution of the surrounding particles will become negligible, so that the 
potential of mean force approaches the pair potential:  

    12 12ln ; 0r kT g r    . (2.52) 

2.8. Weak external fields: linear response theory 
We now consider a system that is perturbed by the action of a (weak) external field. The 

presence of this field causes the system to be (slightly) inhomogeneous; the singlet 
distribution    1 r  is no longer exactly equal to N V . Let  u r  describe the potential 

energy of a particle at position r due to interactions with the field. We will assume it to be 
small compared to the potential energy due to interactions between particles: 

  i
i

u    r  . (2.53) 

The density of the system can be calculated from the definition (2.35), after which we 
linearize with respect to u : 
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(2.54) 

In the last step we recognized the singlet distribution of the unperturbed system: 0 N V  . 

Let’s consider the third term first. Substituting (2.53) gives a sum of N terms. But since 
all particles are identical the result is just N times the term for i = 1: 
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In the last step we again recognized the singlet distribution in the unperturbed system. 
The second term can be handled similarly, but we have to distinguish the term i = 1 

from the N  1 other terms: 
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Now we are ready to take all the terms together, and seeing that the integration variables 
are just dummy variables we write: 

              1 22
1 0 0 1 0 2 12 21u kT u kT g r d        r r r r . (2.55) 

This is called the Yvon equation. It has the following interpretation: the external field directly 
changes the density at a point by an amount  0 1u kT  r . This is expected from the 

Boltzmann distribution (after linearization). But in a nearby volume element 2dr  the number 

of particles has also changed, namely by  0 2 2d u kT  r r . Each extra particle there 

indirectly changes the density at 1r  by     2
0 12 1g r  . After integrating over 2dr  we find 

(2.55). 
An interesting case to consider is that of a periodic field, which we shall write as 

   0 expu u i  r q r . From (2.55) we see that the resulting density change is 
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 (2.56) 

where structure factor is defined as 

         2
01 exp 1S i g r d   q q r r . (2.57) 

The linear response to a periodic field therefore consists of a periodic change in density with 
the same wavelength and a magnitude that is proportional to the field strength and the 
structure factor. In the next chapter we will see that this quantity can be measured in a 
scattering experiment. It is essentially the Fourier transform of the radial distribution function 
(minus one) and so it is the spectrum of density oscillations around a particle. The response to 
a field is large when its wavelength coincides with a wavelength that is naturally present in 
the system. In that case the susceptibility of the system is said to be large2. 

One may wonder what would happen if we were to apply an external field that is 
identical to the pair interaction potential  12r  of a particle. This would be like inserting an 

                                                 
2 The susceptibility is often defined as    0

S kT q q . 
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extra particle into the system, say at 1r . But the change in the density at a nearby position 2r  

should by definition be     2
0 12 1g r  . According to (2.55), then, we would have found an 

integral equation that relates  2g  to itself, and we could hope to solve it! The problem, of 
course, is that particle insertion does not constitute a weak field. But the interpretation of Eq. 
(2.55) in terms of a direct and an indirect effect on the density can be used to define a new 
function, the direct correlation function  c r  as 

        12 12 0 13 23 3h r c r c r h r d   r  (2.58) 

Here, the total correlation function  h r  is defined as 

     1h r g r   (2.59) 

Eq. (2.58) is known as the Ornstein-Zernike (OZ) equation. It can be seen as a definition of 

 c r , which makes it an exact equation. Its importance is, however, that it is often possible to 

find suitable approximations to it. These approximations are based on the observation from 
the Yvon equation that  c r  should resemble the (negative of the) interaction potential. Or, if 

we want to “undo” the linearization that we used, it should resemble   12exp 1r kT  . 

One of the approximations, due to Percus and Yevick works very well for hard spheres. We 
will not examine these approximations further here. 

2.9. Appendix: Derivation of the compressibility theorem 
We imagine the system to be a fixed subvolume in a large reservoir that can exchange 
particles at constant temperature and chemical potential µ. The average number of particles in 
the system can be calculated from the grand canonical ensemble, of which the partition 
function is 

  
0

, ,
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kT
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N

V T e Z






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   . (2.60) 

Here NZ  is the canonical partition function of a system containing N   particles. The average 

number of particles in V is then  
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. (2.61) 

By differentiation with respect to µ we find 

 
22

,T V

N
kT N N


  

   
. (2.62) 

The right hand side is precisely the variance in particle number. We can relate this to the 
compressibility by making use of 
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 (2.63) 

We therefore find 

 

22

T

N N
kT

p N

  
  

, (2.64) 

which is Eq. (2.49). 
To derive the compressibility theorem we start with the pair distribution function 

defined in the grand canonical ensemble:  

          2 2
GCE 1 2 CE 1 2

2

, , ;
N

p N N 




 r r r r , (2.65) 

where  p N  is the probability to find N particles in V. We now use    2
CE 1 2, ; N r r  to denote 

the pair distribution function of an N-particle system in the canonical ensemble, as defined 
previously by (2.35). Using that equation we find  

          2
GCE 1 2 1 2
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!
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2 !NV V

N
d d p N N N
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  
  r r r r . (2.66) 

Defining the pair correlation function  2g  as before and assuming a homogeneous system we 
obtain 

      
2

2
12 1 22

1
V V

N
g r d d N N

V
   r r . (2.67) 

This is analogous to (2.40) with N V  . We perform one more integration and find 

  
2

2
V

N N
g r d V

N


 r . (2.68) 

When this is combined with (2.64), for example by eliminating 2N , we find Eq.  (2.50), the 

compressibility theorem. 
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3.1. Introduction 
Scattering techniques form an important class of tools for the study of soft condensed 

matter. Most laboratories have equipment for doing light scattering measurements, and many 
commercial instruments (in electrophoresis or particle sizing equipment) use light scattering 
internally. A light source is used to illuminate the sample and the scattered light is measured 
as a function of the angle between the incident beam and the detector. Light scattering is a 
suitable technique for soft condensed matter because the typical length scales (the particle size 
or the average distance between particles) is on the order of the wavelength of visible light.  A 
few other types of radiation are also used, namely neutrons and X-rays. These scattering 
techniques are analogous to light scattering, but the wavelength is typically much shorter (0.1 
– 10 nm). This makes these techniques useful for systems containing small particles. Even 
when the particles are not small, however, X-rays and neutrons are still useful when the 
samples scatter light too strongly (think of milk for example). As we shall see later, the 
information in this case is contained at small scattering angles (up to a few degrees), and the 
techniques are called small-angle X-ray or neutron scattering, or SAXS and SANS in short.  

Wave scattering is a general phenomenon that occurs whenever the medium through 
which the wave propagates is inhomogeneous. Sound waves scatter if the medium contains 
objects with a different sound velocity, X-rays scatter from inhomogeneities in electron 
density, and light scatters from inhomogeneities in the refractive index. In this chapter we will 
concentrate on scattering of light, but scattering of other types of waves is almost completely 
analogous so that the theory we will develop applies equally well to those other types of 
radiation. 

Suppose that an electromagnetic wave is incident on an object. Matter is composed of 
discrete electric charges, electrons and protons. They are set into oscillatory motion by the 
electric field of the incident electromagnetic wave. From electrodynamics it is known that the 
accelerated electric charges must radiate waves in all directions. This secondary radiation is 
called the radiation scattered by the object. Apart from scattering, part of the incident wave 
may also be converted to other forms of energy, such as heat. This process is called 
absorption. Both scattering and absorption remove light energy from the primary beam, 
which is thereby attenuated. Together, they are called extinction. 

The light scattered by a particle in an otherwise homogeneous medium consists of the 
sum of wavelets scattered by all the subvolumes making up the particle. It is the interference 
between all these wavelets that leads to a characteristic angular dependence of the scattered 
light. This is the reason that light scattering can be used to measure the properties (size and 
shape) of colloidal particles. If there are other particles near the first particle then the waves 
scattered by different particles will also interfere with each other. Then the angular 
dependence also contains information on the average interparticle distances. As we shall see 
later, this angular dependence is directly proportional to the structure factor of the dispersion. 
Because of thermal motion the positions of the scattering particles relative to each other 
fluctuates continuously. By measuring the time dependence of the scattered light (Dynamic 
Light Scattering) we can obtain information on the dynamics of the scattering particles. 

 Why doesn’t light scatter when it propagates through a homogeneous medium like, say, 
glass or water? Surely, the charges in these materials also start oscillating and must radiate in 
all directions! In fact they do, but it should be remembered that the scattered wave seen by an 
observer is the sum of wavelets originating from every little subvolume illuminated by the 
light beam. In a homogeneous medium there always exists a second subvolume, about half a 
wavelength away, which scatters exactly out of phase with a given subvolume. This leads to 
complete cancellation in all directions but the forward direction. Only when the medium is 
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inhomogeneous this cancellation does not take place, because half a wavelength away there is 
a different material. This means that some light is now scattered away from the forward 
direction. Of course, no medium except vacuum is truly homogeneous. Glass, water and air 
all consist of atoms and molecules, and therefore even these media scatter light, albeit only 
very weakly. 

We now know that light scattered by a particle depends on the incident wave. In 
practice, scattering media contain many particles. Thus, the light incident on a given particle 
is the sum of the primary wave and the waves scattered by all the other particles. This seems 
like a hopeless problem, but we can simplify it if the total amount of scattered light is small 
enough so that it does not contribute significantly to the wave seen by the scattering particles. 
This is called single scattering, because a light wave scattered by a single particle does not 
scatter again from any of the other particles. The assumption is valid if the distance between 
the particles is large enough or if the amplitude of the scattered wave is very small compared 
to that of the incident wave. Multiple scattering takes place in systems in which this condition 
is not met. Examples are milk and clouds. 

In the cases we shall consider the scattered light has a frequency equal to that of the 
incident wave. This is called elastic scattering. The angle-dependence gives information on 
the spatial structure of the sample. In inelastic scattering the frequencies of the scattered 
waves are measured in addition to the angle dependence. This gives information on dynamic 
processes, such as diffusion or relaxation. Many forms of inelastic scattering exist, such as 
Brillouin scattering and Raman scattering in which the scattered light contains both higher 
and lower frequencies. And in X-ray scattering the so-called Compton modified scattering is 
lowered in frequency. In dynamic light scattering the frequency changes are only very small 
(but not strictly zero), so it is sometimes also called quasi-elastic light scattering. 

3.2. Measures of scattered light 
In light scattering experiments the sample, containing particles suspended in a medium, 

is irradiated with a beam of light and light scattered at different angles is measured. We will 
call the direction of the incident beam the z-direction. Scattered light is measured by simply 
placing the detector on a rotation stage. In general, there are two angles to be varied,   and , 
but in most instruments only  is varied (see Figure 3.1). The yz-plane is defined to be the 
plane containing the incident beam and the detector and is called the scattering plane. A 
special scattering angle is zero degrees, where one measures the sum of the incident wave and 
the forward scattered wave. This is what one would measure in a normal transmission 
spectrophotometer. But what are the measured quantities? The intensity of the light, of course. 
(Or, to be more precise: the irradiance, the units are J.m2.s1.) But to completely characterize 
the scattered light the polarization state and the phase are also needed. Phases cannot be 
directly measured, but the polarization state must be carefully characterized by placing 
polarizers in the incident beam and/or in front of the detector1. 

First, let us consider a sample with only one particle. If we describe the angle 
dependence of the scattered intensity Is with the function ( , )F    then the intensity measured 
by a detector placed at a large distance r from the sample can be written as 

    0

2 2

,
,s

I F
I

k r

 
    (3.1) 

                                                 
1 A complete discussion of polarization dependent scattering would complicate the discussion 

considerably. However, in most (but not all) cases relevant for soft condensed matter experiments the two 
polarization components shown in Figure 3.1 are independent. This is the case when the particles scatter light 
only weakly. Since this is already a requirement for single scattering it does not impose extra restrictions. 
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I0 is the intensity of the incident beam. The factor 21 r  arises because the total scattered 

intensity over the surface of a sphere must be independent of its radius2. Further, 2k    is 

the length of the wave vector of the light (measured in the medium). The factor 21 k  is 
included to make F a dimensionless function. If we integrate (3.1) over the surface of a sphere 
with radius r we get the total power of scattered light Ps. The scattered power per unit incident 
intensity has units of area and is called the scattering cross section of the particle: 

  2
0 4

1
,s

sca

P
C F d

I k 

     (3.2) 

where sind d d     is shorthand for the infinitesimal element of solid angle. What is the 
physical significance of Csca? Conservation of energy dictates that the power removed from 
the incident beam must equal the total scattered power (if there is no absorption). Therefore 
the power in the light beam is lowered by an amount CscaI0. This is just as if the particle “casts 
a shadow” of area Csca on a detector placed in the transmitted beam. If there is also absorption 
then the power received by the transmission detector is reduced by a further CabsI0. The total 
reduction of the light power must be the sum of scattering and absorption, and is given by the 
extinction cross section: 

 ext sca absC C C   (3.3) 

Now consider a sample containing many identical particles at number density . Every 
particle in the beam reduces the power in the beam further. Assuming only single scattering as 
usual, it is clear that every particle reduces the power by the amount CextI(z), and that a thin 
slab of thickness dz reduces it by CextI(z)Adz, with A the cross sectional area of the beam. 
Therefore, 

 ( )extdI C I z dz  . 

Integrating from 0 to L, the thickness of the sample, we see that the transmitted intensity is 
given by 

 0
extC L

tI I e  . (3.4) 

If there is no absorption and the number density of particles is known then their scattering 
cross section can be measured with a transmission measurement, using (3.4). 

                                                 
2 This assumes that the medium is nonabsorbing. 

 
Figure 3.1.  The scattering geometry. 
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A small detector placed not in the transmitted beam, but at an angular position  ,   

sees an intensity per particle given by (3.1). If the detector intercepts light coming from a 
sample volume Vs (the scattering volume) then the quantity that is often used to measure the 
scattered light is the Rayleigh ratio, defined as 

      
2

2
0

,
, ,s

s

r I
R F

V I k

        (3.5) 

Another quantity that is often encountered in the literature is the differential scattering cross 
section scadC d : 
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
, (3.6) 

where sN V  is the number of scattering particles. It is called this way because (compare 

with (3.2)) it is the power received by the detector per unit incident intensity and per unit solid 
angle, but the notation should not be interpreted as the derivative of a function scaC . 

3.3. Light scattering by single particles 
We will now consider scattering by a single particle placed at the origin and embedded 

in a homogeneous medium. It is illuminated with a monochromatic plane wave with angular 
frequency . The situation is again shown in Figure 3.1. The angle  is the angle between the 
incident beam and the direction of the detector. We start with a particle that has a size much 
smaller than the wavelength in the medium . This means that the particle behaves 
approximately like a point dipole. The incident wave is denoted in complex notation3 by its 
electric field vector 

  , i i tt e   k r
0E r E . (3.7) 

The wave vector k points in the direction of propagation of the wave and has length 
2k   k . The velocity of the wave in the medium is /c k . We will take the particle 

to be in the origin. The electric field of the incident beam will give rise to an induced dipole 
moment p E  with  the polarizability of the particle. Far from the particle, at a distance r, 
the electric field of the wave radiated by this oscillating dipole is (see for example Griffiths, 
page 457): 

  2
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     E r r p . 

Here r̂  is a unit vector in the direction of the detector. The two dots on p mean the second 
time derivative, which should be evaluated at time t r c . Thus, we obtain 
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where we have used ck  . We decompose the electric field in components perpendicular 
and parallel to the scattering plane (see Figure 3.1). The result is then 
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 (3.9) 

                                                 
3 In complex notation the real electric field is the real part of the complex electric field, 

Re( ) cos( )
r

t   
0

E E E k r . The intensity of the wave is proportional to the square of the modulus of the 

complex electric field: 
2 * E E E . 
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This describes a spherical wave: in every direction it is looks like a plane wave with an 
amplitude that falls like 1/r. Also note that at 90 degrees the scattered light has complete 
perpendicular polarization. At this angle the dipole has a vanishing component in the sE  

direction. 
The polarizability for a particle with volume Vp and permittivity p in a medium with 

permittivity m (both linear and isotropic) is given by the Clausius-Mosotti (or Lorentz-
Lorenz) relation 
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. (3.10) 

m is the ratio of the refractive indices of the particle and the medium. In general,  depends 
on the frequency; at frequencies where the particle absorbs it becomes a complex number. 

The scattered intensity is 
2

sI sE so that for unpolarized incident light  
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. (3.11) 

This result was derived by Rayleigh, and scattering by particles much smaller than the 
wavelength is therefore called Rayleigh scattering. Two things about (3.11) are important to 
notice. Firstly, the scattered intensity depends on the inverse fourth power of the wavelength. 
This means that short wavelengths are scattered much more strongly than long wavelengths. 
Molecules in the air scatter only slightly, but they scatter blue much more strongly than red. 
This is why the sky looks blue. The setting sun looks red because a good deal of the blue light 
has scattered out of the rays by the time they reach your eyes. (Why doesn’t the sun look red 
during most of the day?) Another important thing about (3.11) is that the scattered intensity 
increases with the square of the volume, i.e. the sixth power of the diameter of a particle! 
Finally, if a particle and its environment have the same refractive index (m=1) then the 
scattered intensity vanishes. In this case the particle is said to be index matched. 

Now we move on to consider light scattering by particles that are not small compared to 
the wavelength. When the plane wave (3.7) is incident upon such a particle every volume 
element becomes an oscillating dipole with the same frequency . But since the dipoles are at 
different positions they each carry a different phase. The scattered wave seen by a detector is 
the superposition of the dipole fields radiated by all the dipoles. At this point we have to make 
an approximation. Each dipole responds to the field incident upon it according to (3.8). Since 
the field incident on a volume element is the superposition of the primary beam with the fields 
coming from all the other dipoles, the problem becomes extremely complicated. Only for a 
few types of particles exactly solving the complete Maxwell equations can solve the problem. 
(For spherical particles this is called Mie theory, after the person who first solved this in 1908. 
The solution is in the form of infinite series that must be evaluated using a computer.) The 
approximation that we will make is that the field incident on a volume element can be 
approximated by the field of the primary beam. The fields from the other dipoles are 
neglected. In quantum mechanical scattering problems this is called the 1st order Born 
approximation; in light scattering the Rayleigh-Gans-Debye theory. The conditions for 
validity are the following: 
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 (3.12) 

where d is a characteristic linear dimension of the particles. The first condition means that the 
scattering is weak so that the intensity of the incident beam is hardly attenuated inside the 
particles. This way, all dipoles experience the same incident field and radiate only a little. The 
second condition means that the phase fronts do not become distorted on passage through the 
particle. 

With this approximation we can sum the waves of equation (3.9) over all volume 
elements in the particle. Figure 3.2 shows how to take the phase differences into account. The 
incident wave is characterized by a wave vector k0. Two volume elements dr are shown. One 
sits in the origin, the other at position r. Each scatters a wave with wave vector k towards the 
detector, which is at a large distance R. The phase difference between these two waves is 
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0

0
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 (3.13) 

We call q=k-k0 the scattering vector. It is the difference between the scattered and incident 
wave vectors. Since we are considering elastic scattering these both have length 2  . It is 
then easy to show that  

  4
sin 2q

 


 q  (3.14) 

Remember that  is the wavelength in the medium, not in vacuum! 
The field scattered by the element at r, as seen by the detector, is then 
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Since m is close to unity we have simplified 2 2 2
3( 1) /( 2) ( 1)m m m    . We also allow that 

the particle is inhomogeneous, so m can depend on position. The parallel component of the 
field has an extra factor cos . This must be integrated over the volume of the particle Vp to 
get the total field scattered in the direction of k: 
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with 

 
Figure 3.2.  Waves scattered by volume elements separated by a distance r differ in phase by 

an amount of ( ) 0k k r . 
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We have separated the interesting part f(q) from the boring constants. It can be interpreted as 
the amplitude of the wave scattered at wave vector q by the particle as a whole. Finally, the 
square of the modulus gives us the scattered intensity. After a bit of rearranging we find 

   
24 2

2
0 2 2

1
1 cos

8
p

s

k V m
I I P

R





 q  (3.18) 

with 
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 (3.19) 

Here m  is the value of m averaged over the volume of the particle. The prefactor in the 
formula gives the absolute scattered intensity and has just the same properties as in the 
Rayleigh formula. The part that interests us more is the form factor  P q  of the particle, 

which describes the angular dependence of the scattering4. The form factor is determined only 
by the size and shape of the particle and is normalized in the forward direction (where q=0). 
By measuring the angular dependence of the scattered light we can immediately obtain the 
form factor and learn about the particle properties. We must then compare this with a model. 

The simplest model is of course the sphere. For a sphere with radius a the form factor can 
be calculated by choosing the z-axis along q and first integrating over the angles. The result is 
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2

3

sin cos
3

qa qa qa
P q

qa

 
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. (3.20) 

This function is shown in Figure 3.3. Note that the form factor depends only on the product 
qa, so there is in principle no limit to the number of oscillations. Of course, q can never be 
larger than 4  , so the number of oscillations in the range of scattering angles between 0 

and 180 is a sensitive function of the particle radius. This can be used to measure the size of 

                                                 
4 In the crystallography literature it is often the function f(q) which is called the form factor. 
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Figure 3.3.  (Left) Form factor of a spherical particle.  (Right) Intensity scattered by silica 
spheres in ethanol with radii of 40 nm (triangles), 264 nm (circles), and 435 nm (squares). The 

wavelength was 633 nm. 
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spheres. If the particles are monodisperse the minima and maxima can be observed in the 
scattered intensity, as is also shown in Figure 3.3. Also note the strong forward scattering for 
large particles. 

Equations (3.18) and (3.19) as they stand describe scattering by a single particle with a 
fixed and given orientation in space. In practice we almost always measure the light scattered 
by a large number of particles which each have a different (and constantly fluctuating) 
orientation. In a dilute suspension all the particles scatter incoherently so that we can add the 
intensities scattered by each particle. The scattered intensity thus becomes N times larger and 
the form factor must be averaged over the orientations of the particles. Results are known for 
a number of particle shapes, such as ellipsoids, rods and disks. These formulas can be found 
in the scattering literature. 

We will not study all the consequences of particle anisotropy, but just consider the case 
of small particles. This is a useful case because many particles are much smaller than the 
wavelength of the light used to study them, for example most polymers, proteins, nanocrystals 
and micelles. In this case q r  is small so that we can only measure the initial part of the form 
factor. What we get in return is that the particles are allowed to be nonspherical and 
polydisperse. First, we must decide on an origin for an irregularly shaped particle. (Since only 
differences in phase are important this choice should not influence the result.) The easiest 
choice is the center of mass: 
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We can now expand the exponent in the form factor (3.19) in a Taylor series. The first order 
term is zero due to our choice of the origin. This leads to 
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The angled brackets   indicate an average over the ensemble of particles. Since the 

particles have random orientations 2cos 1 3  . The result is the Guinier approximation: 

   2 21
1

3 gP q q R    (3.21) 

with the radius of gyration defined as 
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. (3.22) 

Note that this is still a volume integral and that r is the distance of a volume element to the 

particle’s center of mass. For spheres it is easy to derive that 3 5gR a , but the result is 

most useful for irregularly shaped particles, because it provides a uniquely defined particle 
size that is directly measurable and which can be compared to a model. For example, a rodlike 

particle with length L has / 12gR L  and a Gaussian polymer coil of n random chain (or 

Kuhn) segments of length l has / 6gR l n . 
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3.4. Light scattering by an ensemble of particles 
Next, we consider scattering by a more concentrated suspension. This means that many 

particles in the scattering volume Vs contribute to the wave scattered towards the detector. To 
do this we take exactly the same approach as in the case of the not-so-small particle. We again 
assume that every volume element scatters a dipole field, and that the field incident on a given 
particle can be approximated by the external field. The waves scattered by the other particles 
are neglected. This is the same as saying that there is only single scattering. If a concentrated 
suspension is measured the scattered intensity per particle must be very small. This is the case 
for very small particles or if 1m  . The latter condition can sometimes be satisfied if the 
refractive index of the medium is adjusted so that it almost equals that of the particles (index-
matching).  

Assuming that the single scattering assumption is satisfied we again refer to Figure 3.2. 
This time, imagine that the large circle is the entire scattering volume Vs, which contains a 
large number of particles N. The volume elements dr can lie either in a particle or in the 
medium. The waves scattered towards the distant detector are once more summed, taking their 
phases into account: 
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Only volume elements lying in the particles have a nonzero 1m   and contribute to the 
integral. We can thus separate the integral into contributions coming from each particle: 

  
2

0
1

( ) 1
2

j

N
ikR i t i

s
j V

k
E E e m e d

R



    



   q rr r  (3.24) 

where Vj is the volume occupied by particle j. Let rj denote the position of the center of 
particle j. The integration variable r can then be written as j  r r r . The new integration 

variable r  ranges over the volume of the particle with its center translated to the origin. 
Equation (3.24) now becomes 

  
2

0
12

j

N
iikR i t

s j
j

k
E E e f e

R



   



  q rq . (3.25) 

We have recognized the integral appearing in (3.17). It describes the interference of waves 
scattered by one particle. The exponential functions containing the position coordinates rj 
describe interference of light scattered by different particles. Because the particles move 
continuously the latter kind of interference leads to rapid fluctuations in the scattered light 
(typically to s to ms). What is measured in a static light scattering experiment is the light 
scattered from a large sample volume containing very many particles, and averaged over 
times of the order of 1 s. In other words the measured quantity is the ensemble averaged 

intensity *
s s sI E E . We will assume that all N particles are identical5. Remembering that 

the parallel field component has a factor cos  we obtain  
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with 

                                                 
5 The expression can be generalized for a mixture of nonidentical particles, but the result can no longer be 
separated into the product of a form factor and a structure factor. This also the case for nonspherical particles. In 
that case, identical particles with different orientations also have different fj ’s. 
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This is the structure factor from Chapter 2. 
This result means that the structure factor can be measured in a scattering experiment as 

follows. The scattered intensity of the sample under study, which has particle number density 
, is measured as a function of angle. Then a small amount is diluted to dil by a large factor, 
say 100 times, so that its structure factor becomes equal to unity. The scattered intensity is 
again measured. Call this Idil. The structure factor of the original sample is then found from 
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. (3.28) 

Some examples of measured structure factors are given in Figure 3.4. The large 
oscillations imply strong liquid-like ordering. Remember that a peak in the structure factor at 
wave vector q implies that there exists a (sinusoidal) density fluctuation with wavelength 

 
Figure 3.4.  Structure factors of 80 nm diameter polystyrene spheres in water measured with 
light scattering. The particles surfaces carry ionizable SO3H groups. The concentration was 

1.81018 particles/m3. (a) 3.1 mol/L NaOH added; (b) 3.1 mol/L NaCl added. The drawn 
lines are fits using the rescaled mean spherical approximation (RMSA). From: Härtl and 

Versmold, Langmuir 8, 2885 (1992).  

 
Figure 3.5.  Structure factors measured with SANS of 16 nm radius polystyrene spheres in 
water containing 10-4 mol/L NaCl. Particle volume fractions were 0.01, 0.04, 0.08, and 0.13. 

From: Goodwin et al. Makromol. Chem. Suppl. 10/11, 499 (1985). 
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2 q . The particles in this experiment were negatively charged. Addition of NaOH ionizes 
all the sulfonate groups on the surfaces, but does not reduce the Debye length because the H+ 
counterions are merely replaced by Na+. Addition of an equal concentration of NaCl, on the 
other hand, reduces the Debye length making the liquid-like structure less pronounced. The 
dependence of the structure factor on the particle concentration is demonstrated in Figure 3.5 
for charged polystyrene spheres with more salt added. It is clear that as the concentration is 
increased the liquid-like structure becomes much more pronounced. Also the first peak shifts 
to larger q, corresponding to smaller average interparticle distances. 

It can be shown that expression (3.27) is identical to the structure factor defined in 
Chapter 2 (see the appendix for a derivation): 

       1 exp 1S i g d   q q r r r . (3.29) 

This equation holds that the structure factor is the Fourier transform of the radial distribution 
function (minus one). In principle, it should then be possible to Fourier invert the structure 
factor to obtain the radial distribution function. In practice, however, this turns out to be very 
difficult. The reason is that S(q) can only be measured over a limited range of q, and the data 
become more noisy at larger q. Instead, one often finds a suitable fit of the structure factor 
with an appropriate theory and one then inverts the theoretical curve. This is done in Figure 
3.6. Again, the increase in particle concentration leads to a shift of the structure factor peak to 
larger q, while the primary peak in g(r) moves to smaller r. In this case the height of the peaks 
does not increase very much with concentration. This is because in a deionized dispersion 
most ions in the system are the ions dissociated from the particle surfaces. As the particle 
concentration is increased the ionic strength of the solvent is also increased leading to more 
effective screening. 

By taking the limit 0q   in Eq. (3.29) and comparing the result with the well-known 
compressibility equation (Chapter 2) we find that the structure factor at q=0 is proportional to 
the osmotic compressibility of the system: 
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q
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S q kT




    
. (3.30) 

As an example of this relation between scattering and thermodynamics Figure 3.7 shows 
measurements of the value of S(q=0) for a colloidal dispersion of particles that behave like 

      
Figure 3.6.  The left panel shows structure factors of 75 nm diameter, negatively charged 

polystyrene spheres in deionized water measured with light scattering. Particle 
concentrations were (from left to right curve) 2.91018, 4.41018, 9.01018, and 22.61018 m-3. 
The curves are fits with the RMSA theory. The right panel shows the corresponding radial 

distribution functions, which were obtained by inverting the fitted theoretical curves. From: 
Härtl and Versmold, J. Chem. Phys. 88, 7157 (1988). 
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hard spheres. The data are described correctly by the Percus-Yevick equation. This has been 
an important test of this theory, and demonstrated at the same time that silica spheres coated 
with stearyl alcohol and dispersed in cyclohexane behave like true hard spheres. The values of 
S(q=0) are extrapolated from a plot of S(q) versus q2. Great care should be taken to ensure 
that the measurements are not affected by the presence of dust or clusters of particles, which 
contribute mainly to the scattering at low q. 

In many cases, for example molecular weight determinations in polymers or the 
measurement of particle sizes in association colloids, one is not so much interested in the 
form of the structure factor but instead treats it as a correction of the scattering for the finite 
concentration of the sample. In such cases a range of weight concentrations c is prepared and 
each sample measured over a range of q. The scattered intensity at low q and low  can be 
approximated as: 
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. (3.31) 

Zimm has proposed a method to perform the double extrapolation in a so-called Zimm-plot, 
and thus to obtain the radius of gyration and the second virial coefficient from the slopes. 
Since avcN M   the molecular weight M can be determined from the intercept provided all 

the constants in the factor K are correctly accounted for. 

3.5. Scattering by crystals 
As a special case we consider the structure factor of a crystalline array of particles. This 

is usually called diffraction. You may recognize the equations that we shall derive from the 
theory of X-rays diffraction by molecular crystals. In the previous paragraph we have seen 
that the peaks in the structure factor become sharper when the particles are forced to occupy a 
smaller volume. This reflects the tendency of the particles to order in order to use space more 
efficiently. It is therefore not hard to imagine that when the system starts to develop periodic 
order the structure factor peaks become very high and narrow, while it is zero in between the 
peaks. Of course, this transition cannot be truly continuous because a first order phase 

 
Figure 3.7.  Scattering measurements of the structure factor extrapolated to zero wave vector 
on a system of stearyl alcohol coated silica spheres dispersed in cyclohexane. These particles 

behave like hard spheres. The data agree with the Percus-Yevick expression for the 
compressibility (drawn line). Triangles are light scattering data on particles with radius 35 

nm, squares are SANS measurements on the same particles. Circles are light scattering data 
on spheres with a radius of 22 nm. From: De Kruif, Jansen, and Vrij, In: “Physics of 

Complex and Supramolecular Fluids”, Wiley, New York, 1987. 
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transition takes place during the process. The peaks in the structure factor are the Bragg spots 
that appear in the diffraction pattern. Two examples are shown in Figure 3.8: one made with 
light scattering, the other with small-angle x-ray diffraction. 

By definition a crystal has translational symmetry along three independent axes. The 
basis vectors describing these translations are denoted a1, a2, and a3. Together they define the 
unit cell, which when translated makes up the whole crystal. We will assume that the crystal 
is finite, extending a number of M1, M2, and M3 unit cells along the three basis vectors, 
respectively. It therefore has the shape of a parallelepiped. Since each unit cell is identical we 
can write the location of a particle i sitting at position Rp relative to the origin of a unit cell as 

1 1 2 2 3 3i p m m m   r R a a a , with the m’s integer numbers. For simplicity, we will again 

assume that all particles are identical, but it is easy to generalize to unit cells with more than 
one particle. Expression (3.27) tells us to take the sum of exp( )ii q r  over all particles, and 

then multiply the result by its complex conjugate and divide it by the total number of 
particles. So, first we write down the sum, as follows: 
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The sum over p runs over all the n particles in a single unit cell. The other sums run over all 
the unit cells. So the total number of particles is nM1M2M3. Notice that each of the sums over 
the m’s have the form of a geometric progression 
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where x is of the form exp( )i q a . We might as well multiply this by its complex conjugate 
at once. The result is 
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We do this for all the factors so that 

  
Figure 3.8. Diffraction patterns from colloidal crystals. (Left) Small-angle x-ray diffraction on 

an fcc crystal of silica spheres in water, (Right) Laser light diffraction on a body-centered 
tetragonal crystal of silica spheres in a water/DMSO mixture. Thee black square and circle are 

beam stops that block the transmitted beam. 

- 54 -



 3-15

      
 

 
 

 
 

2 2 21 1 1
1 1 2 2 3 32 2 2

2 2 21 1 1
1 2 3 1 2 32 2 2

sin sin sin1

sin sin sin

M M M
S F

M M M

  


  
q a q a q a

q q
q a q a q a

 (3.33) 

with  
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Note that the function F(q) is just the structure factor of the unit cell6. 
Let us interpret this result by first taking a look at the function    2 21 1

2 2sin sinMx x . It 

is plotted in Figure 3.9 for M=5 and M=10. It is seen that this function is sharply peaked 
around x values of an integer times 2. The height of the peaks is M2 and their width is 2/M. 
This means that for a crystal with more than a few unit cells the scattered intensity is always 
zero except for those values of q which satisfy the following conditions simultaneously: 
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 (3.35) 

Here h, k, and l must be integers. These equations are called the Laue equations. They are 
equivalent to the Bragg law, which we will show later. For a given crystal with basis vectors 
ai they determine the angles where diffraction is observed. The physical basis for this result is 
that because all unit cells scatter equivalently they must all scatter in phase if there is to be 
diffraction. Otherwise, even the smallest phase difference will cause complete cancellation of 
the wave sum, due to the large number of cells. “Fortuitous” constructive interference only 
occurs at very special angles, which are characteristic for the crystal. This of course forms the 
basis for structure identification in crystallography. For small crystallites some light also ends 
up in a small angular range around the peaks, so that the width of the peaks can sometimes be 
used to estimate the size of the crystals. 

                                                 
6 In the crystallography literature it is the complex function exp( )

p p
f i  q R  that is called the structure 

factor. But in expressions for the diffracted intensity only its modulus squared appears. 
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Figure 3.9.  The function 2 21 1

2 2
sin ( ) / sin ( )M  q a q a  for M=5 (dashed) and M=10 (solid). 
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We now understand why only particular diffraction peaks are seen in crystals. But note 
that equation (3.33) also contains the factor F(q), describing interference between the 
particles within the unit cell. If this cell contains only a single particle then it is equal to unity. 
But if it contains two or more particles then F determines the relative strengths of the 
diffraction peaks. It could even equal zero at a q value which otherwise satisfies (3.35). In this 
case a diffraction, which is allowed by the periodicity of the lattice, disappears because it is 
not allowed by the symmetry of the unit cell. One speaks of systematic vanishings. It may 
seem unlikely that the few q values allowed by (3.35) would happen to coincide exactly with 
a zero in F(q), but it is in fact a common occurrence in many lattice types, as we will 
demonstrate shortly in the example of a face centered cubic lattice. Systematic vanishings are 
an important aid for crystallographers in recognizing the lattice type. 

From crystallography we know that with every crystal lattice we can associate a 
reciprocal lattice. The basis vectors of the reciprocal lattice are cunningly defined as7 

 2 3
1

1 2 3

2 


 
a a

b
a a a

, 3 1
2

1 2 3

2 


 
a a

b
a a a

, 1 2
3

1 2 3

2 


 
a a

b
a a a

, (3.36) 

so that we have 
 2i j ij a b . (3.37) 

In other words, the each reciprocal lattice vectors is orthogonal to two of the basis vectors of 
the direct lattice. Every vector in reciprocal space, such as the q belonging to a particular 
diffraction peak, can now be represented by the linear combination 

 1 1 2 2 3 3p p p  q b b b . 

The p’s are the components of q along the three axes. By virtue of (3.37) they can be 
determined by taking the dot product with the basis vectors of the real lattice, for example 

 1 12 p q a . 
Comparing this with the Laue conditions we see that for diffraction to occur we must have 

1p h , and similarly for p2 and p3. Thus, we find that 

 1 2 3 hklh k l   q b b b G . (3.38) 

                                                 
7 Contrary to what is common practice in solid state physics most crystallographers define the reciprocal lattice 
vectors without the factor 2. 
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Figure 3.10.  A two-dimensional representation of the Ewald construction. Diffraction 

maxima appear for reciprocal lattice points that fall on the surface of the Ewald sphere. 
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The integers hkl are called the Miller indices belonging to the particular diffraction. Every 
reciprocal lattice point is labeled by a set of Miller indices. Thus, equation (3.38) tells us that 
the scattering vector q must precisely coincide with a reciprocal lattice vector G. This is the 
basis for the Ewald construction (see Figure 3.10), which says that if we place the incident 
wave vector k0 with its head pointing at the origin of reciprocal space and draw a sphere 
around it, then diffracted waves k occur wherever this sphere intersects with a reciprocal 
lattice point. By rotating the crystal with respect to the incident beam we can scan (a part of) 
reciprocal space in search of diffractions. 

The real space interpretation of the Miller indices is that of a set of parallel equidistant 
planes, one of which passes through the origin, and the next nearest intercepts the a1 axis at 
a1/h, the a2 axis at a2/k, and the a3 axis at a3/l (see Figure 3.11). These planes are 
perpendicular to Ghkl, because so are two independent vectors in the planes: a1/ha2/k and 
a2/ka3/l. (To see this, take the dot product of each of these vectors with Ghkl as given by 
(3.38)). A normal vector to the lattice planes is then /hkl hklG G . The distance between two 

planes of the set dhkl can thus be found from 

 1 2hkl
hkl

hkl hkl

d
h


  

Ga

G G
. (3.39) 

Using this result in (3.38) and (3.14) we finally obtain the familiar Bragg law: 
  2 sin 2hkld   . (3.40) 

The factor ½ in the sine probably appears unfamiliar, but that is only because 
crystallographers define their scattering angle as 2 instead of .  

We conclude this section with an example: diffraction by a face centered cubic (fcc) 
lattice. This type of lattice is common in colloidal crystals. The unit cell contains 4 particles. 
The basis vectors of this cubic lattice are simply 

 1 2 3ˆ ˆ ˆ,   ,   a a a  a x a y a z . (3.41) 

Using (3.36) the reciprocal lattice vectors are found to be 

 1 2 3

2 2 2
ˆ ˆ ˆ,   ,   

a a a

  
  b x b y b z . (3.42) 

The diffraction condition (3.38) tells us that diffraction peaks may be expected at scattering 
vectors q that are linear combinations of integer multiples of these three vectors. The 
corresponding diffraction angles can be found by taking the modulus squared on both sides of 
(3.38), and using (3.14) and (3.42): 
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Figure 3.11.  Real space representation of the crystallographic planes hkl. 
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  2

2 2 2

2

2sin 2 h k l

a




   
 

 
. (3.43) 

So we may expect a large number of diffraction peaks. But it turns out that many of them are 
missing due to systematic vanishings. This can be seen by calculating the structure factor 
using Eq. (3.34). The position of a particle in its unit cell can be written as 

1 2 3x y z  R a a a , and q is given by the diffraction condition (3.38). Then for a diffraction 

hkl we have 
  2 hx ky lz   q R . (3.44) 

If one particle is located at (x,y,z)=(0,0,0) then other particles are present at (½,½,0), (½,0,½) 
and (0,½,½). The structure factor (3.34) is then 
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 (3.45) 

We see that not all combinations of hkl give rise to diffraction. Hence, the fcc lattice can be 
recognized by the fact that all diffractions with one odd or one even Miller index vanish 
systematically. If we are dealing with an unknown crystal we list 2(2sin( / 2) / )   of the 
various diffractions and look for a common divisor (1/a) that produces small integers. These 
integers equal 2 2 2h k l   if the crystal is cubic. The missing hkl values tell us whether the 
structure is really fcc8. 

The reason for the fact that systematic vanishings are not so unlikely at all is seen to lie 
in the special position of the particles within the unit cell. In fact, only unit cells with special 
positions of the particles can be repeated periodically to fill all space. These crystal lattices 
are called the Bravais lattices, and there exist only 14 of them. 

3.6. Dynamic light scattering 
In the previous sections it was mentioned in passing that the particles in soft matter systems 
are in constant thermal motion (Brownian motion). In principle this may be expected to lead 
to fluctuations in the scattered intensity. In dynamic light scattering (DLS)9 these fluctuations 
are measured. This provides information on the dynamics of particles in solution. In dilute 
suspensions DLS has become a standard technique for the characterization of particle size and 
polydispersity. Also, the dynamics of internal degrees of freedom can be studied, such as 
chain fluctuations in polymers and shape fluctuations of microemulsion droplets. When 
applied to concentrated suspensions DLS provides information on the length and time scale 
dependent dynamics of particles.  

3.6.1. Fluctuations in the scattered intensity 

In static light scattering a wide beam is used (typically a few mm) which illuminates very 
many particles. This leads to the ensemble average in Eqs. (3.26) and (3.27). Since the 
structure factor describes interference of waves scattered by different particles and these 
particles are constantly moving it is clear that the there must also be fluctuations in the 

                                                 
8 In crystallography comparing the relative intensities of the diffraction peaks with their calculated values must 
then further validate the proposed structure. 
9 Other names are Photon Correlation Spectroscopy (PCS) and Quasi-Elastic Light Scattering (QELS). 
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scattered intensity. In dynamic light scattering a much smaller beam of coherent radiation is 
used: about 0.1 mm, but still containing many particles. The fluctuations are then readily 
visible to the naked eye: If we use a white screen as the detector we see a field containing 
many bright spots in a dark background. This is known as (laser) speckle. The origin of the 
speckle pattern can be understood as follows: Each particle scatters a spherical wave toward 
the screen with a phase that depends sensitively on its position, shape, and orientation. At 
each point on the screen the intensity is determined by the sum of all these scattered waves: 

       
1

, exp
N

s j j
j

E t f t i t


   q q r  (3.46) 

At some points the waves happen to cancel each other, while at others they reinforce each 
other. Particles only need to move over about one wavelength to let individual speckles blink 
on and off. The idea of dynamic light scattering is now to measure the (average) rate at which 
the speckles blink, and relate this to the rate with which particles change their relative 
positions. This is done by making the detector also very small, by placing a pinhole in front of 
it, such that it collects light in only a single speckle. 

The angular size (in radians) of a speckle is determined only by the ratio of the 
wavelength and the apparent diameter sind   of the scattering volume as seen by the 
detector: 

 
sinspeckle

appd d

 


    (3.47) 

This is the same as the width of the primary diffraction maximum of a slit. For wavelengths in 
the visible and a scattering volume of 0.5 mm this is ~10-3 rad, or 0.05. With a detector 
placed at a distance of 20 cm the pinhole size should be about 200 m. Incidentally, we now 
see that the fact that fluctuations are small in static light scattering lies not in the larger 
number of illuminated particles, but in the larger number of (very small) speckles collected by 
the detector. In SLS we can therefore also get away with using an incoherent light source 
(though monochromatic). In fact, this even improves the speckle averaging. In DLS the use of 
a coherent light source is required. 
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Figure 3.12.  Left: fluctuating intensity of a speckle measured in DLS.  Right: Normalized 

IACF measured at various angles. The curve with the slowest decay corresponds to the data 
in the left graph. The inset shows the q-dependence of the decay rate. The sample was a dilute 

suspension of R=435 nm silica spheres in ethanol. 
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Mathematical functions that are used for studying fluctuating quantities are so-called 
correlation functions. In the case of DLS we measure the intensity autocorrelation function, or 
IACF: 

      , , ,Ig I t I t  q q q  (3.48) 

This means that the intensity measured at a fixed time t is multiplied with the intensity 
measured a time  later. This is repeated for a large number of speckles and averaged to form 
the ensemble average, as indicated by the angled brackets. In practice, of course, instead of 
moving the detector to a different speckle a great number of times (while keeping q almost 
constant!), we prefer to keep the detector fixed and to take a time average10. The measurement 
in Figure 3.12 illustrates how this works. The intensity looks completely random, but there is 
a characteristic time scale associated with the fluctuations: The intensity never jumps from a 
maximum to a minimum in an instant, but this takes a finite amount of time. At very short 
times  , when the particles have not had enough time to move much, the intensity is 

unchanged, so that 2(0)Ig I . After a somewhat longer time the particles have moved 

enough to let the intensity change and the IACF begins to decay. After a sufficiently long 
time a speckle’s intensity has changed so much that it has become completely uncorrelated 
with its initial value. The average of the product in (3.48) is then equal to the product of the 

averages, making 
2

( )g I   . It is clear that 
22I I . In fact, if only a single speckle 

is measured it can be shown that 
22 2I I . In other words, after one correlation time the 

speckle has become a different speckle. The ensemble average is obtained by measuring 
during a time interval equal to many times (>104) this correlation time. 

3.6.2. Brownian diffusion 

Fluctuations in the scattered light are primarily caused by random displacements of the 
particles resulting from the constant bombardment by solvent molecules, known as Brownian 
motion (but in general also by rotations or shape fluctuations). We will now make a short 
detour and derive a few results to describe Brownian displacements, which we need to 
calculate the IACF. We will follow the ingenious and simple argument used by Einstein 
(1905).  

Consider an equilibrium system of non-interacting particles suspended in a liquid. A 
steady external force K derivable from a potential   r  acts on the particles and drives them 

to an impermeable boundary. (Think of the force of gravity driving the particle to the bottom 
of the container.) The velocity imparted to the particles by this force will be K where  is 
called the friction factor. Random movements due to thermal agitation drive the particles 
away from the boundary. In this state of thermal equilibrium the probability density for the 
position of the particles is given by the Boltzmann distribution as 

    0 exp /P P kT r , (3.49) 

where P0 is a normalization constant. In equilibrium the particle flux caused by the external 
force, P K , must be balanced by the flux due to Brownian diffusion at every position in the 
system: 

   0 0P D P     . (3.50) 

Substitution of (3.49) then shows that the diffusion coefficient must have the value 

                                                 
10 This assumes that the system is ergodic, so that time averages and ensemble averages are equal. For 
nonergodic systems we have no choice but to measure different speckles, although tricks exist to make this 
process more efficient. 
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 0

kT
D


 , (3.51) 

which is known as the Einstein relation. For spherical objects the hydrodynamic friction 
factor  was calculated by Stokes: 

 0 6

kT
D

a
 . (3.52) 

Here  is the shear viscosity of the solvent. 
It is interesting to note that the particle flux caused by Brownian motion is the same as 

if a steady force acted on the particles opposite to the external force. In view of (3.50) this so-
called Brownian, or thermodynamic, force is equal to 

 Br lnkT P  F  (3.53) 

This does not mean, of course, that the collisions of solvent molecules really cause the 
exertion of a steady force on the particle. It just means that when the probability density is 
non-uniform the mean Brownian displacement is such as to cause a diffusive flux equal to that 
caused by a steady external force FBr.  

The above arguments are equally valid for particles on which no external force is acting. 
If a suspension is non-uniform initially then the only particle flux is the diffusive flux 

D P  J . Particle conservation demands that its divergence must be equal to the (negative) 
rate of change of the local density, as expressed by the continuity equation  

 
P

t


 


J . (3.54) 

Combining this with the diffusive flux results in the diffusion equation 

 2
0

P
D P

t


 


. (3.55) 

In one of the problems you will be asked to solve this equation subject to the initial condition 
that the particles all start diffusing from the origin. (It would be wise, however, not to attempt 
this until after reading the next paragraph.)  An important and characteristic property of the 
solution is that the mean-square displacement of the particles increases linearly with time: 

 2
06r D t  . (3.56) 

3.6.3. Dilute suspensions 

We will now make the discussion a little more precise and derive the form of the IACF 
for a suspension of independent, but identical particles. Particles are independent if they do 
not interact with each other. This is the case if a suspension is sufficiently dilute. We will also 
assume that the particles have orientational degrees of freedom. If (3.46) is then substituted in 
(3.48) we get 

           4

, , , 1

exp 0 0
N

I j k l m
j k l m

g f i  


        q r r r r . (3.57) 

When particles are independent the average of a product is equal to the product of the 
averages. So, if only one of the numbers jklm is different from any of the others the IACF will 

contain a factor of the form   exp ji  q r . This average is zero, since the particles are 

distributed randomly so that the phase is a random quantity (except in the uninteresting case 
q=0). As a result, only three kinds of terms survive: (i) N2 terms for which j=k, l=m , (ii) 
N2N terms for which j=m, k=l, jk, and (iii) N2N terms for which j=l, k=m, jk. In case (i) 
the terms equal unity. Terms of type (ii) give 
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          exp 0 exp 0j j k ki i          q r r q r r . 

Both these averages are zero for the same reason as before: their phase depends on the 
absolute position of the particle, which is random. Finally, terms of type (iii) give 

          exp 0 exp 0j j k ki i          q r r q r r . 

These terms are not zero, because they depend on particle displacements, which are small for 
small  and large for large . Taking these things together we obtain 

       
2

2 4 2 4 expI jg N f N N f i    q r ,  

where      0j j j   r r r .  Because 2I Nf  and 2N N  we finally get for the IACF: 

     
22

1 expI jg I i      
q r . (3.58) 

We now need to evaluate the ensemble average in (3.58) for particles in Brownian 
motion. Let  ,P tr  be the probability of finding that a given particle has undergone a 

displacement r in a time t. The equation of motion for this process is the diffusion equation 
(3.55) with the initial condition that the particle has not moved at time 0t  : 
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 (3.59) 

We first recognize that the average we want to calculate is 

        exp , expi P t i d      q r r q r r . 

But this is just the Fourier transform of P with respect to r. Thus, we Fourier transform Eq. 
(3.59), giving 
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,  

with the simple solution 

    2
0, expP t q D t q . 

Substitution into Eq. (3.58) then yields the result 

    2 2
01 exp 2Ig I q D t      . (3.60) 

This result tells us that the IACF of particles in (independent) Brownian motion is an 
exponential with a characteristic time 2

01 2q D . This is the behavior seen in the experiment of 

Figure 3.12. The IACF will decay faster if the particles diffuse faster, as expected. There is 
also a strong q-dependence (slow decay at small angles). This is because q1 can be seen as 
the distance over which particles need to diffuse in order to cause the IACF to decay. Since in 
a diffusion process mean-square displacements are proportional to time this leads to a q2 
dependence. 

Equation (3.60) is often used to measure the diffusion coefficient of particles in a dilute 
solution. This value is then related to an (average) particle radius, using (3.52). The radius 
obtained from this equation is usually called the hydrodynamic radius, because it is the 
hydrodynamic friction on the sphere that determines its diffusion coefficient. If a layer of 
solvent close to the particle is entrained the hydrodynamic radius may be somewhat larger 
than the actual radius. This can be significant if the particles are rough, or if they contain a 
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stabilizing coating of long polymer molecules. Non-spherical particles have of course a more 
complicated relation between D0 and R. Results have been derived for different geometric 
shapes. 

An important application of DLS is the measurement of the particle size distribution of 
polydisperse suspensions. In essence, the decay of the IACF becomes multi-exponential due 
to the presence of particle with different sizes. It can be inverted using numerical methods to 
obtain the size distribution, which is used routinely on all commercial instruments. 

3.6.4. Concentrated suspensions 

In concentrated suspensions the particles are no longer independent and the average in Eq. 
(3.57) cannot be factorized so easily. Nevertheless, it is possible to derive some general 
results. We will state the most important results and refer to the literature cited at the end of 
this chapter for details and derivations. It can be shown that under certain general assumptions 
the Siegert relation is valid: 

     22

I Eg I g   , (3.61) 

where the electric field autocorrelation function (EACF) gE is defined by 

      *
E s sg E t E t   . (3.62) 

The assumptions are that (i) the scattering volume contains a large number of particles, (ii) the 
scattering volume is much larger than the range over which the particles are correlated, and 
(iii) the system is ergodic. For most systems these assumptions are easily satisfied11. By 
inserting Eq. (3.46) it is seen that 

       
, 1

1
exp 0

N

E j k
j k

g I i
N

 


     q r r . (3.63) 

The factor between angled brackets is called the dynamic structure factor (or intermediate 
scattering function). Notice that it equals the (static) structure factor, Eq. (3.27), at 0  . Also 
notice that for independent particles the only nonzero terms are those with j=k, so that we 
obtain (3.58) again. 

The analysis of the measured IACF is much more complicated than in the dilute case. 
Particle correlations affect both the decay rate and the q-dependence of the IACF. This is 
described phenomenologically with an equation similar to (3.60) but with a q and t dependent 
collective diffusion coefficient Dc: 

     2 21 exp 2 ,I cg I q D q t t       (3.64) 

Note that this does not mean that the IACF still decays according to a single exponential. 
Also, there is no longer a pure q-2 dependence. How then should the collective diffusion 
coefficient be interpreted? Remember that thermal motion of particles constantly creates and 
dissipates small fluctuations in the particle number density. These fluctuations have a 
(Fourier) spectrum of wavelengths. The collective diffusion coefficient can be interpreted as 
describing the relaxation of a sinusoidal density wave with a wavelength 2 q . Dc is also 
time dependent because at short times particles move only a small distance relative to each 
other (much less than a particle diameter). But on longer time scales particles must 
increasingly ‘pass each other’ in order to make progress. Thus, the diffusion coefficient 
relevant to mean-square displacements at longer times is decreased. 

                                                 
11 The electric field seen by the detector is then a Gaussian random variable. 
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As an illustration of these ideas we will conclude this section with a few examples, 
namely that of concentrated suspensions of spherical colloids. Figure 3.13 shows a number of 
dynamic structure factors (curves 1-3) of charged spheres measured at different q. It is clear 
that the decay is not single-exponential (curve 2), contrary to what is measured at low volume 
fractions (curve 4). However, in the limit of short times a single exponential can still describe 
the initial decay. The inverse of the ‘short-time’ diffusion coefficients assigned to the data in 
this way are also shown in Figure 3.13 together with the static structure factor. It is seen that 
the shape of the 1 ( )cD q -curve looks similar to that of the structure factor. Apparently, 

density fluctuations with a length scale similar to the mean interparticle spacing relax slowly 
(at short times). Diffusion on shorter and longer length scales is more rapid. Although DLS 
results from various kinds of soft matter can be quite different this same behavior is generally 
found: diffusion on length scales with strong particle ordering is slow and vice versa. 

The collective diffusion coefficient tells us how particles move collectively to dissipate 
spontaneous density fluctuations. It can be much more insightful to consider the motion of 
individual particles in the suspension. This is described by the self-diffusion coefficient. It can 
be measured with DLS by adding a small number of strongly scattering ‘tracer’ particles to a 
suspension containing a large number of index-matched ‘host’ particles. Because the tracers 
are the only particles that scatter light the only nonzero terms in (3.63) are those for which j 
and k both refer to a tracer particle. Since the tracers are very small in number they behave 
independently (i.e. they almost never interact with each other). Thus, the averages of terms 
with jk separate into products, producing zero as before. Only terms with j=k survive, and 
these lead to  

   expEg I i  q r . (3.65) 

Accordingly, we can write 

     2 21 exp 2I sg I q D t      , (3.66) 

      
Figure 3.13.  DLS measurements on a suspension of charged silica spheres (q=K). 

Left graph: Decay of the dynamic structure factor at different wave vectors at a volume 
fraction of 0.10 (curves 1,2,3), and 0.001 (curve 4).  Right graph: D0/Dc (open symbols) 

and S(q) (closed symbols) measured at volume fractions of 0.10 (circles) and 0.043 
(triangles). From: A. P. Philipse and A. Vrij, J. Chem. Phys. 88, 6459 (1988). 
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where Ds is the self-diffusion coefficient. It does not depend on q because distances between 
the independent tracers do not play a role. Ds is time dependent, however, because the tracer 
particles do still feel their nonscattering neighbors. Some experimental results are shown in 
Figure 3.14 for concentrated suspensions of hard sphere colloids. They are presented in terms 
of mean square displacements (msd) as a function of time. It can be seen that at low volume 
fractions the msd increases linearly with time, as expected for normal diffusion. But at higher 
volume fractions there is a crossover from a short-time to a slower long-time regime. In the 
crossover regime the tracer particles start feeling the presence of their neighbors, which slow 
down their progress. On very long time scales these particle interactions have averaged out 
and the msd increases linearly with time again, but much more slowly. One therefore speaks 
of short-time and long-time self-diffusion coefficients, equal to one-sixth the slope of the 
msd. 

In the experiments shown effort was taken to make the interactions between the tracer 
and host particles identical, so that it may be assumed that the motion of the tracers is 
identical to that of the host particles. This is not necessary, however. Similar experiments are 
performed in a wide variety of systems. For example, tracers can be added to polymer 
solutions, or attached to cell membranes. The dynamics of the tracers then provides 
information about the properties of the host material, such as the local viscosity or elasticity. 

3.7. Scattering of other types of radiation 
As mentioned before not only light can be used to obtain information on the structure of 

matter, but in principle type of information is obtained with other types of radiation. Of these, 
X-rays and neutrons are routinely used in the study of soft condensed matter and, indeed, in 

 
Figure 3.14. Mean square displacements of tracer spheres (silica) in a suspension of hard 

sphere colloids (pmma), measured with DLS. The particles had a radius of 330 nm and were 
suspended in a mixture of CS2 and decalin, which index-matched the pmma spheres. The 

particle volume fractions are shown on the graphs. From: W. van Megen and S. M. 
Underwood, J. Chem. Phys. 91, 552 (1989). 
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the study of all kinds of condensed matter. We discuss some of the differences and advantages 
compared to light scattering. 

3.7.1. X-rays 

The wavelength of X-rays is typically on the order of 0.1 nm, which places us in the 
large q limit. Information on the structure of larger particles therefore appears at small angles, 
on the order of 1º. This application of X-rays is therefore called small-angle X-ray scattering, 
or SAXS. To reach such small angles the detector is placed at large distance from the sample, 
typically ~10 m. Smaller length scales such as polymer segments and intramicellar structure 
are studied at wider angles (WAXS). Length scales that can therefore be probed with X-ray 
scattering range from 0.01 to 103 nm. Since the refractive index of most materials at these 
short wavelengths is very close to unity (to within 10-6 to 10-4) multiple scattering is absent 
even in samples that strongly scatter light. Since X-rays are electromagnetic radiation they are 
scattered by charged particles, usually electrons. Because of there short wavelength the 
scattering strength is related not to the polarizability of bulk matter but to the scattering 
strength of an electron. For an individual electron which oscillates in the e.m. field the 
scattered intensity is again a dipole field (Thomson scattering): 

 
22 2

0 2
0

1 cos

4 2s
e

e
I I

m c R




  
  

 
. (3.67) 

Here me and e are the electron mass and charge, and c the speed of light. To calculate 
scattering by larger objects such as atoms, polymer molecules or colloidal particles we sum 
the fields scattered by the electrons taking into account the proper phase differences, as 
explained before. It is clear that the resulting formulas will be completely analogous to those 
for visible light. Because heavy elements contain many more electrons than light elements 
scattering by the former dominates the measured intensity. This may make it difficult to 
measure light elements in a sample. 

Classically, X-rays are produced in X-ray tubes, in which a metal foil is bombarded 
with electrons. The resulting X-rays have a well-defined wavelength and can be used to 
irradiate samples. Since X-rays are hard to focus and reflect from mirrors a collimated beam 
must be produced with a narrow slit. This seriously limits the available power. Stronger X-ray 
beams are available from modern synchrotrons in which magnetic bending or undulation of a 
relativistic electron beam produces an almost collimated beam containing a “white” spectrum 
of wavelengths (typically 0.05 to 0.2 nm). The extremely high irradiance makes it possible to 
study weakly scattering samples, even after monochromation and collimation. Worldwide a 
growing number of synchrotrons is available at national or international facilities. European 
synchrotrons with international access are in Grenoble (“European Synchrotron Radiation 
Facility”), Daresbury (“Daresbury Synchrotron Radiation Source”), Hamburg (“Hamburger 
Synchrotronstrahlungslabor”), Villigen (“Swiss Light Source”), and Aarhus (“Institute for 
Storage Ring Facilities”). 

Although the X-rays produced in synchrotrons (like those from tubes) are incoherent the 
beams are so intense that a small pinhole can be placed in the beam to produce a nearly 
coherent source. In this way Dynamic X-ray Scattering (DXS) has become possible in recent 
years. 

3.7.2. Neutrons 

Neutrons interact with matter mainly through two types of interaction. The magnetic 
dipole of the neutron interacts with the magnetic field of unpaired electrons. Although this is 
very important in the study of magnetic materials it does not usually play a role in soft 
condensed matter systems. The other interaction is the strong nuclear interaction between the 
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neutron and the atomic nuclei. Despite the word “strong” the scattering cross sections of 
atoms (i.e. of their nuclei) are very small, so neutrons have a high penetrating power and 
multiple scattering is of no concern. Neutrons are produced in nuclear reactors. Some of the 
neutrons are needed to continue the nuclear fission process, while others need to be 
transported out. In reactors used for scientific research these neutrons are channeled into 
relatively well-collimated beams. Neutrons are described as a matter wave with De Broglie 
wave vector  

 
1

2 nk m E


. (3.68) 

E is the kinetic energy of the neutrons and   Planck’s constant divided by 2 . This energy 
depends on the reactor and is often given in terms of the neutron temperature, as 3

2E kT . In 

many reactors the neutrons have undergone many collisions with the nuclei present in the 
moderator and will have “thermalized” upon leaving the reactor, so that their temperature is 
about 300 K. These neutrons have a wavelength of 0.2 nm. (By using a cooled moderator 
wavelengths of up to 2 nm are accessible.) This is the same order of magnitude as that of X-
rays, so that neutron scattering provides information on the same length scales. 
Correspondingly, small angle neutron scattering is called SANS. 

Since the strong interaction is very short range the atomic nuclei can be considered 
point scatterers for neutrons at room temperature or below. Thus the neutron waves scattered 
by each atomic nucleus has a form similar to the oscillating dipole in light and X-ray 
scattering. Scattering by larger objects follows by summing over all nuclei including the 
correct phase, just like before. The strength of scattering is expressed as a scattering length, 
which depends on the number of protons and neutrons in the nucleus, but not in a systematic 
way. This has the advantage that light elements may scatter as much as heavy elements. Even 
different isotopes of the same element may have completely different scattering lengths. Since 
the isotopes will be distributed randomly through the sample, and their nuclear spins normally 
have a random orientation, the scattered intensity contains an often-large background of so-
called incoherent scattering. An important difference with electromagnetic scattering is that 
neutron scattering lengths for some elements, most notably 1H, are negative. The analogous 
thing in light scattering would be to have a negative fj in equation (3.25) for certain 
components of the sample. By mixing normal solvents with deuterated solvents (2H has a 
positive scattering length) the scattering contribution from selected parts of the sample can be 
made to vanish while minimally affecting the chemical composition. This process is called 
contrast variation and is an important technique in neutron scattering. In light scattering 
contrast variation is only possible by replacing the solvent by one with a refractive index 
equal to that of the selected part of the sample. (In equation (3.25) the fj of this part would 
become zero.) But this always comes at the price of changing the chemical makeup of the 
system under study, which is almost certain to lead to other, unwanted, changes.  

Several nuclear reactors provide beamlines for scientific research. In the Netherlands 
test reactors offering neutron beamlines to researchers are located in Delft (“Interfacultair 
Reactor Instituut”) and in Petten (“Energieonderzoek Centrum Nederland”). More powerful 
neutron sources open to European researchers are in Jülich (“Forschungszentrum Jülich”) and 
in Grenoble (“Institut Laue-Langevin”). 

3.8. Appendix: Relation between S(q) and g(r). 
To derive Eq. (3.29) we start with Eq. (3.27) and notice that the quantity to be 
averaged is a sum of terms that each depend on only two variables. Each of 
these terms is identical and can be related to the pair distribution function (2) : 
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Since g(r) approaches unity for large r it is convenient to rewrite this as 
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The last term is irrelevant as long as the scattering vector does not vanish: 

     1 1i

V

S d e g    q rq r r . 

This is Eq. (3.29). Note that the limit 0q   is still defined properly because  
0

lim 0
q

q


 . 

3.9. More reading  
The derivation of the field radiated by an oscillating dipole can be found in: 

 
 Griffiths, D. J., Introduction to Electrodynamics (3rd ed., Prentice Hall, Upper Saddle 

River, 1999). 
 
or in most other textbooks on electrodynamics. 
 
Famous books on light scattering and absorption by individual particles are: 
 
 H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957) 
 M. Kerker, The scattering of light and other electromagnetic radiation (Academic Press, 

New York, 1969). 
 C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles 

(John Wiley & Sons, New York, 1983). 
 
Note that these books only treat scattering by single particles. For discussions of structure 
factors we refer to textbooks on soft condensed matter, which are listed elsewhere in this 
syllabus. 
 
A classic text on dynamic light scattering is 
 
 B. J. Berne and R. Pecora, Dynamic Light Scattering – With applications to chemistry, 

biology, and physics (Wiley, New York, 1976). 
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Chapter 1

Surfactants and Micelles

1.1 Introduction: surfactants

An important type of molecules that adsorb positively at (water-air or water - oil)
interfaces are so-called surface-active agents or briefly surfactants. The common
characteristic of these materials is that their molecules consist of a polar ‘head’
(hydrophilic part) and a hydrocarbon ‘tail’ (hydrophobic part), as schematically
depicted in Fig. 1.1. The amphipolar nature of surfactants makes them adsorb
positively at relatively low surfactant concentrations.

head tail

Figure 1.1: The common characteristic of surface active agents, or briefly surfactants, is that they
consist of a polar ‘head’ and a hydrocarbon ‘tail’.

Depending on their chemical structure and properties of the head group, a sur-
factant is called anionic, cationic, amphoteric, or non-ionic.

Classical ’soaps’ are a well-known example of anionic surfactants. These soaps
are usually sodium or potassium salts of fatty acids (carboxylates) with a chain
length of typically 10 to 20 hydrocarbon groups; RCOO−M+, for instance sodium
lauraat, C11H23COO−Na+. With increasing tail length, the solubility in water
decreases and hence the surface activity increases.

In the case of cationic surfactants, the soap is a cation, i.e., the headgroup
is positively charged. Examples are tetra- alkyl ammonium salts such as cetyl-
trimethyl ammonium bromide (CETAB).

Surfactants containing head groups that have both positive and negative sites are
referred to as amphoteric. These surfactants are well-miscible with all other type
surfactants and less antagonizing for skin and eyes. Therefore they are frequently
encountered in cosmetics. Typical examples are the betaines.

The remaining approximately 21% of the total of surfactants are comprised by
non-ionic surfactants. The head group of this type does not contain charges but
has a propensity to forming hydrogen bonds. They are well-miscible with all other
types of surfactants.

2
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An important class of non-ionic surfactants are the poly(glycol ethers), R −
O(C2H4O)nH , or CmEn. The hydrocarbon tail R is usually linear and is abbrevi-
ated as Cm. De ethylene oxide head-group is frequently denoted as En. For small
head-groups (n = 1− 6) these surfactants are frequently applied as oil/water emul-
sifiers. Intermediate ethylene oxide head-group (n = 6−15) are found in detergents,
whereas large head-groups (n > 15) in special emulsifiers.

Positive adsorption at interfaces decreases the interfacial tension as dictated by
the Gibbs adsorption equation. However, beyond a certain surfactant concentration,
the critical micelle concentration (cmc), the interfacial tension remains more or less
constant. The situation has been shown schematically in Fig. 1.2.

A

B

C

�

�
0

ln c
c.m.c.

micel

Figure 1.2: Charactistic change of the interfacial tension as a function of surfactant concentration.
The dashed vertical line indicates the critical micelle concentration, cmc.

1.2 Micelles: The critical micelle concentration (cmc)

In this treatment I will follow Debye, [1]. Forming a micelle containing n surfactant
monomers can be described as the equilibrium

nA � An (1.1)

In the above equilibrium, A stands for surfactant monomers and An for a sur-
factant aggregate (micelle) containing n surfactant molecules. Typically the value
of n is 50-100 for spherical micelles. Now Debye’s arguing goes as follows. Define
the equilibrium constant as

K =
xn

xn
1

(1.2)

where x1 is the concentration (molefraction) surfactant monomers, and xn the
concentration (molefraction) micelles. In general the dimension of the equilibrium
constant as defined by eq. 1.2 is concentration(1−n). We use this dimensional argu-
ment to define the concentration

x0 = K
1

1−n (1.3)

3
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Figure 1.3: Iterative solution of Eq. 1.5. The surfactant concentration y1 and the micelle concen-
tration nyn with n = 65 as a function of the total surfactant concentration, y, in the system, in
reduced units. Below the c.m.c. (y = 1) micelles are barely present, whereas above the c.m.c.
the monomer concentration is virtually constant. The dashed lines represent the limiting case for
n → ∞, given by Eq. 1.6

Now the total concentration of surfactant molecules in the system is the sum of
monomeric surfactant molecules, and surfactant molecules in the form of micelles.
In other words, the total surfactant concentration, x, follows by mass conservation

x = x1 + nxn (1.4)

Writing xn = xn
1K = xn

1/xn−1
0 , and defining the reduced concentrations y = x/x0,

y1 = x1/x0, and yn = xn/x0 eq. 1.4 becomes

y = y1 + nyn
1 (1.5)

with the typical values of n ∼ 50 − 100, Eq. 1.5 can only be solved iteratively.
It can be verified from eq. 1.5, that with typical values of n stated above, we have

y1

{
= y, if y < 1;

≈ 1, if y > 1.
, (1.6)

The results of a numerical calculation using n = 65 has been shown in Fig. 1.3.
The crossover from the behaviors described by eq. 1.6 occurs around y=1, as

can be seen in Fig. 1.3. The value of y=1, therefore, corresponds to a critical
point. y = 1 implies that x = x0. Therefore, x0 is defined as the critical micelle
concentration. As long as x < x0, all surfactant is present in the form of monomers.
But if x > x0, micelles are being formed; the monomer (x1) concentration remaining
(almost) constant.

4
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1.3 Thermodynamics of micelle formation

In section 1.2 we presented a phenomenological description: we presumed that mi-
celles of size n form, and subsequently studied their properties. We now address the
question: what is the thermodynamic condition for the formation of micelles of size
n? We return to eq. 1.1, but leave the value of n unspecified. We address the ques-
tion as to what the size distribution of micelles is, on the basis of thermodynamics.
The general thermodynamic condition for chemical equilibrium is∑

i

νiμi = 0, (1.7)

where νi are the stoichiometric coefficients and μi the chemical potentials. Ap-
plying eq. 1.7 to the equilibrium 1.1 we get

μn = nμ1 (1.8)

In this equation, the subscripts 1 and n again refer to surfactant monomers, and
micelles consisting of n surfactant molecules, respectively. As long as monomers
and micelles are dilute, we may write the chemical potentials as

μi = μ0
i + kT lnxi (1.9)

where μ0
i is the standard chemical potential (μi = μ0

i iff xi = 1), k and T are
Boltzmann’s constant and absolute temperature, and i in this case can be monomer
(i = 1) of micelle (nmer: i = n). Combining eqs. 1.8 and 1.9 leads to the distribution
of micelles of size n

xn = xn
1exp

(−(μ0
n − nμ0

1)

kT

)
(1.10)

First of all, note that the cmc is related to the above expression by (compare
with eqs. 1.2 and 1.3

x0 ≡ xcmc = K1/(1−n) = exp

(
μ0

n − nμ0
1

(n − 1)kT

)
(1.11)

In order for the system to have a cmc of x0 < 1 (note that x0 > 1 is unphysical ;
in that case there will be no cmc at all), it follows from Eq. 1.11 that there must
be a value of n, or a range of values, such that

μ0
n < nμ0

1 (1.12)

In other words, for micelles of size n to form, it follows from eq. 1.10 that the

function
μ0

n−nμ0
1

kT
should have a (deep) minimum at n.

1.4 Influence of molecular properties of the surfactant on

the cmc

First of all we write the argument of the exponent in Eq. 1.11 as

5
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μ0
n − nμ0

1

(n − 1)
≡ Δμθ =

(
Δμθ

)
head

+
(
Δμθ

)
tail

. (1.13)

In order to form micelles it is required that Δμθ < 0, as has been discussed below
Eq. 1.11. The head groups will be closely packed upon micelle formation, which
is in general unfavorable compared to the situation where surfactant molecules are
monomers. We may therefore expect

(
Δμθ

)
head

> 0. The packing will be favorable

for the hydrophobic tails and hence
(
Δμθ

)
tail

< 0. Since micelle formation requires

Δμθ < 0, we find
∣∣(Δμθ

)
tail

∣∣ > ∣∣(Δμθ
)
head

∣∣.
Despite the vast amount of literature on the calculation of Δμθ, we restrict

ourselves to observed trends in c.m.c. and the subsequent conclusions for
(
Δμθ

)
head

and
(
Δμθ

)
tail

.

1.4.1 Influence of chain length on cmc

Upon increasing chain length, it is expected that
(
Δμθ

)
tail

gets more negative and
the critical micelle concentration decreases. Experimental values in Table 1.1 con-
firm this expectation. The cmc is lowered by roughly a factor of 2 for each added
CH2-group in anionic surfactants. According Eq. 1.11 this implies that Δμθ de-
creases by (per mole!) RT ln 2 ≈ 1.72 kJ/mole per added CH2-group. The critical
micelle concentration decreases stronger for non-ionic surfactants for each addi-
tional CH2-group; rougly a factor of 3. This in turn implies that Δμθ decreases
approximately 2.72 kJ/mol for each additional CH2 tail-unit .

Table 1.1: The c.m.c. and Δμθ = RT ln xcmc of four types of surfactants as a function of the
number of C-atoms nC in the alkyl tail at 298 K.

R ccmc [mol/l] xcmc Δμθ [kJ/mol]
RCOO−Na+: C12 2.3 × 10−2 4.2 × 10−4 -19.3
Δμθ = 0.65 − 1.66nC kJ/mol C14 6.0 × 10−3 1.1 × 10−4 -22.5

C16 1.5 × 10−3 2.7 × 10−5 -26.0
C18 4.0 × 10−4 7.3 × 10−6 -29.2

ROSO−
3 Na+: C8 1.3 × 10−1 2.3 × 10−3 -15.0

Δμθ = −1.35 − 1.70nC kJ/mol C10 3.3 × 10−2 6.0 × 10−4 -18.3
C12 8.3 × 10−3 1.5 × 10−4 -21.7
C14 2.1 × 10−3 3.8 × 10−5 -25.2

R(CH3)3N+Br−: C10 6.5 × 10−2 1.1 × 10−3 -16.8
Δμθ = 0.59 − 1.74nC kJ/mol C12 1.6 × 10−2 2.9 × 10−4 -20.2

C16 9.2 × 10−4 1.7 × 10−5 -27.2
R. − .O(C2H4O)6.H (CnC E6): C8 7.6 × 10−3 1.4 × 10−4 -22.0
Δμθ = 0.40 − 2.80nC kJ/mol C10 8.0 × 10−4 1.4 × 10−5 -27.6

C12 8.3 × 10−5 1.5 × 10−6 -33.2
C14 8.7 × 10−6 1.6 × 10−7 -38.8

The change in standard chemical potential of a surfactant with tail length nc

can according to the experimental results be described emperically by the Klevens
equation [2]
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Δμθ = RT ln xcmc = A − Bnc (1.14)

The value of A is dominated by the nature of the head group. Generally one
finds −3.1 < A < +3.7 kJ/mol. B values are typically found in the range 1.5 <
B < 2.9 kJ/mol. The Klevens equation for some characteristic examples is given in
the left column of Table 1.1.

The Klevens equation, 1.14, only holds for nC � 16, presumably because for
larger tail lengths the alkyl tail will fold to prevent hydrophobic interactions. On
the other hand, nC � 8 to have enough thermodynamic driving force for micelle
formation, i.e.,

∣∣(Δμθ
)
tail

∣∣ > ∣∣(Δμθ
)
head

∣∣.
1.4.2 Effect of salt on the cmc

We expect
(
Δμθ

)
head

> 0 as a consequence of the interactions between charged or
polar head-groups. The charges of the head groups are screened by the addition of an
indifferent salt which decreases the interactions between the head groups. Therefore,
we expect

(
Δμθ

)
head

to decrease upon increasing elektrolyte concentration. From
Table 1.2 it is verified that this is indeed the case.

Table 1.2: The c.m.c. and Δμθ = RT ln xcmc of sodium octyl sulphate, H(CH2)8OSO−
3 Na+, as a

function of salt concentration at 298 K.
ccmc [mol/l] xcmc Δμθ [kJ/mol]

water 0.134 2.4 × 10−3 -14.9
water + 0.01 mol NaCl/l 0.121 2.2 × 10−3 -15.2
water + 0.03 mol NaCl/l 0.102 1.8 × 10−3 -15.6
water + 0.1 mol NaCl/l 0.069 1.2 × 10−3 -16.6
water + 0.3 mol NaCl/l 0.035 6.3 × 10−4 -18.3

The critical micelle concentration as a function of salt concentration generally
depends on the valence of the added ions, in particular that of the counter ions.
Addition of salt increases the sensitivity of the cmc with increasing tail-length.
That is, the cmc decreases steeper with longer carbon tails and, at very high ionic
strength, may even resemble the behaviour of non-ionic surfactants. There is almost
no influence of salt on the critical micelle concentration of non-ionic surfactants.

1.5 Geometry of surfactant molecules and micellar shape.

What is the physical origin of the minimum of the function Δμθ as a function of n
in eqs. 1.11, 1.13? Note that the quantity Δμθ equals the difference in Gibbs free
energy of a molecule inside a micelle containing n surfactant molecules, and a freely
moving surfactant monomer. Thus, the position of the minimum suggests that at
that particular value of n, the surfactant molecules are most comfortably packed in
a micelle. This suggests that the geometry of surfactant molecules the relative size
of their headgroups, the lengths of their hydrophobic tails, may have something to
do with it. Indeed, packing cones in the form of a sphere will naturally lead to a
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number of cones that are close packed in a sphere. Squeezing in more cones than
the number corresponding to close packing will lead to repulsion, and the function
Δμθ will rise with n. Other shapes of the surfactant molecules will lead to different
structures of the aggregates. See Fig 1.4, taken from Ref. [3]. Referring to this
Figure, we will now derive the geometrical conditions (on surfactant molecules) for
aggregate shapes.

Figure 1.4: Relation between surfactant parameter and micelle shape - from Ref [3]

The three geometrical parameters defined in Fig. 1.4 are the effective molecular
headgroup area a0, the effective length of the hydrophobic tail �0, and the effective
volume of the surfactant molecule, v0. Note that these parameters are not fixed for
a certain surfactant molecule: they depend on conditions such as the ionic strength
and temperature. That particularly applies to a0: this quantity includes the effect
of the electrical double layer around the headgroup (if the headgroup is charged)
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We start with the condition for spherical micelles: In that case the volume Vm and
surface area Am of a micelle of radius R are

Vm =
4π

3
R3 = nv0 Am = 4πR2 = na0 (spherical micelle) (1.15)

From eq. 1.15 we may write n in two ways as

n =
4π

3v0

R3 =
4π

a0

R2 (spherical micelle) (1.16)

The above eq. is true iff

R =
3v0

a0
(spherical micelle) (1.17)

Since obviously, we also have that R ≤ �0 , we arrive at the geometrical condition
for spherical micelles

v0

a0�0
<

1

3
(spherical micelle) (1.18)

The quantity v0

a0�0
is often referred to as the surfactant parameter. The number of

surfactant molecules in a micelle can now be estimated by n =
36πv2

0

a3
0

=
4π�30
3v0

. For the

surfactant sodium dodecyl sulfate (SDS), the values of �0 and v0 are approximately
1.93 nm and 0.4 nm3, respectively [3], leading to n ≈ 75 being in fair agreement
with experiments.

Now lets investigate the condition for cylindrical micelles. For a cylinder of radius
R and length L we have

Vm = πR2L = nv0 Am = 2πRL = na0 (cylindrical micelle) (1.19)

By the same reasoning as in the case of spherical micelles we arrive at the con-
dition R = 2v0/a0. Using again that R ≤ �0, we get v0

a0�0
< 1

2
. Combination with

the condition for spherical micelles, eq. 1.18 finally gives

1

3
<

v0

a0�0
<

1

2
(cylindrical micelle) (1.20)

Micelles also come in plate shapes; in that case we have, for plates with thickness
d and interfacial area A

Vm = Ad = nv0 Am = 2A = na0 (plates) (1.21)

So in case of plates we get d = 2v0/a0 < 2�0 , so that

1

2
<

v0

a0�0

< 1(plates) (1.22)

Finally, it is easy to see that the condition for inverse micelles is that v0

a0�0
> 1.
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1.6 Problems

1. Caloric experiments show that the cmc is almost independent of temperature
(typically

∣∣d ln xcmc

dT

∣∣ ≈ 10−3 K−1). Is micelle formation an enthalpically or entropi-
cally dominated process?
Hint: Make use of the relation between Δμθ and xcmc as well as Tables 1.1 and 1.2.
Use (and verify if it looks alien to you) the thermodynamic relation(

∂Δμθ/T

∂T

)
p

= −Δhθ

T 2
,

where Δhθ is the molar enthalpy of micelle-formation.

2. Consider the formation of dimers from single molecules via

2A � A2

Let the total mole fraction be x, the monomer mole fraction x1, and the dimer mole
fraction x2.
a. Show that at equilibrium, x2 = x2

1 exp(−Δμ0/kT ). Here, Δμ0 = μ0
2 − 2μ0

1, with
μ0

i the standard chemical potential of i ∈ {1, 2}.
b. Show that for small x (more specifically: xe−Δμ0/kT << 1 ), x1 = x. Also

show that for large x (more specifically: xe−Δμ0/kT >> 1 ), x1 ∝ √
x. Hint: use

mass conservation.
c. How does the behavior under b. compare to the the formation of surfactant
micelles?

3. The standard-chemical potential of a surfactant molecule in a micellar aggregate
of size n in principle depends on the occupied area per surfactant molecule, a. A
primitive way to take that dependence into account is by writing the standard chem-

ical potential per surfactant molecule in an aggregate of size n as μ0
n = μ0

n

n
= γa+ k

a
.

a. Provide (a) possible interpretation(s) of the two terms in this equation.

b. Show that the optimal area per molecule is given by a0 =
√

k/γ. Provide an
interpretation of this results.
hint: consider the function μ0

n(a).
c. Show that μ0

n can be written as μ0
n = 2γa0 + γ

a
(a − a0)

2.
d. Show that the fraction of molecules with head group area a relative to the optimal
area a0 is approximately given by

xa

xa0

= exp
(
−γ

a
(a − a0)

2/kT
)

. (1.23)

What assumption(s) have you made?
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Chapter 2

One-dimensional aggregation

2.1 Introduction

One-dimensional aggregation underlies so-called ’living polymers’, that is, one-
dimensional aggregates of, e.g., surfactant molecules or taper-shaped crown ether
derivates. Also, one-dimensional aggregation is relevant in biological stuctures such
as rod-like viruses and microtubuli. We will first consider the situation for effec-
tively single-component living polymers, which are shown to be very polydisperse.
Subsequently, we move to the situation where a second component is involved. It
is shown that the presence of this second component may stabilize highly monodis-
perse particles.

2.2 One-dimensional aggregation of single components: liv-
ing polymers

In the previous chapter on spherical micelles we took an ’all of nothing’ approach
and considered only surfactant monomers and a single n-mer that defines the size
of a micelle. Here we take any discrete number n ≥ 1 and study the aggregate
distribution xn. The situation has schematically been depicted in Fig. 2.1. Using

Figure 2.1: A special case of 4 monomers in equilibrium with a linear aggregate of size n=4.

eq. (1.10) and, for one-dimensional aggregation, taking

μ0
n − nμ0

1 = (n − 1)w (2.1)

where w is the reversible work to create a bond, or, equivalently, the average free
energy per bond, in an aggregate. The underlying assumption here is that the
interaction between the building blocks in the aggregate is short-ranged, making the
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bond free energy w independent of aggregate size n. Note that in general one would
indeed have w = w(n). To obtain the size distribution xn = xn

1e
−(n−1)w/kT explicitly,

we need the monomer concentration x1 which can be obtained by imposing mass
conservation, at least in principle. The total monomer concentration is given by

x =

∞∑
n=1

nxn
1e−(n−1)w/kT = y

∞∑
n=1

nzn =
yz

(1 − z)2
, (2.2)

where we have defined y = ew/kT and z = x1e
−w/kT . In the last step in Eq. (2.2)

use has been made of the properties of the binomial series
∑∞

n=0 xn = 1/(1− x) for
x ≤ 1, see the Problems section. Solving Eq. (2.2) for x1 leads to

x1 =
1 + 2xe−w/kT −√

1 + 4xe−w/kT

2xe−2w/kT
, (2.3)

Beyond the critical micelle concentration, where xe−w/kT >> 1, the average size of
the aggregates is given by

< n >=

∑∞
n=1 nxn∑∞
n=1 xn

=
∂ln (

∑∞
n=1 xn)

∂lnz
=

z

1 − z
(2.4)

and polydispersity

σ2 =< n2 > − < n >2=
∂ < n >

∂lnz
=

z

(1 − z)2
(2.5)

From eqs. (2.4) and (2.5) it follows then that the relative polydispersity is given by

σ

< n >
=

1√
z
. (2.6)

Beyond the cmc, or when x > ew/kT , it can be inferred from eq. (2.6) and the
definition of z that the relative polydispersity is always close to 1, independent of the
interaction potential between monomers. The size distribution xn is continuously
decreasing with n. The fraction of monomers in clusters of size n, nxn, is peaked
but the distribution is very broad.

2.3 Self-assembly on a template

In this section we consider adsorption of monomers on a template. For simplicity we
will neglect interactions between monomers and only take into account monomer-
template interactions, being effectively adsorption energies. While the treatment is
general, i.e., applicable to any dimension, we will limit ourselves to 1-dimensional
adsorption in order to make a connection with the previous section. The situation
is schematically shown in Fig. (2.2). The template can be a polymer such as DNA
or RNA, or any other polymer, and the monomers can be proteins or surfactant
molecules. Templates, monomers and aggregates are assumed sufficiently dilute
so that the mixed solution behaves ideal. We write the multi- chemical equilibria
involving the templates P as

nA + P � AnP. (2.7)
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Figure 2.2: One-dimensional adsorption of n = 6 monomers on a template with nmax = 12
adsorption sites. This particular situation, that is, 6 filled sites on a total of 12, can be realized
in 924 ways, according to Eq. (2.9).

Applying the condition for chemical equilibrium, Eq. (1.7), and making use of
eq. (1.9) for i ≡ A, P, AnP leads to

xn = g(n)xP0x
n
1∗e

−(μ0
n−nμ0

1−μ0
P )/kT = g(n)xP0x

n
1∗e

−nwAP /kT , (2.8)

where the subscripts n, 1, and P stand for the species AnP , monomer A and bare
template P , respectively. μ0

n−nμ0
1−μ0

P = nwAP . wAP is identified as the adsorption
free energy per monomer, that is, the reversible work to adsorb a monomer onto
a template relative to infinite separation of the two species. Interactions between
monomers have been neglected. xP0 stands for the mole fraction of templates P
that are uncovered by monomers A, and x1∗ is the mole fraction of free monomers
A, to be distinguished from the fraction of polymer covered by a single monomer
x1. The function g(n) takes into account the number of ways n monomers A can
be adsorbed onto a template. Taking the maximum number of monomers that can
be adsorbed onto a lattice P as nmax, and, consistent with the assumption that
adsorption between neighboring sites is uncorrelated, we write

g(n) =

(
nmax

n

)
=

nmax!

(nmax − n)! n!
, (2.9)

being the degeneracy of species n.

In order to calculate the size distribution eq. (2.8) we need both the bare poly-
mer fraction xP0 as well as free the monomer fraction x1∗ these follow from mass
conservation via

x = x1∗ +

nmax∑
n=1

nxn = x1∗ + yxP0

nmax∑
n=1

ng(n)zn, (2.10)

xP = xP0 +
nmax∑
n=1

xn = xP0

(
1 + y

nmax∑
n=1

g(n)zn

)
, (2.11)

with z = x1∗e−wAP /kT and y = ewAP /kT . Combining eqs. (2.9 - 2.11) leads to

x1∗ = x − xpy
∑nmax

n=1 ng(n)zn

1 + y
∑nmax

n=1 g(n)zn
= x − zxP nmax

(1 + z)
. (2.12)

Solving this equation for x1∗ leads to

x1∗ =
1

2e−wAP /kT

(
e−wAP /kT (x − xP nmax) − 1 +

√
h(x, xP )

)
, (2.13)

with h(x, xP ) = 4xe−wAP /kT +
(
1 + e−wAP /kT (xP nmax − x)

)2
. The value of xP0 then

follows from eq. (2.11). From these solutions, the size distribution eq. (2.8) can be
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calculated. In order to find expressions for the avarage number of adsorbed species
A onto a template P and the variance we define the characteristic function

Ξ =

nmax∑
nmin

g(n)zn =

nmax∑
nmin=0

(
nmax

n

)
zn = (1 + z)nmax , (2.14)

being similar to the grand partition function. In the last step we made use of
the binomial series

∑N
n=0

(
N
n

)
pnqN−n = (p + q)N . In calculating Ξ we include the

bare templates P so that the sum in eq. (2.14) runs from zero to nmax. With the
definition eq. (2.14) we find for the avarage size < n > and variance σ2

< n >=

∑nmax

0 nxn∑nmax

0 xn
=

∂lnΞ

∂lnz
=

z nmax

(1 + z)
, (2.15)

and

σ2 =< n2 > − < n >2=
∂2lnΞ

∂(lnz)2
=

z nmax

(1 + z)2
. (2.16)

This quantity is a measure for the spread in the number of adsorbed species A onto
the templates P . Using eq. (2.15) we immediately recover the Langmuir adsorption
isotherm

θ =
< n >

nmax
=

z

1 + z
. (2.17)

Different from the situation of (ideal) gas adsorption on a solid, where z is a simple
function of the ideal gas pressure, the value of z = x1∗e−wAP /kT in eq. (2.17) follows
from eq. (2.13). The situation gets more ’transparant’ if xe−wAP /kT >> 1 and

x/nmaxxP is of order unity. In that case we have x1∗ ≈
√

xewAP /kT implying that

under these conditions z ≈
√

xe−wAP /kT .
The relative polydispersity follows from eq. (2.16) and is given by

σ

< n >
=

1√
nmaxz

. (2.18)

In fig. (2.3) size distributions at several values of wAP are shown. In this (and sub-
sequent) figure we have set x = 5.4∗10−6, xP = x/nmax, and nmax = 50. This value
of nmax represents medium-size polymers. The value of xP is chosen in such a way
that the ratio between the total number of sites and total number of monomers is
unity. This can easily be accomplished in experiments. Larger values of nmax show
qualitatively similar behavior as in fig. (2.3)(not shown); the peaks only become
sharper if plotted as nxn versus n/nmax. Clearly, the average cluster size smoothly
increases upon increasing adsorption energy, −wAP . Note that at relatively large
adsorption energies the cluster size distribution is very sharply peaked at nmax. It
is questionable whether such large energies can be reached without giving rise to
very long exchange times between monomers and templates, leading to ’arrested’
states that are not in equilibrium. However, from a purely equilibrium perspective
very monodisperse systems may be obtained. Polydispersities, the value of z, and
the average size are shown in fig. (2.4). This figure clearly shows that polydisperity
decreases dramatically upon saturation of the available lattice sites.
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Figure 2.3: Size distributions nxn/x versus n at several values of the adsorption energy wAP /kT
for Langmuir adsorption with xP = x/nmax correspomding to equal numbers of adsorption sites
and monomers, x = 5.4 10−6, nmax = 50.

Finally, the careful reader may have noticed that the equilibrium constants de-
pend on the chosen concentration unit, here the mole fraction x. In fact, the choice
of mole fraction is a consequence of the fact that as long as the interactions are
short-ranged, the size of a solvent molecule is the relevant length scale. How does
this length scale appear? The mole fraction can be written as xi = ni

ni+ns
≈ ni

ns
. As

the number density ρi = ni/V ≈ ni

nsvs
, with vs the molecular volume of a solvent.

Thus, under dilute conditions xi ≈ ρvs = ρω3. Here, ω is on the order of the size of
a solvent molecule. This is in fact a ’coarse-grained’ length scale: in our description
the properties of the solvent molecules have been integrated out and do not appear
explicitly. In a truly molecular description, it is the De Broglie wavelength Λ that
acts as the characteristic length scale - for example the expression for the chemical
potential of an ideal gas reads μ = kT ln(Λ3ρ). The difference between this ideal-gas
expression and Eq. (1.9) is an ’integration constant’ μ0 and the lengthscale in the
argument of the logarithm: Λ for a molecular description, and ω for a coarse-grained
one.

2.4 Problems

1. Verify the last step in Eq. (2.2).

2. The purpose of this Problem is to illustrate that any association equilibrium
has a critical concentration or density of the building blocks below which there are
only monomers, and no larger structures. The concept ’cmc’, as introduced and an-
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Figure 2.4: Average coverage θ =< n > /nmax, relative polydispersities σ/ < n > , and value of
z for the same conditions as in fig. (2.3).

alyzed in the paragraphs 1.2 and 1.3, is a reflection of that more general property.
You are being encouraged to read and digest that part carefully before diving into
this problem.
a. Verify that under appropriate conditions Eq. (2.3) reduces to x1 = x (hint: ex-
pand the square root in a Taylor series). Also verify that the limiting value of x1 is
given by x1 = ew/kT .
b. The crossover between these limiting behaviors defines the cmc. In paragraph 2.2
we have been dealing with many different sizes n of one-dimensional aggregates
compared to the situation in paragraph 1.2 where we only considered two species:
monomers and aggregates. Considering the assumptions in paragraph 2.2, argue
whether it makes sense to take the ansatz for equilibria eq. (1.1) for any discrete n
as Kn = xn

xn
1

= x1−n
0 .

c. Using the ansatz above show that the cmc associated with one-dimensional ag-
gregation and in particular the ’decoupling’ eq. (2.1) is given by x0 = ew/kT . Check
the order of magnitude of the cmc as defined as such by using other arguments.
d. Show that the same arguments hold for the ’cmc’ x0 = ew/kT for the dimers in
the last problem in the previous chapter.
e. Show that also in the situation of adsorption on a template there is a concentra-
tion x below which x1∗ = x. To make life easy(er), limit yourself to the situation
where x = xP nmax.
f. Calculate the ’cmc’ of the association equilibrium 2A � A2 at 298 K where the
’bond energy’ is comparable to that of hydrogen in water being 276 kJ/mole.

3. Verify Eqs. (2.4), (2.5), (2.15), (2.16).
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4. The size distribution xn = xn
1e−(n−1)w/kT presumes ’ideal’ behavior of monomers

and aggregates. Argue that non-ideal behavior of monomers leads to larger devia-
tions from the ’ideal’ distribution as compared to aggregates. Discuss a ’way out’
if strong deviations from ideal behavior occur.
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Chapter 3

Self-assembly of complex
structures: virus capsids

3.1 Introduction

This chapter mainly consists of a copy of a paper (appended) on the self-assembly
of viruses and includes a concise reading guide. This paper, referred to as ’I’, made
it into a standard biophysics textbook: R. Philips et al., Physical Biology of the
Cell, Garland Science (2008).

3.2 Reading guide to Equilibrium assembly of empty HBV
capsid

Reference I: W.K. Kegel and P. van der Schoot, Bioph. J. 86, 3905 - 3913, (2004).
(see appendix)

Here the interactions between the building blocks of spherical virus capsids, the
capsomers, are assumed to be dominated by hydrophobic interactions and electro-
static interactions. The total interaction free energy is the sum of those two. This
idea is not too remote from DLVO theory, where the competing terms for colloidal
aggregation are van der Waals interactions (drives coagulation) and electrostatic in-
teractions (opposing coagulation by providing a barrier). In the situation for viruses,
hydrophobic interactions provide the driving force for assembly, while electrostatic
interactions weaken the driving force. Assembly - disassembly can in principle be
regulated by the factors influencing the magnitudes of the hydrophobic and elec-
trostatic forces. These factors are temperature, that couples to the hydrophobic
interactions, pH, influencing the charge density and thereby the strength of the
electrostatic interactions, and ionic strength, that decreases the Debye screening
length and with that the magnitude of the electrostatic interactions as well. The
hydrophobic interactions and the associated temperature dependence is discussed
around eqs. (1) and (8) of the paper, as well as in the Problem (1) below. The
electrostatics part is discussed around Eqs. (3) and (4) in I and in detail in Prob-
lem (2) below. As a next step, viruses are assumes to be huge micelles to which
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Chapter 1 applies. The ’equilibrium constant’, Eq. (11, 12) in I, that describes the
equilibrium between capsomer proteins and complete virus capsids, is related to the
cmc as given by Eq. (1.11).
Note that in some cases different symbols have been used in I as compared to the
previous chapters in the handout. For example in I the aggregation number is de-
fined by q rather than n, and G defines (μ0

n − nμ0
1). Please carefully check the

definitions in I.

3.3 Problems

1. A simple way of looking at so-called hydrophobic interactions is by considering
objects with hydrophobic surfaces that float around in water. The surface tension
between the objects and water is γ.

a. Prove that if two of these objects stick, the gain in free energy will be w ≈
−2γσoverlap. Here, σoverlap is the contact area between the objects, i.e., the surface
area shielded from water.

b. It is often found that the strength of the hydrophobic interactions increases with
temperature, i.e., w gets more negative upon increasing temperature. Assuming
that σoverlap is independent of temperature, identify the thermodynamic property of
the surface that is responsible for this remarkable temperature dependence. Hint:
expand γ around a reference temperature.

2. In this exercise the electrostatic contribution Eq. (4) in I is derived stepwise
from Eq. (3) in I. Fig. 3.1 serves as a possible aid in setting up a coordinate system.

Figure 3.1: Sketch relating the charge separation r and surface element dS to polar coordinates
R and θ

a. Write the position of the charges in Eq. (3) in I as a scalar quantity and in polar
coordinates, in other words show that r =| �r − �r′ |= 2Rsin(θ/2), where R is the
radius of the virus capsid.
b. Argue that the total electrostatic interaction energy is given by

GC = kTq
2

∫
S

ρz2λB

r
e−κrdS. Here ρ = q

4πR2 is the surface density of capsomers, z the

19

- 88 -



number of net unit charges on a capsomer and dS = 2πrdr the area of an infinites-
imal surface element.
c. Write dS in polar coordinates and perform the integration. Make use of the ’stan-
dard’ integral (which can be verified by partial integration)

∫ π

0
cos(θ/2)e−2asin(θ/2)dθ

= 1−e−2a

a
. Show that, making use of the assumptions discussed in I that the result is

indeed equal to Eq. (4) in I. If you miss a factor two, have a look at the integral again.

3. Estimate the cmc of the HBV capsid at the lowest and highest ionic strength at
25o C from Fig. 1 in I.
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Chapter 4

Microemulsions

4.1 Introduction

Microemulsions are thermodynamically stable mixtures of oil and water. The sta-
bility is due to the presence of fairly large amounts (several %) of surfactants.
Microemulsions are often transparent, but scattering of light, X-rays, etc. indicate
that oil and water are not molecularly dispersed, but are more coarsely mixed. By
coarse in this case we mean that oil and water are present in domains of a few to
over a hundred nanometers in size. A schematic view of microemulsion droplets is
provided by Fig. 4.1.

Figure 4.1: Schematic view of water droplets in oil (left) and oil droplets in water (right). In this
case two types of surfactant molecules adsorb at the oil-water interface.

Microemulsions contain huge oil-water interfacial areas and to allow stability
the interfacial tension must be quite low, usually << 1mN/m. In that case the
entropy of mixing, although small on account of the coarseness of the mixture, may
be large enough to compensate the positive interfacial free energy and to give the
microemulsion a free energy lower than that of the unmixed components. A rough
estimate of the value of the interfacial tension, γ where spontaneous emulsification
occurs is by the condition 4πR2γ = kT , in other words the work to create a drop
of radius R should be on the order of the thermal energy kT .

Microemulsions can have various textures, such as oil droplets in water, water
droplets in oil, (random) bicontinuous mixtures, ordered droplets or lamellar mix-
tures with a wide range of phase equilibria amongst them and with excess oil and/or
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water phases. This great variety is governed by variations in the composition of the
whole system and in the structure of the interfacial layers. The situation for rela-
tively small surfactant concentrations and equal volumes of oil and water is shown
in Fig. 4.2, showing the transition from Winsor I (oil droplets in water coexisting
with excess oil) to Winsor III (bicontinuous structure with excess water and oil
phases) to Winsor II (water droplets in oil with excess water).

Qualitatively the thermodynamics of microemulsions is well understood as the
interplay between a small interfacial free energy and a small entropy of mixing.
However, because of these contributions being small, other small effects, such as
the influence of curvature on the interfacial tension, and the influence of fluctua-
tions, become important. In the following we will derive the generalized Laplace
equation to illustrate the consequence of curvature contributions to the (interfacial)
free energy. Subsequently, we introduce the curvature free energy put forward by
Helfrich. The curvature free energy is an important conceptual tool in understand-
ing the physics of (surfactant) monolayers and membranes. It will be used here to
explain the structural transitions of microemulsions as a function of temperature
and ionic strength. In the last part, we will estimate the value of the interfacial
tension of the flat interface between microemulsions and excess phase (see Fig. 4.2)
and compare it to the situation without surfactant.

4.2 Experimental facts

The situation for relatively small surfactant concentrations and equal volumes of oil
and water is shown in Fig. 4.2, showing the transition from Winsor I (oil droplets in
water coexisting with excess oil) to Winsor III (bicontinuous structure with excess
water and oil phases) to Winsor II (water droplets in oil with excess water).

Figure 4.2: A: Oil droplets in water with excess oil (Winsor I); (B) bicontinuous with excess oil
and water (Winsor III); (C) water droplets in oil with excess water (Winsor II). From A to C the
ionic strength in the system is being increased

At higher surfactant concentrations, the excess water and oil phases are taken
up by the microemulsion phase, ultimately leading to single-phase microemulsions.
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Upon further increase of surfactant concentrations, excluded volume effects become
important, leading to phase transitions to lamellar liquid crystals. The situation
for non-ionic surfactants is sketched in Fig. 4.3.

Figure 4.3: Experimental (Top) phase diagram of non-ionic surfactant at equal volumes of oil and
water and varying temperature (veritical axis) and surfactant concentration (horizontal axis). An
artistic impression of the situation has been shown at the bottom.

4.3 Generalized Laplace equation

Consider the formation of a liquid drop of radius R. It (hopefully) is well-known
that inside the drop the pressure is higher than it is outside. The pressure difference,
Δp, is referred to as the laplace pressure and is given by Δp = 2γ/R, with γ the
interfacial tension between the drop and its environment (e.g., gas, another liquid).

Now suppose interfacial tension depends on curvature, that is, the droplet radius.
Mechanical equilibrium requires that the pressure difference Δp times an infinites-
imal change in volume of the drop, dV , equals the change in interacial free energy
d(γA), with A the interfacial area of the drop. In other words, ΔpdV = d(γA)
= γdA + Adγ. For a spherical drop this leads to

Δp =
2γ

R
− 2c

R2
(4.1)

In this equation, the bending moment

c =
∂γ

∂2/R
(4.2)

Eqs 4.1 is the generalized Laplace equation. Obviously it reduces to the classical
Laplace equation if the absolute value of the second term is much smaller than the

23

- 92 -



first one, being the case if c/R << γ, implying small bending moment and/or large
value of R.

4.4 Curvature free energy

Helfrich [4] deduced the free energy associated with deformations around a flat
surface up to second order in the translational and rotational invariants. The result
is

Fc =

∫
A

[
κ

2
(c1 + c2 − 2c0)

2 + κ̄c1c2] dA. (4.3)

In this eq., c1 and c2 are the principle curvatures, c0 the preferred curvature, κ
the bending elastic modulus, and κ̄ the modulus associated with Gaussian curva-
ture. The last quantity often is referred to as ’Gaussian bending (elastic) modulus’.
For a sphere of radius R we have c1 = c2 = 1/R.

Eq. 4.3 often is written in terms of mean curvature H = (c1+c2)/2 and Gaussian
curvature K = c1c2, i.e.,

Fc =

∫
A

[2κ(H − c0)
2 + κ̄K] dA. (4.4)

The first term proportional to κ in Eqs. 4.3, 4.4 is analogous to the expression
of the potential energy of a harmonic spring. The second term is a topological
invariant. Without the second term, it can easly be verified that the curvature free
energy of, e.g., spheres and cylinders is degenerate. The Gauss-Bonnet theorem
states that ∫

A

K dA = 4π(1 − g) (4.5)

In this eq., g is the genus of a surface being defined by the number of holes. A
sphere has g = 0, a cylinder and torus have g = 1, while torus-like objects with N
holes have g = N .

The Gaussian modulus κ̄ can be smaller or larger than zero. Combination of the
result Eq. 4.5 with Eq. 4.4 reveals that the sign of κ̄ reflects the tendency of the
surface to form certain topologies: if κ̄ < 0, the second term in Eq. 4.4 is minimal if
g is as small as possible, which corresponds to spheres. On the other hand, if κ̄ > 0,
large g will minimize the second term. Of course the second term competes with
the first one in the curvature energy, and also with the configurational entropy of
the objects.

Let’s consider the situation where κ, κ̄ >> kT , so that the role of configurational
entropy is negligible, and c0 = 0. If κ̄ = 0, Eq. 4.4 implies that the curvature free
energy of a flat object with c1 = c2 = 0 equals the curvature free energy of objects
where at every point in space c1 = −c2. The last type of object has been sketched
in Fig. 4.4. It is referred to as the ’Schwartz minimal surface’ or the ’plumbers
nightmare’.
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Figure 4.4: Schwartz minimal surface of ’plumbers nightmare’. The surface can be surfactant
monolayers separating oil and water, or bilayers with water on both sides of the surface.

Now under the conditions described above, it is the sign of κ̄ that determines
whether plates are stable or the ’plumbers nightmare’. This is relevant for the
structure of the ’bicontinuous’ microemulsion, i.e., the middle phase in Fig. 4.2B
and schematically in the ’head of the fish’ in Fig. 4.3.

Away from the ’head of the fish’, at small surfactant concentrations, oil droplets
in water are stable or water droplets in oil, depending whether temperature is in-
creased or decreased. It is generally accepted that in nonionic surfactants, preferred
curvature depends on temperature. The microscopic reason is that temperature in-
fluences the level of hydration of the surfactant molecules on the water sides, thereby
influencing the sign and absolute value of preferred curvature.

In case of ionic surfactants, the value (and sign) of c0 is determined by the bal-
ance between excluded volume interactions between the surfactant chains on the oil
side of the surfactant layer, and the electrostatic (screened- Coulomb) interactions
between the charged ’heads’ of the surfactant molecules at the water side of the
surfactant monolayers. By increasing the ionic strength, as in Fig. 4.2, preferred
curvature will be more and more towards the water side of the oil-water interface.
The reason is that ions screen the electrostatic repulsion between the surfactant
headgroups. The values of the bending elastic moduli depend on surfactant chain-
length, charge density and ionic strength.

4.5 A microscopic model for curvature elasticity: incom-

pressible spring model

In this section a simple microscopic model will be analyzed that will allow some
physical insight into the meaning of the curvature elastic moduli. This part is based
on chapter 6 in [5]. We model the monolayer of adsorbed surfactant molecules
(Fig. 4.1) as springs with spring constant ks and equilibrium spring length �s. The
actual stressed or compressed spring length is denoted by �. The springs are sup-
posed to be incompressible and assume a fixed area per chain at the interface equal
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to Σ0. In reality, this value is determined by properties of the polar head group.
The constant value of Σ0 implies that interactions that act on the polar head group
are much stronger than the chain stretching energies. The (harmonic) energy per
chain is

f =
ks

2
(� − �s)

2, (4.6)

and the incompressibility of the chains implies a constant volume of the surfac-
tant layer. In case of a flat layer we have Σ0� = v0, with v0 the molecular volume
(volume occupied per chain). In case of a curved layer, it can be shown that

v0 = Σ0�(1 + �H +
�2

3
K), (4.7)

We now impose the incompressibility condition: put Eq. 4.7 equal to the volume
per chain in a flat layer, i.e., v0 = Σ0�0, with �0 the layer thickness of a flat layer.
Solving for � and expanding to third order in �0 leads to

� = �0 − �2
0H + 2�3

0H
2 − l30

3
K, (4.8)

Note that in general, in the flat monolayer the chain stretching energy Eq. 4.6
is not minimal as �0 
= �s. Thus, in general, the flat layer will have a preferred
curvature related to the imposed �0 and the preferred �s. Plugging Eq. 4.8 into
Eq. 4.6 and keeping the lowest order terms leads to

f =
ks�

4
0

2
[(H − c0)

2 − 2c0�0

3
K]. (4.9)

In this Eq., we defined

c0 =
1

�0
(1 − �s

�0
) =

v0 − �sΣ0

Σ0�2
0

. (4.10)

Eq. 4.9 is equivalent to the Helfrich form of the curvature free energy, Eq. 4.4.
The bending modulus (the coefficient of H2 in eq. 4.9) and the Gaussian modulus
(the coefficient of K) both increase as a power of the chain length. Obviously, the
spring constant ks also depends on the equilibrium spring length �s. In polymers,
and in the limit of small curvatures we have ks ∼ 1/�s ≈ 1/�0. In that case the
bending modulus κ ∼ �3

s. The result that the bending modulus varies with the cube
of the thickness also is characteristic for a bent solid elastic plate, see the textbook
of Landau and Lifshitz on elasticity theory, ref. [6].

There is a simple physical interpretation of c0 that emerges from the model,
eq. 4.10. Any deviation of that quantity from zero arises because of a mismatch of
the preferred length �s and the imposed lenght �0. The imposed length, in turn,
is set by the imposed head area Σ0 as compared to the ’optimal’ area v0/�s. If
Σ0 > v0/�s, preferred curvature is negative and the system prefers to pack with
the heads on the ’outside’. The free energy in that case is lower than that of the
flat interface: the system accomodates part of the strain induced by the mismatch
between the heads and the chains by bending.
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4.6 Interfacial tension between microemulsion- and excess

phase

In this section we calculate the interfacial tension, γ∞, of the macroscopic interface
between a droplet-type microemulsion and excess oil or water phase, see Fig. 4.2.
Obviously, that quantity is related to the tension of the droplet (of radius R) in-
terface, γR. It should also contain the work related to ’un-bending’ the drop into a
flat layer. In particular,

γ∞ = γR +

∫ 0

2/R

∂γ

∂(2/R)
d(2/R). (4.11)

Combination of Eqs. 4.2 and 4.3 leads to

∂γ

∂(2/R)
= c =

∂2Fc

∂A∂(2/R)
=

1

R
(2κ + κ̄) − 2κc0. (4.12)

The radius that minimizes the bending energy is

R = R0 (1 +
κ̄

2κ
), (4.13)

with R0 = 1/c0. Here it has been assumed that curvature contributions dominate
the total free energy of the system. That only is true if (2κ+κ̄) >> kT . In practice,
the values of the bending moduli are on the order of kT , and entropy effects are
significant. In case of dilute systems, this leads to contibutions to the free energy
that are logarithmic in the number density of the microemulsion droplet. For a
discussion see Ref. [7] and references therein. However, these contributions only
lead to corrections to eq. 4.13 (and the ones that follow) that are logarithmic in the
number density of the microemulsion droplets.

Carrying out the intergration eq. 4.11 and using eqs. 4.12, 4.13 leads to

γ∞ = γR +
2κ

R0R
= γR +

2κ + κ̄

R2
(4.14)

In general, it is expected that γ∞ >> γR so that γ∞ ∼ R−2. This is indeed
what is to be expected, see the brief discussion on the condition for spontaneous
emulsification in the Introduction. In case of liquid-gas interfaces, the interfacial
tension γ ∼ 1/d2 with d a molecular diameter. Interestingly, for microemulsion
the size of the emulsified objects sets the interfacial tension.

4.7 Problems

1. Show that for a sphere of radius R, the curvature free energy reads 4π(2κ+ κ̄)−
16πκc0R + 8πκc2

0R
2.

2. Prove Eq. 4.13.

3. Verify Eq. 4.5 for a sphere and for a cylinder.
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4. What sign of κ̄ stabilizes the ’plumbers nightmare’, Fig. 4.4?

5. Verify Eq. 4.7 by considering the volumes of a spherical and a cylindrical layer.

6. Derive Eq. 4.8 for a sphere of radius R. First verify that the (real) root of the in-
compressibility condition on Eq. 4.7 for a sphere is given by � → R [(3�0/R+1)1/3−1]
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Chapter 6

Appendix: copy of virus capsid
paper Ref I
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in Hepatitis B Virus Capsid Assembly
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ABSTRACT Recent experiments show that, in the range from ;15 to 45�C, an increase in the temperature promotes the
spontaneous assembly into capsids of the Escherichia coli-expressed coat proteins of hepatitis B virus. Within that temperature
interval, an increase in ionic strength up to five times that of standard physiological conditions also acts to promote capsid
assembly. To explain both observations we propose an interaction of mean force between the protein subunits that is the sum of
an attractive hydrophobic interaction, driving the self-assembly, and a repulsive electrostatic interaction, opposing the self-
assembly. We find that the binding strength of the capsid subunits increases with temperature virtually independently of the ionic
strength, and that, at fixed temperature, the binding strength increases with the square root of ionic strength. Both predictions are
in quantitative agreement with experiment. We point out the similarities of capsid assembly in general and the micellization of
surfactants. Finally we make plausible that electrostatic repulsion between the native core subunits of a large class of virus
suppresses the formation in vivo of empty virus capsids, that is, without the presence of the charge-neutralizing nucleic acid.

INTRODUCTION

For many kinds of virus, the self-assembly of the empty virus

core shells (or capsids) from their protein subunits resembles

that of surfactant micelles (Debye, 1949), in the sense that

one either finds only the protein subunits present in the

aqueous solution, or the protein subunits in equilibrium with

the fully assembled capsids (Tanford, 1980). For both

capsids and micelles, the transition between the assembled

and disassembled states is a fairly sharp function of the

concentration of dispersed material (see e.g., Bruinsma et al.,

2003; Caspar, 1963, 1980; Zlotnick, 1994).

Building on the idea that capsid assembly is subject to the

laws of equilibrium thermodynamics, Ceres and Zlotnick

(2002) recently calculated the free energy of interaction

between Escherichia coli-expressed hepatitis B virus coat

proteins assembled into predominantly T¼ 4 type capsids by

fitting an association equilibrium model to their experimental

data. These coat proteins, denoted Cp1492, form capsids in-

distinguishable from the native HBcAg core protein subunits

(Zlotnick et al., 1996). At near neutral pH, they found the

strength of the attractive interaction between the homodi-

meric Cp1492 proteins to be quite modest, of the order of

a few times the thermal energy per subunit contact. The

precise value of the free energy of interaction was found to

increase with increasing temperature and with increasing

ionic strength, at least within the ranges probed (Ceres and

Zlotnick, 2002). The strengthening of the attractive inter-

action between the subunits with increasing temperature

indicates that the in vitro assembly of hepatitis B virus capsids

is driven by hydrophobic interactions, which are entropic

in nature (Tanford, 1980). To rationalize the effect of the ionic

strength, Ceres and Zlotnick (2002) conjecture that the sub-

units more easily adopt an assembly active conformation at

elevated ionic strengths (see also Caspar, 1980).

In this work, we offer an alternative interpretation of the

observations of Ceres and Zlotnick, amenable to experimen-

tal verification. The basic tenet of our proposal is that the

attractive hydrophobic interactions that seem to promote the

self-assembly of hepatitis B virus capsids must be counter-

acted by repulsive electrostatic interactions between the

subunits. The latter can be weakened by the addition of inert

salt. If we translate this presumption into a coarse-grained

potential of mean force acting between the subunits, modeled

as structureless, quasimacroscopic objects, we find that it

becomes possible to quantitatively describe the scaling of the

equilibrium constant of the hepatitis B virus capsid assembly

with the temperature, as well as that with the ionic strength.

The treatment we adopt allows us to extract information on

the properties of the hydrophobic surfaces buried upon

assembly of the capsid as well as on the net charge of the

water-exposed surface from the available experimental data.

The concept of a potential of mean force that is the sum of

attractive and repulsive contributions has proven quite useful

in the context of the stability of charged colloids (Israel-

achvili, 1992; Verwey and Overbeek, 1999), including that

of proteins (Broide et al., 1996). For the case of virus coat

protein subunits, however, the dominant attractive inter-

actions seem to arise from hydrophobic interactions between

parts of the proteins, rather than from the van der Waals

interactions that destabilize colloidal dispersions (Curtis

et al., 2002; Verwey and Overbeek, 1999). In fact, as already

advertised, there seems to be a closer analogy between the

assembly of virus capsids and the micellization of surfactant
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molecules in aqueous solutions than that with the demixing

of colloidal particles. Surfactants and capsid subunits both

unite polar and less polar moieties within a single molecule,

and the phenomena of micellization and capsid assembly

both presumably involve the microphase separation of the

apolar parts of the molecules due to hydrophobic interactions

(Caspar, 1980; Ceres and Zlotnick, 2002; Lauffer, 1966). It

might be useful to mention in this context that the self-

assembly of ionic amphiphiles can be promoted by the ad-

dition of inert ions that screen the electrostatic repulsion

between the charged headgroups (Gunnarsson et al., 1980;

Tanford, 1980).

The remainder of this article is set up as follows. First, we

briefly review the kinds of interaction that could be involved

in the hepatitis B virus capsid assembly, and eliminate those

that are in all likelihood either too weak or that produce

a temperature or ionic strength dependence at odds with the

observations of Ceres and Zlotnick. For the driving force we

presume that these are well described by a phenomenological

hydrophobic interaction potential valid for pairs of macro-

scopic hydrophobic surfaces (Israelachvili, 1992). We make

plausible that if there is a net charge present on the water-

exposed portions of the capsid proteins, this produces

a repulsive interaction inversely proportional to the root of

the ionic strength irrespective of the precise details of the

local geometry of the capsid, provided its radius is much

larger than the subunit size. By analyzing the linear tem-

perature dependence of the resulting net interaction strength,

we find that the leading-order term can be associated with the

excess surface enthalpy of the hydrophobic interfaces be-

tween subunits buried in the capsid.

Next, we apply our findings to the thermodynamics of the

association equilibrium between the free dimer subunits and

the fully formed capsids, and formulate the connection bet-

ween the equilibrium constant and the free energy of subunit

assembly. We fit our expression for the latter to the ex-

perimental data taken from Ceres and Zlotnick (2002) and

find, within the bounds of experimental uncertainty, quan-

titative agreement. The values of the fitting parameters ex-

tracted are the effective surface charge density of the water-

exposed surface area of the capsid, and the excess thermo-

dynamic potentials associated with the hydrophobic faces of

the capsid proteins that are shielded from the aqueous solvent

upon aggregation. In analogywith the critical micelle concen-

tration, we introduce the concept of a critical capsid concen-

tration and show that hepatitis B capsid assembly seems to

obey a universal law ofmass action. Finally, we end the article

with an outline of our main conclusions and with a discussion

where we make a testable prediction as to the pH dependence

of the equilibrium constant.

FREE ENERGY OF ASSOCIATION

There are many types of interaction that might be involved in

the stabilization of hepatitis B virus capsid assemblies, as in

fact there are in any type of supramolecular polymer (Ciferri,

2000). Obvious ones are Coulomb interactions between op-

positely charged moieties, hydrogen bonds, van der Waals

interactions (including specific ion effects, see e.g., Ninham

and Yaminsky, 1997), and hydrophobic interactions between

apolar patches on the surfaces of the proteins. Of these, only

the hydrophobic interactions become potentially stronger

with increasing temperature. We furthermore note that all the

others are weakened by the addition of inert 1:1 salt

(Tanford, 1980). For hepatitis B capsids, the buried contact

area between the assembled capsid proteins appears to be

largely hydrophobic (Ceres and Zlotnick, 2002). Any

putative salt bridges or other types of electrostatic interaction

(even at high salt concentration) are unlikely to contribute

significantly to the protein binding energy, because the

hydrophobic character of the contact area leads to a signif-

icant loss of solvation of the groups involved if removed

from the aqueous environment in the aggregation process

(vanVlijmen et al., 1998). Further support for the importance

of hydrophobic interactions in capsid assembly comes from

the observation that capsid formation is strongly inhibited by

bis-ANS (5, 5#-bis[8-(phenylamino)-1-naphtalenesulfonate])

(Zlotnick et al., 2002). This molecule is known to bind

specifically to hydrophobic surface patches.

We are led to conclude that hydrophobic interactions must

indeed be the dominant driving force toward the assembly of

hepatitis B virus capsids, as was in fact also concluded by

Ceres and Zlotnick (2002). A phenomenological potential

describing hydrophobic interactions between two identical

apolar surfaces in water is (Israelachvili, 1992),

VH � �2gA expð�D=lÞ; (1)

where g denotes the surface tension between hydrophobic

material and aqueous phase, A the contact area, D the

separation of the surfaces, and l a decay length of the order

of a few nanometers provided D , l (at larger separations

a longer decay length with a different amplitude takes over;

Israelachvili, 1992). Both the surface tension g and the

length l depend, if only in principle, upon the salt con-

centration (Toikka et al., 1996). At contact, D should be on

the atomic scale, so D/l � 1, and the issue of l being ionic

strength-dependent or not becomes irrelevant.

Not quite so irrelevant is the ionic strength-dependence of

the surface tension g. As is well known, the surface tension

between water and an apolar medium of low dielectric con-

stant increases with increasing salt concentration. This is

caused by a surface depletion effect, induced by the inter-

action of the ions with their own image charges (Onsager

and Samaras, 1934). From the recent theory of Levin (2000)

we deduce that the surface tension increment due to

the presence of a 1:1 electrolyte of molar concentration cs
. 0.1 M must at room temperature obey g–g(0) � 0.06 1

1.2 cS in units of mN/m. Here, g(0) denotes the bare surface

3906 Kegel and van der Schoot
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tension in the absence of salt. Measurements of the surface

tension of water against air do indeed give a linear

dependence on the ionic strength, albeit not quite in

agreement with the theoretical prediction, with g–g(0) �
1.6 cS again in units of mN/m for salt concentrations up to

one molar (Matubayasi et al., 1999). This suggests that for cS
, 1 M, the surface tension increment due to the presence of

salt is at most 1.6 mN/m and probably less than that because

the effective dielectric constant of the interior of the proteins

is likely to be higher than that of air. Perhaps more

importantly, corrections due to the finite size of the proteins

should fairly strongly diminish the depletion effect and

therefore also the surface-tension increment (Messina,

2002). For this reason, we presume that we can ignore the

salting-out effect that the electrolyte may have on the dimer

subunits through the surface-tension increment it induces.

This assumption may fail for salt concentration in excess of

;1 M. We finally note in this context that it was shown by

Ceres and Zlotnick (2002) that the electrolyte is unlikely to

impact upon the self-assembly by merely altering the activity

of bulk water. If this were the case, the addition of nonionic

solutes such as sucrose should have a comparable effect.

However, adding sucrose at concentrations in excess of 1 M

was incapable of inducing capsid formation (Ceres and

Zlotnick, 2002).

In the light of these considerations, we write for the free

energy of binding upon assembly of a complete aggregate

GH � �nqgA; (2)

with n the mean number of quasiequivalent hydrophobic

contacts of a subunit in the capsid, and q � 1 the number of

subunits per capsid. Note that of the quantities in Eq. 2, both

A and g � g(0) may be a function of the temperature. In the

following, we ignore any temperature dependence of the

contact area.

If the salting-out of the hydrophobic surfaces cannot

account for the observed influence of the ionic strength on

the stability of the hepatitis B capsids, the question is what

does? The answer must, in our view, be that the protein

subunits carry a net charge at near neutral pH. Note that the

presence of charges stabilizes the proteins, and ipso facto

also the capsids, against macroscopic phase separation (i.e.,

demixing). By the same token, however, the charges on the

subunits also destabilize the micro-phase-separated state that

the capsids represent, because it makes the subunits repel

each other. Consequently, hepatitis B capsid assembly must

be enhanced with increasing ionic strength because the

presence of salt screens the Coulomb interactions between

charges that are separated by more than roughly a Debye

screening length. So, we put forward not that the attractive

interactions between the subunits are enhanced by the pre-

sence of salt, as was suggested in Ceres and Zlotnick (2002),

but that the repulsive interactions are diminished.

The problem now is of course how to calculate the

effective electrostatic repulsion between the subunits without

actually having to explicitly deal with the complexities of the

T-shaped structure of the subunits (Conway et al., 1997), as

well as that of the fully formed capsid, which is covered with

four types of perforating hole ranging in width from ;1 to 3

nm (Zlotnick et al., 1996). Fortunately, we do not need to

because the mean capsid diameter of;30 nm is significantly

greater than the various length scales of the structure on it.

For example, the maximum shell thickness is ;5 nm at the

location of the spikes on the capsids, but it is much smaller

than that on most of the shell’s surface. This allows us to

coarse-grain the charge distribution on the surface of the

capsid. We note that the inside and outside surface of the

capsid are connected through open passages so the actual

distribution of the net charge may in fact be three-di-

mensional.

Within a Debye-Hückel approximation, the potential of

mean force VC acting between two charges located at

positions r~and r~# on the water-exposed surface of the virus

capsid can be written (Verwey and Overbeek, 1999) as

VC � kBT
lB

jr~� r~#j expð�kjr~� r~#jÞ; (3)

where kB denotes Boltzmann’s constant, T the absolute

temperature, lB ¼ e2/4pe0erkBT the Bjerrum length, and

k�1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8plBrS

p
the Debye screening length, with e the

unit charge, e0 the permittivity of vacuum, er the relative

permittivity of the medium (water), and rS the number

density of the 1:1 electrolyte (in units of m�3). Obviously, cS
¼ 10�3 rS/NA with NA Avogadro’s number. At room tem-

perature, lB � 0.7 nm and k�1 � 0:3=
ffiffiffiffi
cs

p
nm. To explicitly

calculate the (nonlocal) free energy GC associated with the

Coulomb interaction between the subunits that make up the

capsid, we need to perform a summation of Eq. 3 over all

pairs of charges on the capsid but exclude those present on

the same protein subunit. The calculation is greatly fa-

cilitated if we presume that the (net) charge is uniformly

distributed over a spherical shell of mean radius R and

thickness d � R. Let there be z (net) unit charges on each of

the q-dimer subunits. Straightforward algebra then gives

GC � 1
1

4
kBTq

2
z
2
R
�2
lBk

�1
(4)

to leading order in d/R � 1, and provided kR . 1. On

account of the large size of the hepatitis B virus capsids, this

latter condition is met when cS . 4 mM. Notice the strong

impact of the ionic strength on GC through the 1=
ffiffiffiffiffi
cS

p
-

dependence of the Debye length k�1. It is in our view

precisely this term that makes the self-assembly of hepatitis

B virus capsids so sensitive to the ionic strength. Quite

similar expressions have been derived in the context of the
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self-assembly of charged micelles (Gunnarsson et al., 1980;

Tanford, 1980), and in that of end-charged dendrimers

(Lyulin et al., 2003).

It is of interest to note that the above expression appro-

ximately applies even if kd . 1, and one is probing the

detailed structure of the capsid ignored in our calculation.

That this must be so can be made plausible as follows. At

high salt concentration, one would only expect charged

patches on neighboring subunits to interact significantly.

Presuming that such patches can be represented by more or

less flat, parallel surfaces, we have for the potential of mean

force (Israelachvili, 1992)

VC � 1 8pkBTA#s
2
lBk

�1
expð�kDÞ; (5)

with A# the surface area of interaction, s the net surface

density of charges, and D,
ffiffiffiffiffi
A#

p
again the separation of the

surfaces. In analogy to our analysis of the hydrophobic

interaction, we thus write

GC � 1 4pkBTn#qA#s
2
lBk

�1
; (6)

at least for kD � 1. Because the patches involved in the

electrostatic interactions are unlikely to be the same ones as

those that interact through hydrophobic interactions, the

areas A and A# as well as the (effective) number of contact

neighbors n and n# need not be identical. It is easy to verify

that, apart for a (geometrical) constant, Eqs. 6 and 4 are

indeed identical, for s ¼ z/n#A# and the total surface area

involved in Coulomb interactions may be defined as n#qA#.
On the basis of the above considerations, we propose the

following Ansatz for the free energy of interaction associated

with the assembly of a complete hepatitis B virus capsid,

G � �AHg1ACkBTs
2
lBk

�1
; (7)

which we expect to apply for concentrations of salt below,

say, 1 M. In Eq. 7, we recognize in the first term the

hydrophobic attraction that drives the self-assembly of

capsid, proportional to the total hydrophobic area AH �
2nqA buried in the formation of the capsid and shielded from

contact with the solvent. Counteracting the effects of the

hydrophobic attraction is an electrostatic repulsion pro-

portional to the exposed charged surface area, so AC� n#qA#
if we absorb an uninteresting dimensionless geometrical

constant in the effective area AC. Our approach is not

identical to but is similar in spirit to that of Odijk (1994),

who studied the impact of hydrophobic interactions on the

second and third virial coefficient of charged, rod-like

biopolymers.

If we perform a Taylor expansion of g around an arbitrary

reference temperature, T0, we obtain

gðTÞ ¼ gðT0Þ1
@g

@T

� �
T¼T0

3 ðT � T0Þ

1 . . . � gðT0Þ � sðT0ÞðT � T0Þ; (8)

for absolute temperatures T that are not too far removed from

T0, i.e., for jT�T0j� T0. The quantity s(T0) [ �(@g/@T )T0
is the (bare) surface excess entropy of the hydrophobic surface

in contact with water at the temperature T ¼ T0. It turns out
that the quantity s is less than 0 for a whole range of hydro-

phobic interfaces over a fairly large temperature domain,

implying that the hydrophobic attraction between the sub-

units should indeed increase with increasing temperature, as

expected (Claesson et al., 1986; Israelachvili, 1992; Villers

and Platten, 1988). The repulsive, Coulomb part of Eq. 7

increases much more slowly with temperature, as we shall

see in the next section. As a consequence, the dependence

of the strength of the interactions between subunits on

temperature is fully determined by the value of s(T0).

THE EQUILIBRIUM CONSTANT

The hepatitis B virus capsid of interest consists of 120 dimer

subunits making up a spherical capsid shell of icosahedral

symmetry and a triangulation number T ¼ 4. (Only a small

fraction of the capsids have a triangulation number T ¼ 3

(Ceres and Zlotnick, 2002).) Let the dimers be denoted by A1

and the fully formed capsid by Aq, where q ¼ 120 for the

hepatitis B capsid. To an excellent approximation, the self-

assembly of the capsids can be described by an equilibrium

reaction qA1 4 Aq, because partially formed capsids are

only present in exceedingly low relative amounts (Ceres and

Zlotnick, 2002; Zlotnick, 1994). Thermodynamic equilib-

rium demands that qm1 ¼ mq, with m1 chemical potential of

the dimers and mq that of the complete capsids. Assuming the

dispersion to be dilute, the chemical potential of each com-

ponent i can be written as mi ¼ m0
i 1 kBT lnXi, where m0

i

denotes a standard chemical potential and Xi the mole

fraction of component i. In the dilute limit, we may appro-

ximate Xi � ci/55.6 with ci the concentration of component i
in M. (The molarity of pure water at room temperature is

close to 55.6 M.) For the equilibrium concentration of

capsids, we thus obtain

Xq ¼ gqX
q

1 expð�Dm=kBTÞ; (9)

with gq the number of distinguishable ways in which the

capsid can be realized (the degeneracy), and

Dm ¼ m
0

q � qm
0

1 � G: (10)

Due to the highly ordered, crystal-like structure of the capsid

one would sensibly expect gq to be equal to unity (Zlotnick,

1994). The second, approximate equality in Eq. 10,
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involving the binding free energy G, holds if it greatly

exceeds a thermal energy per subunit; hence, if G � q kBT.
In that case, the effective free energy change due to the

bonding into the capsid structure predominates, and we need

not consider potential contributions from large-scale elastic

deformation or breathing modes (Morse and Milner, 1995),

nor from a possible conformational change of the protein

dimers upon assembly. There appears to be little evidence for

the latter (Wingfield et al., 1995), albeit that it cannot be

ruled out altogether (Ceres and Zlotnick, 2002).

We stress that there should be no quantum-mechanical

contributions in Eqs. 9 and 10 arising from rotational or any

other degrees of freedom, including those associated with the

so-called cratic entropy, for in the coarse-grained description
the solvent degrees of freedom have effectively been in-

tegrated out, as have those of the counterions. This means

that the smallest length is set by the solvent size, not by the

thermal wavelength. (For a discussion of this point, see e.g.,

Reiss et al., 1996.)

The dimensionless equilibrium constant, K, is related to

the above quantities by

lnK ¼ ln
Xq

X
q

1

� �G=kBT; (11)

and to the dimension-bearing equilibrium constant Kcapsid,

defined in Ceres and Zlotnick (2002), according to ln K �
lnKcapsid1 (q–1)ln 55.6¼ lnKcapsid1 478.2. Inserting Eq. 7

into Eq. 11, and expanding it to linear order in the tem-

perature relative to a reference temperature T0, we obtain

lnK � lnKðT0Þ1
@ lnK

@ ln T

� �
T¼T0

3
T

T0

� 1

� �
; (12)

with

lnKðT0Þ ¼
AHg

kBT0

� ACs
2
lBk

�1
(13)

and

@ lnK

@ ln T

� �
T¼T0

¼ �AHh

kBT0

1aACs
2
lBk

�1
(14)

both evaluated at T ¼ T0. Here, we have for simplicity

presumed that the interactions areas, AC and AH, as well as

the surface charge density, s, are invariants of the

temperature. (This may be valid over a limited range of

conditionsonly.)Thequantitya[½1½(@ lner/@ lnT)T ¼ T0
is a measure for the sensitivity of the Coulomb interactions

between the subunits and temperature changes, and h(T0) ¼
g(T0)1 T0s(T0) denotes the (bare) excess surface enthalpy of
the hydrophobic surface at the reference temperature T ¼ T0.

For bulk water, a � �0.14 (Weast et al., 1984), suggesting

that the reference value of the association constant at T ¼ T0,
Eq. 13, must be a much stronger function of the ionic

strength than its differential increment with temperature,

Eq. 14. As we shall see, this is borne out by the measurements

of Ceres and Zlotnick (2002).

The equilibrium constants of the hepatitis B capsid

assembly obtained by Ceres and Zlotnick (2002) for a range

of temperatures and salt concentrations are plotted in Fig. 1.

The model predicts that if we plot ln K versus temperature T
we should get a straight line with a slope�AHhðT0Þ=kBT2

0 , at

least if we ignore the expected weak dependence on the ionic

strength and set a ¼ 0 in Eq. 14. (Below we show that this is

justifiable.) Applying a least-squares linear fitting procedure

to the data of Fig. 1 did not produce any indication of a

systematic dependence of the slopes on the salt concentration

within the experimental uncertainty, confirming our expec-

tation. For this reason, we average the values for the fitted

slopes. Our theoretical fits are also shown in the Fig. 1, where

we see a single slope with a tangent of 5.7 6 2.4 K�1 fits all

the data reasonably well. This implies that for the hepatitis B

capsid, AHhðT0Þ=kBT2
0 � �5:76 2:4K�1. If we arbitrarily

set the reference temperature at T0 ¼ 273.15 K, and if we

make use of the estimated buried hydrophobic surface area of

AH � 120 3 1.3 3 10�17 ¼ 1.56 3 10�15 m2 (Ceres and

Zlotnick, 2002), we get for the bare excess surface enthalpy

a value of h(T0) � �3.8 mN/m, equivalent to about �13 kBT
per subunit. (Note that our binding enthalpy and that defined

in Ceres and Zlotnick, 2002, differ in sign by construction.)

At the reference temperature T0, we have ln K(T0) �
AHg(T0)/kBT0 � ACs

2 lBk
�1(T0). Hence, if we plot the

FIGURE 1 The logarithm of the equilibrium constant, ln K, as a function
of temperature, T, at various salt concentrations as indicated in the figure.

Symbols are data from Ceres and Zlotnick (2002). Lines are linear fits with a

fixed slope of 1(5.7 6 2.4) K�1. The extrapolated values of ln K at

T ¼ T0 ¼ 273 K are plotted in Fig. 2.
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experimentally obtained values for ln K(T0) as a function of

1=
ffiffiffiffiffi
cS

p
, we should get a straight curve with negative slope.

Fig. 2 confirms that this is the case. The slope of the curve is

a measure for the surface charge density, whereas g(T0)
follows from the intercept at 1=

ffiffiffiffiffi
cS

p ¼ 0 for which the elec-

trostatic interactions are completely screened by the presence

of an infinite amount of salt. From the intercept of the linear

fit to the data of Fig. 2, we extract AHg(T0)/kBT0 � 2317 6

35. Note that this value is to be compared (and indeed

comparable) to the values of the ‘‘enthalpy per contact’’ as

reported by Ceres and Zlotnick (2002). Insertion of the

estimate AH � 1.56 3 10�15 m2 (Ceres and Zlotnick, 2002)

produces a bare surface tension of g(T0) �15.5 mN/m, and

an excess surface entropy of s(T0) ¼ (h(T0) � g(T0))/T0 �
�0.03 mN/mK. The latter finding is consistent with the

hydrophobic interaction data of Claesson et al. (1986), which

point at typical values for s of the order of�0.01 mN/mK for

T � 303 K. The value we find for the surface tension g is

roughly an order-of-magnitude smaller than that of;50 mN/

m between water and oil, but comparable to that between

water and hexanol (Villers and Platten, 1988). Apparently,

the hydrophobic surfaces on the subunits are only weakly

hydrophobic, a conclusion that may in fact also be drawn

from the slightly negative value of the bare surface excess

enthalpy that we found by fitting our theory to the data.

From the fitted line to the data of Fig. 2, we find for the

quantity ACs
2 � (253 6 19)/2.1 3 10�19 � (1.2 6 0.1) 3

1021 m�2. If we naively replace AC by the estimated surface

area of the capsids, equal to;2.8 3 10�15 m2, we get for the

effective surface charge density at near-neutral pH a value of

s� 6.7 3 1017 m�2, or;0.7 charge per nm2. This is close to

the limit where one would expect charge renormalization to

take place (Trizac et al., 2003), and corresponds to ;15 net

charges per dimer subunit or to 7–8 net charges per protein

molecule. Whether this is realistic or not is difficult to

ascertain at this point, considering that (as far as we are aware)

no acid-base titration data are available in the literature. Also,

theoretical acid-base titration curves, such as available for

foot-and-mouth disease virus capsids (vanVlijmen et al.,

1998), seem to be lacking for hepatitis B virus capsids. Note

that, ideally, onewould determine the net charge of the capsid,

e.g., in an electrophoresis or conductivity experiment, and use

that to calculate the total area exposed to the water, AC. It is at

least reassuring that the number of charges that we find is

significantly smaller than the total number of chargeable

groups on Cp1492, being 15 negative plus 11 positive charges

as an upper bound (Reddy et al., 2001).

With all the model parameters fixed, we are now in the

position to assess the internal consistency of our treatment

by evaluating the relative contribution of the Coulomb in-

teraction to the quantity @ln K/@ln T evaluated at T ¼ T0
given in Eq. 14. Inserting the found values for the

various model parameters, we obtain for the ratio��aACs
2lBk

�1=AHhk
�1
B T�1

0

�� � 0:025=
ffiffiffiffiffi
cS

p
. This shows that

the electrostatic contribution to the slope of Fig. 1 is,6% for

cS $ 0:15 M. This is consistent with the observations, and

justifies our neglect of this contribution a posteriori.

We now make connection with the theory of micellization

(Israelachvili, 1992; Tanford, 1980), allowing us to predict

the equivalent of the so-called critical micelle concentration,
the critical capsid concentration that we denote by c*. We

(arbitrarily) define c* as that overall concentration of protein

subunits at which half of them is absorbed into assemblies.

Combining Eq. 11 with the law of conservation of mass, c ¼
c1 1 qcq, where c denotes the molar concentration of sub-

units in the solution, gives

ln c� � 4:71� 1

q� 1
ln qK: (15)

Here, c* is the critical capsid concentration in M, and ln K
is given by Eq. 12. Since according to our theory the

equilibrium constant is a sensitive function of the ionic

strength, so should be the critical capsid concentration c*. It
shifts to lower values with increasing salt concentration in

agreement with the data of Ceres and Zlotnick (2002), as is

shown in Fig. 3. A similar phenomenon can also be observed

in micelles of charged surfactants (Gunnarsson et al., 1980).

With the critical capsid concentration defined, it is now

straightforward to show that the fraction material absorbed in

capsids, f[ qcq/c, is a universal function of c/c*, or, in other
words, that f ¼ f(c/c*) is independent of the temperature, the

ionic strength and, in fact, the pH. From Eqs. 9, 10, and 15, it

follows that

c

c�
¼ f

1=q�1

2ð1� f Þq=q�1
; (16)

FIGURE 2 The logarithm of the equilibrium constant, ln K, at the

temperature T ¼ T0 ¼ 273 K as a function of the inverse square-root of the

salt concentration 1=
ffiffiffiffiffi
cS

p
. The slope of the fitted line is �(2536 19) and its

intercept is 1(2317 6 35). See the main text for an interpretation of these

values.
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where q is again the aggregation number. In Fig. 4 we have

plotted f as a function of c/c* for the data given in Fig. 1 B of

Ceres and Zlotnick (2002) for the three ionic strengths 0.3,

0.5, and 0.7 M, showing that our analysis is indeed pertinent

and that there is indeed a close resemblance between capsid

assembly and micellization.

It is important to point out that if q� 1, Eq. 16 simplifies to

f � 1 � c*/2c for c $ c*/2 and f � 0 for c , c*/2, i.e., the
crossover from the monomeric to the polymeric regime

becomes quite sharp as in fact is also evident from Fig. 4. The

aggregation curve is therefore relatively insensitive to the

relative amounts of T ¼ 3 (with q ¼ 90) and T ¼ 4 capsids

(with q ¼ 120). In the limit q / N, the polymerization or

capsidization transition becomes infinitely sharp, and equiv-

alent to a phase transition reminiscent of the Bose-Einstein

condensation of ideal bosons (Cuesta and Sear, 2002).

DISCUSSION AND CONCLUSIONS

Zlotnick and co-workers have convincingly shown that the

assembly of hepatitis B capsids can be understood in terms of

a chemical equilibrium that is regulated by a combination of

mass action, and the intrinsic propensity of the capsid core

proteins to aggregate (Ceres and Zlotnick, 2002; Zlotnick,

1994). In this work, we believe to have made plausible that

this propensity to aggregate is due to hydrophobic inter-

actions, as in fact seems to be the case for many types of

capsid (Ceres and Zlotnick, 2002), but that it is counteracted

by screened Coulomb interactions between charged moieties

on the dimer subunits.

Our suggestion that the stability of the capsids is intimately

linked with the presence of charges on them implies that the

capsid assembly must be pH-dependent, if only in principle.

The reason is that to a lowest order of approximation the

surface charge density is a function of the pH according to

s � sb

11 10
pH�pKb

� sa

11 10
pKa�pH; (17)

at least if all the ionizable groups behave independently.

(However, this may be too crude an approximation. See e.g.,

Boström et al., 2003.) Here, sa and sb denote the maximum

surface charge densities of acidic and basic groups. Eq. 17 is

a consequence of the well-known Henderson-Hasselbalch

equation (Stryer, 1980), where we have for simplicity lum-

ped all acidic groups and all basic groups together, and

assign an effective pKa for the former and an effective pKb

for the latter. A tentative estimate for both pK values and

both surface charge densities may be obtained from the pri-

mary sequence of the hepatitis B monomer subunit protein

(Reddy et al., 2001) by presuming that all acidic and basic

peptide residues are water-exposed. This allows one to es-

timate the pH for which s � 0 and the capsid is appro-

ximately charge-neutral, that is, estimate its isoionic value

denoted as pI. We find that pI� 6–7 for the Cp1492 hepatitis

B virus capsid proteins studied by Ceres and Zlotnick

(2002). This implies that the surface charge density should

increase with increasing pH above its neutral value, leading

to a reduced stability of the virus capsids.

There is in fact experimental evidence to support this

prediction, albeit not on the Cp1492 protein, but on a closely

FIGURE 3 The logarithm of the critical capsid concentration, ln c*, versus
the inverse square-root of the salt concentration, 1=

ffiffiffiffiffi
cS

p
. The straight line

gives our theoretical fit to the measured equilibrium constants of Ceres and

Zlotnick (2002). The circles are estimates from the experimental association

curves given in Fig. 1 B of Ceres and Zlotnick (2002).

FIGURE 4 The fraction of material assembled into capsids, f, versus the

overall concentration of dimer subunits c, scaled to the critical capsid

concentration c*. The symbols represent the data from Ceres and Zlotnick

(2002) for samples at a temperature of 25�C. Crosses, cS ¼ 0.7 M; triangles,

cS ¼ 0.5 M; and squares, cS ¼ 0.3 M. The drawn line is the universal

aggregation curve, given by Eq. 16.
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related variant of the hepatitis B virus protein known as

HBeAg. Like the Cp1492 protein, HBeAg does not carry the

C-terminal protamine domain present in the core protein

HBcAg, but it does have a N-terminal extension not present

on the Cp1492 protein (Wingfield et al., 1995). The HBeAg

protein dimers readily form capsids too, albeit mainly of the

T ¼ 3 type, which with a dimer aggregation number of q ¼
90 are somewhat smaller in size than the T ¼ 4 species

formed by the HBcAg and Cp1492 proteins. Wingfield and

collaborators found that for a particular choice of ionic

strength and HBeAg protein concentration, the amount of

protein absorbed into capsids strongly decreases from.80%

to practically nil when increasing the pH from 7 to 9.5

(Wingfield et al., 1995). This strongly suggests that a char-

ging up of the capsids does indeed destabilize them, as

predicted. See Eqs. 12–16.

Wingfield and collaborators also find, in accordance with

our analysis, that the degree of association increases with

increasing ionic strength (Wingfield et al., 1995), confirming

once again the importance of electrostatic interactions to the

self-assembly of capsids. The ionic strength data of Wing-

field et al. (1995) can in fact be described almost quan-

titatively by the theory presented in this article, as Fig. 5

shows. Plotted is the fraction HBeAg proteins incorporated

into capsids versus the concentration of sodium chloride at

a fixed concentration of the protein. The fitting to the data is

straightforward, once we realize that the shift of the critical

capsid concentration with the concentration of 1:1 electrolyte

obeys

ln
c�

c
0

�
¼ ACs

2
lBk

�1

0

q� 1

ffiffiffiffiffi
c
0

S

cS

s
� 1

0
@

1
A; (18)

where c0� is a reference critical capsid concentration at the salt
concentration c0S and the corresponding Debye length k�1

0 .

The experiments were done in 50 mM Tris-HCl buffer at

pH ¼ 7 (Wingfield et al., 1995), implying that cS � 0.05 1

[NaCl] with [NaCl] the concentration of sodium chloride in

M. (At neutral pH, almost all of the Tris is dissociated.) The

buffer only significantly impacts upon the fitted capsid ag-

gregation curve for salt concentrations below about 0.1 M.

We read off from Fig. 5 that for the given concentration of

0.5 g/l of HBeAg protein, f ¼ 1/2 for c0S � 0.15 M. The

steepness of the capsidization curve is now determined by

the quantity ACs
2lBk

�1
0 ðq� 1Þ�1

, which by fitting to the

data of Fig. 5 we find to be equal to;3.2. If we presume that

all the capsids are of the T ¼ 3 type, we find that this implies

that there must be;11 net charges per HBeAg dimer, which

is somewhat less than we found for the Cp1492 dimers. The

slight discrepancy between theory and experiment at very

low [NaCl] may be due to the influence of a net charge

density that can only be presumed to be a constant at

sufficiently high ionic strengths (Boström et al., 2003).

It is, in the light of our findings, tempting to speculate that

the potentially large number of positive charges on the

arginine-rich protamine domains of the viral HBcAg sub-

units strongly suppresses their assembly into capsids at near

neutral pH. It may well be that the binding of negatively

charged nucleic acids to the protamine domains causes the

Coulomb repulsion between the core proteins to be suffi-

ciently reduced to assist the assembly of the complete virus

particles under physiological conditions (see also Hatton

et al., 1992; Zlotnick et al., 1997). This, then, would provide

a physical mechanism to prevent the formation of empty

virus capsids in vivo. As many different globular viruses

share a protamine domain (Bringas, 1997), this conclusion

may extend to a large class of virus.

Another consequence of our findings is that viral assembly

and viral disassembly (or uncoating) depends on the local

physical environment. Indeed, ionic strength, pH, and

temperature together determine the effective interaction be-

tween virus subunits and thereby, loosely speaking, whether

the assembled or the uncoated state of the virus is stable.

Different environments (in particular, pH) in different

organelles in biological cells may switch one of either state

on or off. This, in turn, could enable viruses to release their

genetic material at the desired location only.

We thank Ineke Braakman (Utrecht University) and Jan Groenewold (Delft

University of Technology) for discussions and for critically reading the

manuscript.

FIGURE 5 Fraction of material assembled into capsids, f, as a function of

the concentration of NaCl in units of mM. The symbols represent the data of

Wingfield et al. (1995) on aqueous solutions of HBeAg dimer proteins that

assemble into T ¼ 3 capsids with an aggregation number of q ¼ 90.

Concentration of protein 0.5 g/l at pH ¼ 7.0 and at near room-temperature.

The drawn line is theoretical fit using Eqs. 16 and 18.
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1. INTRODUCTION 

As is well known polymers are long molecules consisting of simple building blocks, 
the monomers, generally connected through covalent bonds. A simple example is 
polyethene (figure 1) typically consisting of a 100 to 10000 ethene groups which after 
polymerization form single C-C bonds around which the polymer can more or less 
freely rotate. The thus formed chain is an example of a flexible polymer chain, which 
changes its direction on a length scale of 1 nm because of its rotational freedom 
around the G ... C bonds. Therefore, this polymer is not elongated in solution but it 
forms a kind of randomly curled coil. Another example is DNA with its double-helix 
structure, in which 2 DNA-strands are connected through hydrogen bonds (figure 
2). DNA can contain up to 1010 monomers, leading to a length of up to 1 m if it 
were to be completely stretched. This polymer is much stiffer, but it also changes its 
direction gradually (on a scale of 100 nm) through small fluctuations in bond angles 
and bond lenghts. At sufficient length stiff chains also form random coils (in absence 
of specific interactions, for instance with proteins which can induce very specific DNA 
conformations in vivo). 

(a) (b) 

Figure 1. (a) The atomic structure of a polyethene molecule. (b) A schematic 
representation of a complete molecule. There is rotational freedom around each C-C 

bond: the molecule forms a long, flexible chain. 
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1nm 

Figure 2.' A double helix of DNA in its right-handed B form. Both 
saccharide-phosphate chains are connected via H-bridges between complementary 

base pairs. 

Polymers can be found everywhere around us. The natural polymers comprise 
e.g. polysaccharides (like starch and cellulose), DNA and proteins (the last 2 also 
contain information through an alternation of different monomers; this may lead 
to very specific effects which we will not consider in these lecture notes). Semi­
synthetic polymers entered on the scene about a hundred years ago with viscose 
(chemically modified cellulose, which was used to produce fibres). Totally synthetic 
polymers were developed in particular after the acceptation of Staudinger's hypothesis 
(in the twenties and thirties) that polymers consisted of covalently bonded, linear 
chains of monomers (until then a common notion was that polymers were colloidal 
aggregates of monomers). Staudinger received the 1953 Nobel prize in Chemistry. 
During the second world war polymer chemistry became more and more important, 
an important project being the development of artificial rubber (necessary for some 
countries because they were cut off from the supply of natural rubber). After the war 
the production of polymers expanded more and more and now forms a very important 
part of chemical industry. 

Historically, physical chemistry played an important role in characterizing poly­
mers (e.g. through osmotic pressure and viscosity measurements, light scattering and 
sedimentation), which led to the acceptation of the hypothesis of linear chains, and the 
concomitant developments of theories. An important name in this context is P.J. Flory 
(1974 Nobel Prize in Chemistry). In more recent years theoretical developments are 
increasingly performed by physicists applying general concepts of theoretical physics; 
for this P.G. de Gennes obtained the 1991 Nobel Prize in Physics. 

In these lecture notes we aim at giving a universal description of simple linear 
flexible polymers. In contrast to synthetic chemists who consider polymers in a very 
specific way (viz. as built up from specific types of monomers coupled together with 
a specific type of chemical bond), within physical chemistry polymers are modelled 
with as few parameters as possible. An indispensable tool is statistical mechanics 
since one polymer chain consists of a very large number of units and already forms a 
statistical mechanical system in its own right. In many cases this leads to universal 
behaviour, which will be illustrated here with comparatively simple calculations. 

From statistical mechanics we will mainly use 2 formulas by Boltzmann. The first 
expresses the entropy of a system in terms of the total number of states ~V that the 
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system can assume (at fixed energy): 

s= kBlnW (1.1) 

and the second the probability Pi of a certain state i with energy Ei (at fixed 
temperature T): 

e-EdkBT 
Pi = ---::Z,,---

In this equation kB is Boltzmann's constant and Z the partition function: 

The formula can also be written as 

Z = L Gj e-Ej/kBT 

j 

(1.2) 

(1.3) 

where the sum now runs over the different energies instead of the different states 
and the degeneracy Gj represents the number of states of the same energy. The parti­
tion function Z forms the connection with thermodynamics through the (Helmholtz) 
free energy A: 

A = -kBTlnZ (1.4) 
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2. IDEAL CHAINS 

2.1. The freely jointed chain 

'When we want to study the universal properties of polymer chains it is useful to con­
sider a simplified model. Here, so-called segments (often point particles) are connected 
by " bonds" with certain properties. In the simplest possible model, the so-called freely 
jointed model (figure 3), segments are connected through bonds of fixed length b but 
with completely arbitrary mutual angles. 

R 

Figure 3. The freely jointed chain. 

We can now represent the chain as a sequence of N vectors ri, each with a length 
b. The total length of the (completely stretched) chain, also indicated as the contour 
length, is L = Nb. The vector connecting the endpoints of the conformation in space 
IS: 

From this we can derive the average value of R: 

N 

(R) = L (ri) = 0 
i=! 

Since every bond vector fi has an arbitrary direction, every average (fil = 0 and 
also the end-to-end vector R does not have a preferential direction. To characterize 
the size of the chain it is therefore more adequate to use the (square root of) the mean 
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square of R: 

N N N N 

(R2) = I: I: (ri . r J ) = I: (rn + I: I: (ri . rj) (2.1) 
i=1 j=1 i=1 

The last step is taking (r i . r j) = 0 if i =1= j, since the direction of each bond vector 
is completely independent of the direction of other bond vectors. Hence we end up 
with 

(2.2) 

The result of (2.2) is very important. The square root of (R2) forms a useful 
measure for the size of the chain. According to (2.2) the size is proportional to N 1/ 2 , 

whereas the contour length is proportional to N: the chain is strongly curled in space. 
Note that there is no restriction within this model to place two segments at the same 
position in space; this is a characteristic of a s(}-(:alied ideal chain. 

2.2. The Gaussian distribution 

The mean square end-to-€nd distance is only one property describing the conforma­
tion of a chain. It is possible to calculate the complete probability distribution of 
the end-to-€nd distance. Therefore we make use of the following equation for the 
probability P(R, N) to find an end-to-€nd vector R for a polymer of N segments: 

(2.3) 

This equation tells that the end-to-€nd distribution of a chain of N segments 
can be determined by stepping back one segment within the chain (in space a step 
r N) and averaging over all possible steps r N. In the appendix a derivation is given 
showing that for large N this leads to a differential equation for P(R, N); 

(2.4) 

where .6. represents the Laplacian (note that we write R =( x, y, z»: 

[p 82 82 

.6. = ox2 + 8y2 + 8z2 

This equation is identical to the well-known diffusion equation (Fick's second law) 

8c = D.6.c 
8t 

using the following correspondence: 

segment number N f---> time t 

position R f---> position R 

probability P f---> concentration c 

~ b2 
f---> diffusion coefficient D 

6 

(2.5) 

(2.6) 

An ideal chain can thus be compared to a diffusion problem of a particle starting 
to diffuse from the origin at time t = 0 with diffusion coefficient D. The fanciful 
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trajectory such a particle traverses in time (increasing t) is completely comparable 
to the conformation consecutive segments of an ideal polymer (increasing N) form 
within space. A larger typical steplength b leads according to (2.2) to a larger mean 
square of the end-to-end distance; application of the correspondence (2.6) gives for 
the analogous diffusion problem: 

This is the well-known Einstein formula that tells that a diffusing particle (on 
average) moves with the square root of time (instead of linearly if the particle would 
always move in the same direction). Now it is also intuitively clear why (2.2) only 
applies to an ideal polymer: the polymer must have the opportunity to intersect 
itself. For a diffusing particle there is after all not a single impediment to return to 
the same place in space at a later time. In reality this is not possible for a polymer 
and this may lead to drastically different behaviour. As we will see later there are 
certain circumstances under which an ideal chain may be a good representation for a 
polymer. 

The solution of (2.4) can be found by applying the correspondence (2.6) to the 
well-known solution of (2.5) for the analogous diffusion problem (or use Fourier trans­
forms, see appendix 7.2): 

( 3 )3/2 (3R2 ) 
peR, N) = 21'iNlJ2 exp - 2NlJ2 (2.7) 

Here R2 = R· R = x 2 + y2 + z2. This solution may be verified by substitution 
into the differential equation (2.4). Such a distribution function is called a Gaussian 
distribution. The form (2.7) is normalized: 

+00 +00 +00 J peR, N) dR = J J J peR, N) dx dy dz = 1 
-00 -(X)-OO 

as can be easily verified using the integrals given in appendi.x 7.4. With this 
probability distribution also other properties than (R2) can be easily calculated, like 
the standard deviation of R 2 : 

(2.8) 

We see that the deviation in the size of the polymer coil is of the same order of 
magnitude as the size itself: an ideal coil is a strongly fluctuating object. 

2.3. The freely rotating chain 

The so-called freely rotating chain is a more realistic model in the sense that there is 
now a fixed angle B between consecutive steps (figure 4). The model is called freely 
rotating because the chain is free to rotate around each bond (though retaining fixed 
bond angles 1'i - B). 

6 

- 116 -



(a) (b) 

Figure 4. (a) The freely rotating chain. (b) The average of rn at fixed rn-l gives 
cosBrn_l· 

If we now average over all possible directions of a bond, there remains a factor 
'Y == cos B in the direction of the previous bond, so that 

while at every next bond an additional factor 'Y appears because of the averaging 
over the possible directions of that bond (see figure 4(b)) 

(ri· rj) = b2'Yli-jl 

We can use this to calculate the mean square end-t~nd distance. To this end 
we further apply the approximation that most segments are located far from the ends 
of the chain ( if N large) so that in (2.1): 

where we used the summation formula of a geometric series. Substituted in (2.1) 
this ultimately gives: 

(R2) :::::oNb21 +'Y =Nb21+cosB 
1 - 'Y 1 - cos B 

(2.9) 

The most important result is that (R2) is still proportional to N, albeit with 
a proportionality factor larger than for the freely jointed chain (as long as we keep 
B<1r/2). 

2.4. More general considerations 

We now found for two simple models that (R2) is proportional to N. This property 
has a much wider generality and is a consequence of the so-called central limit theorem 
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in mathematics. In a nutshell this theorem says that a variable (say x), itself a sum 
of a large number (say N) identical, independent, stochastic variables, is distributed 
according to a normal (=Gaussian) distribution exp( _x2 /2 (x2 ) and that (x2 ) 0: N. 
A polymer chain complies to this if it has a short-range memory (i.e. the position of 
a certain segment only depends on the positions of a limited number of neighbouring 
segments within the chain). Then, a chain has "forgotten" where it came from after 
a limited number of segments. The consequence is that also for a more complex and 
realistic polymer model the mean square end-to-end distance remains proportional 
to N (for large N) 

(2.10) 

The proportionality constant obviously has a dimension (length)2 and defines the 
effective step length beff. For the freely jointed chain we find (see equation (2.9» 

l+cosB 
l-cosB 

As could be expected the effective step length is larger than b if B < 7f /2. In 
the remainder we generally write b instead of beff' The concept of an effective seg­
ment length was first introduced by Kuhn. In order to be independent of the rather 
arbitrary division into segments (2.10) is now written as 

(2.11) 

where L is the length of the polymer if it were completely stretched and lK is called 
the Kuhn length. 

Also the Gaussian distribution (2.7) remains valid in the case of more general 
short-range models and therefore forms one of the basic formulas of polymer theory. 
In the end it is not so very important how we exactly model a chain since all (short­
range) models give the same results for large chain length. A widely used class of 
models are the s()-{;alled lattice models, where chain segments are placed on the lattice 
points of a space filling lattice (see later). 

2.5. The entropy of an ideal coil 

The end-to-end distribution peR, N) is directly proportional to the number of possi­
ble realizations W(R) of an ideal chain at a given end-to-end vector (and at a given 
number of segments N). From this we can derive an expression for the entropy of 
such an ideal chain via (1.1): 

3kB 2 
S(R) = kB In W(R) = cst - 2Nb2 R (2.12) 

Later we shall use this formula a number of times. At this point we shall use it to 
show the analogy of a polymer coil with a spring. First we form a (Helmholtz free) 
energy from this entropy 

A(R) = U(R) - TS(R) = -TS(R) = cst + ~';:; R2 (2.13) 

Note that U = 0 for an ideal chain. The interesting point of this formula is its 
quadratic form similar to the potential energy of a spring. If the endpoints of a 

8 

- 118 -



polymer chain are brought apart, it experiences (on average) a retracting force 

The spring constant is 3k B T j N b2 . This entropic effect forms the basis for the 
elasticity of rubber, which consists of a network of interconnected polymer chains. 
Note that the above formula predicts that the spring constant of rubber increases 
with temperature (in strong contrast to most other materials). This is also found 
experimentally and is sometimes called the Guch-loule effect. The formula tells 
further that the material can be stretched more easily if the number of segments 
between consecutive linking points in the network N is larger. 

2.6. Further models of a flexible polymer chain 

Since different parts of an ideal chain do not have any interactions, a part of the chain 
can itself be described by a Gaussian distribution. We then have to use a generalized 
version GN(RIR') for the probability of a chain of N segments starting at a position 
R' and ending at R (so peR, N) = GN(R/O». Let us for instance consider a chain 
on which we also want to fi.-x segment v at position R". Since both parts of an ideal 
chain are independent the probability for such a configuration is then given by the 
product of both probabilities, GN-v(R/RI)Gv(R"/R'). Integrating over all possible 
positions of the vth segment, gives back the original end~to-end distribution: 

This relation can be verified easily using (7.4) and the convolution theorem in 
Fourier space. 

A widely used model, the standard Gaussian 0- Gaussian bond model retains this 
Gaussian property up to the level of each single bond (assuming the distribution is 
still valid if we set N = 1 in (2. 7». This is frequently justified since we saw that 
many results do not depend on the specific details of the local structure of the chain. 

If we compare this with the previous section this also implies that each bond is 
a spring with spring constant 3kB T jb2 . This forms the basis of another model the 
bead-spring model, in which a polymer is modelled as a string of beads connected by 
springs. This model is especially used in describing polymer dynamics (RousejZimm 
model). 

The ultimate consequence of the Gaussian model is a continuous model where we 
do not have separate segments anymore, but a continuous line. This leads to path 
integrals. 

2.7. Gaussian chains in an external field 

Here we consider a slightly more general case than before by placing a polymer chain 
in an external field. We define !peR) as the energy a segment obtains at place R due 
to the interaction with this external field. In appendix 7.3 is shown that differential 
equation (2.4) then takes the form 

(2.14) 
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where we now formulate the differential equation in terms of G = G N (RjR'). It 
is shown in the appendix that the general solution to this equation can be written as 
a so-called bilinear expansion: 

(2.15) 
n 

where 7f'n(R) and .An are the eigenfunctions and eigenvalues of the following equa­
tion (very similar to the time-independent Schrodinger equation in quantum mechan­
ics): 

(2.16) 

The solution critically depends on the type of eigenvalues found. In some cases 
these may take a continuous range of values (a continuous spectrum), which corre­
sponds to a scattering state in quantum mechanics. An example of this is the case 
with <p(R) = 0, corresponding to a free particle in quantum mechanics. In appendix 
7.3 is shown that (2.15) leads back to a Gaussian coil (as expected). 

Another possibility is a discrete spectrum of eigenvalues. In that case one of the 
eigenfunctions may dominate the problem for long chains. Let the smallest eigenvalue 
be.Ao < .A 1, .A2, .. '. If we make N very large, the exponential term containing .Ao will be 
by far the largest in (2.15) and will dominate the solution (ground state dominance): 

(2.17) 

This result seems reasonable for a long chain: both endpoints get completely 
uncorrelated. A state like this is called a bound state. The parallel with quantum 
mechanics gets even stronger if we calculate the segment density c(R) for (2.17). We 
then have to integrate over all segment numbers v in the chain that must be located 
at R, irrespective of the position of the beginning R' and end of the chain (here taken 
as R"): 

c R _ f: dv f dR' f dR"Gv(RjR')GN_v(R"jR) 
( ) - f dR' f dR"GN(R"jR') 

The numerator is a normalizing factor. Using (2.17) for large N simply gives: 

c(R) rvN7f'~(R) (2.18) 

So j7f1o(RW is the probability to find one of the segments at position R, much like 
in quantum mechanics. 
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Figure 5. A polymer chain in a spherical cavity of diameter D. 

An example of this situation is a polymer chain confined to a spherical cavity of 
diameter D (see figure 5). For this spherical symmetry we can express the Laplacian 
in terms of the distance to the origin R: 

If we now solve equation (2.16) with cp(R) = 0 within the cavity, but all eigenfunc­
tions = 0 ou~side (since the chain obviously cannot be there), we find a.s the lowest 
eigenvalue and (normalized) eigenfunction: 

Giving a segment density like in figure 6. This is an example of a chain in a 
globular state. 

c 

Figure 6. Segment density of a very long ideal polymer in a spherical cavity of 
diameter D. 
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2.8. Lifshitz entropy 

For a polymer in a bound state it is possible to derive an expression for the entropy. 
Here, we only consider the situation of ground state dominance (N large). The total 
partition function would now be: 

z = f dR' f dR"GN(R"IR') 

since G N (R" I R') takes into account all chain configurations and Boltzmann weights 
in the external field and the integrals all possibilities of its beginning and end points. 
Substituting (2.17) simply gives 

z ,...., exp( -AoN) (f dR1flo(R») 2 

and a concomitant free energy from (104) 

(2.19) 

Apart from unimportant end terms this expression is proportional to N and is 
therefore an extensive property, like in a true macroscopic system. 

Note that this expression still depends on the external field <peR), since AO is 
the lowest eigenvalue of (2.16). Remarkably however, it is possible to eliminate the 
externally imposed field if we calculate the entropy of the chain. To show this we 
write 

s = U - A = f <peR) c(R) dR- A 
T T T 

Using (2.18) and (2.19) this reduces to 

S = N J <p~) 1fl~(R) dR - kBAON 

The integral in this expression can now also be obtained by taking (2.16) for n = 0, 
multiplying by 1flo(R) and integrating over R: 

Combining these last 2 equations eliminates both <peR) and AO: 

In terms of the segment density c(R) from (2.18) this can be written as 

This is the Lifshitz entropy of a single chain. We see that this entropy is connected 
to concentration gradients and therefore the spatial inhomogeneity of the segment 
distribution. We could say that spatial inhomogeneity is unfavorable for the entropy, 
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because in the presence of a concentration gradient, the chain is forced to bend in 
certain directions more often than in others. This restricts the total number of allowed 
conformations and therefore decreases the entropy. 

When there are many chains, their conformational entropies add up and c(R) rep­
resents the total concentration of segments of all chains. In fact an ideal translational 
term should be added, but this is very small since for every chain a very large number 
of segments N are connected together to form only one translational unit. Therefore, 
the conformational entropy which as a rule is insignificant for low-molecular-weight 
substances (compared to the translational entropy) becomes predominant for many 
properties of polymers. 

2.9. Self-consistent field method 

The results in the last section are useful for the so-called self-consistent field (SCF) 
method for polymers. In statistical physics we try to describe systems in terms of 
a restricted number of macroscopic variables instead of specifying all positions and 
momenta of individual particles. In the limit of a very large system (thermodynamic 
limit) we expect that the free energy shows a very sharp minimum when varying the 
values of these macroscopic variables. This sharpness justifies the usual procedure 
of minimizing the free energy with respect to these macroscopic variables to find its 
equilibrium value. However, this neglects the possible influence of fluctuations. 

In the case of our polymer system the form of (2.20) suggests to take c(R) as our 
(quasi)macroscopic variables. The entropy S[c(R)] is now a functional of c(R) (i.e. 
it is a function of a function: its variables are the values of the segment density at 
all positions R in the system, but this already is an average over many microscopic 
configurations). The important point is that in (2.20) the external field rp(R) has 
been eliminated, so its form is independent of the forces that cause this macroscopic 
state. The next step to obtain an SCF theory would be to add interactions between 
segments in the form of an energy term U[c(R)], giving 

A(c(R)] =U(c(R)]-TS[c(R)] 

The equilibrium distribution ceq(R) is obtained by functional minimization of A 
with respect to c(R). Since in many polymer systems the segment concentrations are 
low, an often used approximation for U[c(R)] is to take the corresponding expressions 
for disconnected segments (a non-ideal gas), although omitting the translational (ideal 
gas) term since segments are connected here. 
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3. NON-IDEAL CHAINS 

Until now we only considered the short-range interaction between segments (i.e. in­
teraction between segments closely together if measured along the chain contour). 
As soon as we also take into account long-range interactions (in this case indicating 
interaction between segments far apart if measured along the chain; by back folding of 
the chain these segments can come closely together in space) the chain statistics can 
change drastically. For simplicity we consider a lattice model for a polymer (figure 7) 
where every lattice point has z neighbouring positions at a distance b. 

N 

~ 
).. 

2 

1 

Figure 7. A lattice model for a polymer. The white cirkels are the segments and the 
bold line. segments form the bonds. 

The volume per lattice point is called VC' If such a chain were ideal (no interaction) 
there would be no obstruction to placing several segments on one and the same lattice 
position. In that case each consecutive segment has z possibilities to be placed and 
the total number of possibilities for a chain of N segments would be ZN. It can be 
easily verified that (R2) =Nb2 also applies in this case, so that (2.7) remains valid. 
The total number of configurations vVo(R) at a given end-to-end distance R is now 
proportional to: 

(3.1) 

Since we do not write the number of configurations as a function of end-to-end vector 
R but in terms of end-to-end distance R, we get an extra factor of 47r R2 (0: the surface 
of a spherical shell of radius R). We may again formulate this problem in terms of a 
free energy Ao(R) (or entropy, So(R)): 

~o~;) ( = _ S~~R)) = -In Wo(R) = cst - 2ln R + 2~lJ2 R2 (3.2) 
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To get the most probable end-to-€nd distance we minimize this free energy by 
taking the derivative with respect to R and equating it to 0: 

2 3 ~ --+-R=O:::;.RQ= -JNb2 
R Nb2 3 

(3.3) 

This procedure gives us an ideal chain dimension RQ (NB the procedure followed is 
not entirely correct but gives a reasonable estimation). We can also use this formula 
to estimate the average volume fraction of segments within the coil ¢; :::::: N v cI RQ3 :::::: 
Nvc /(b/N)3 ~ N-l/2 j this obviously gets very small for large N. 

3.1. An excluded volume chain 

We now consider the simplest type of long-range interaction, where a once occu­
pied lattice point cannot be occupied by a second polymer segment. In analogy with 
the diffusion problem this type of conformation is also called a SAW( =Self-Avoiding 
Walk). To describe the resulting conformation qualitatively we assume that the poly­
mer coil swells to a different size R but that the internal structure of the chain is 
retained (such that we can still apply expression (3.1». We further assume that en­
counters between segments take place independently and that only pair interactions 
are important. We account for this by multiplying (3.4) by a correction factor peR) 
which represents the probability that a given conformation is allowed (i.e. we did not 
place one single segment on the same position as one of the others). The probability 
that, if we place a segment on a specific lattice point, this is already occupied by 
another segment, is given by the volume of 1 segment Vc divided by the total volume 
of the coil (approximately R3 ). There are N(N - 1)/2 of this kind of possible (pair) 
contacts within a coil of N segments, so that 

(
V )N(N-l)/2 (N(N -1) ) (N2v ) 

peR):::::: 1- R~ ::::::exp 2 In(1-vc /R
3) ::::::exp - 2R3

c 

Multiplying (3.1) by this factor we get the number of configurations with excluded 
volume: 

N 2 (3R2 
N2vc) 

W(R) ex z 41rR exp - 2Nb2 - 2R3 (3.4) 

The free energy now gets 

(3.5) 

and a similar minimization procedure as for (3.3) now gives 

Combined with m from (3.3) this leads to the following equation for the chain 
size R* of an excluded-volume chain (first given by Flory): 

(3.6) 
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To emphasize we are performing a qualitative calculation we left out a factor of 
J243/128. For large N we can neglect the cubic term and the solution is: 

R' ~ Nl/lO => R* ~ bN3/5 
Ro (3.7) 

R* / RO is often called the expansion factor a. In comparison to the ideal chain 
(3.3) the coil swells and it does so the stronger when the chain is longer. It is essential 
to realize the difference with a chain with short-range interactions: with short-range 
interactions the chain may also swell but in this case because of an increased effec­
tive step length beff , while the ideal dependence on N persists. With a long-range 
excluded-volume interaction the exponent of N changes. The above-described model 
is strongly simplified. More extensive calculations and computer simulations give for 
large N: 

R' ~ bNI/ with v ~ 0.588 

which does not differ much from the Flory exponent 3/5 in (3.7). 

3.2. A chain in solution 

Up to now we only counted conformations to describe a polymer chain, i.e. we only 
took into account the entropy using formula (1.1). This was made possible by the fact 
that energy did not playa role. In actual life this never occurs since a polymer chain 
will always be suspended in a solvent, so different conformations may have different 
energies. We now account for this in a crude way by adding an (average) energy term 
E(R) to the entropic term in the free energy: 

A(R) 
A(R) 
kBT 

= U(R) - TS(R) ==:} 

E(R) -In W(R) 
kBT 

We can determine E(R) in the above-used lattice model by again viewing the 
polymer coil as an object of N segments in a volume R3 and hence a volume fraction 
¢(R) ~ N v c/ R3. The lattice points not occupied by the polymer are now occupied 
by a solvent molecule (see figure 8). 

0 0 0 0 0 0 0 0 0 00 0 
0 0 0 0 0 00 0 0 00 0 
0 0 0 0 0 00 0 0 01, 0 
0 • 0 0 0 00 0 - ..... 0 'T' --
0 - 0 00 0 .. f-4 0 0 - -
0 0 0 : 4~ .. ~ 0 0 0 14 0 0 
0 0 0 14t-.. 4 to 0 0 4 ~ 0 

0 0 0 0 0 4 .. ~ 0 -_ ..... 
0 T --

0 0 0 0 0 .. ~ I. ~ 00 0 
0 0 0 0 0 ..I.. - ..I.. 0 00 0 -- -
0 0 0 0 0 00 0 0 00 0 
0 0 0 0 0 00 0 0 00 0 

Figure 8. The lattice model of a chain in solution. Black cirkels represent polymer 
segments and white cirkels solvent molecules. 
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\Ve now suppose only interaction between neighbouring lattice points, viz. 

polymer segment-polymer segment - cpp (3.8) 

polymer segment-solvent molecule - Cps 

solvent molecule-solvent molecule - C 53 

There are N z neighbouring points next to the polymer, each with a probability ¢ 
to be a polymer segment and 1 - ¢ to be a solvent molecule. The average energy of 
the coil is then: 

E(R) ~ Nz [~¢(-cpp +C.S) + (1- ¢)(-cp. +C3S)] 

The factor 1/2 appears to avoid double-counting of polymer-polymer interactions 
and we have chosen the pure solvent as the reference state (for each contact with a 
polymer segment a solvent-solvent contact is broken). We can rewrite this as: 

E(R) (3.9) 

The last step introduces the so-called chi-parameter X, which we consider more 
closely in the next section. The reason to write (3.9) as in the last line is clear if we 
compare this term with the last term of (3.5): the effect of the energetic interaction 
with the solvent has the same functional form as the excluded volume interaction 
between segments. We can therefore immediately use the results from the previous 
section after transforming 

Vc-4v:=vc(1-2X) 

The Flory equation (3.6) now gives: 

(R*)5 _ (R*)3 ~ ~Nl/2 
RO RO b3 

(3.10) 

(3.11) 

The difference is that in this case the right-hand side is not necessarily large. This 
now depends on the value of X. We will differentiate between several regimes which 
we discuss in the next section. 

3.3. Good, bad and ideal solvents 

The chi-parameter in (3.9) is given by 

_ z.6.c z(cpp + Css - 2"ps) 
X=--= 

kBT 2kBT 
(3.12) 

where 2.6." represents the energy change at the formation of 1 polymer segment­
polymer segment contact (see figure 9). 
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Figure 9. The effective interaction between two polymer segments. If the polymer 
segments (indicated by black cirkels), originally separated as in (a), are brought 

together, as in (b), the energy of the system decreases with an amount 
26c = cpp + Css - 2cps. 

A simple rule of thumb for (London-van der Waals) dispersion forces gives for the 
interaction energy between two molecules i and j: 

Proportionality constant k is generally positive and the as are (segmental) polar­
izabilities (note that in the definition of the cs (3.8) appears a - sign: k > 0 implies 
attraction). Therefore, the energy difference 6e = ~(epp +css - 2cp.) = ~k (ap _ a.)2 
is > 0 in most cases. Consequently, X is also usually positive. We differentiate between 
3 regimes: 

X «1 This implies that the energy change at immersing a polymer segment 
in its solvent is much smaller than kaT (see (3.12». We expect little 
influence from energy effects. This also appears from (3.10): v ~ Vc; the 
coil is swollen as in the previous section. In this case, the solvent is called a 
good solvent. 'When X increases, energy effects are getting more important 
and the polymer coil starts to shrink. 

X = 1/2 In this special case (3.10) gives v = O. The Flory equation (3.11) now 
gives R* = RQ ~ bN1/ 2 , so that the chain behaves like an ideal chain. This 
is caused by two opposing tendencies. The unfavourable energy change 
at immersing the polymer segments in solvent wants to contract the coil, 
while the excluded volume of the segments (and the higher entropy of an 
expanded coil) leads to swelling of the chain. At X = 1/2 these two effects 
just compensate. In this case the solvent is called an ideal solvent, a theta 
solvent or sometimes a marginal solvent. An important parameter to vary 
X is the temperature. The temperature at which the coil behaves ideally, 
is called the theta temperature B. The term marginal solvent is connected 
to the fact that X = 1/2 is a value where the polymer remains only just 
soluble. At a slightly higher value of X energy effects are going to dominate. 

X .2: 1/2 At these values the polymer changes its structure rather abruptly. The 
higher entropy of the coil structure is not sufficient anymore to compensate 
unfavourable energy effects, the solvent is expelled and the coil collapses 
(see figure 10). The chain now forms a rather compact structure, a so­
called globule (an example is formed by the globular proteins), where R* 0: 

N 1/3. At about the same time different globules in the solution tend to 
prefer being in mutual contact rather than with the solvent, so that the 
polymer precipitates (or does not dissolve). In this regime the solvent is 
called a bad solvent. 
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Figure 10. The coil-globule transition in a solution of polystyrene in cyclohexane. 
The radius of gyration Rg and the hydrodynamic radius Rh undergo a dramatic 

change when the temperature passes the O'-:temperature. 

A last remark about the free energy used, (3.5) with transformation (3.10), is in 
order. When we look at the last term of (3.5) we can write it slightly differently in 
terms of the segment concentration c ;:::;: N / R3: 

Written in this form the term strongly resembles the second virial term in the 
expansion of the free energy of a non-ideal gas as a series of concentration c. This 
is no coincidence since the above model describes the interaction between the poly­
mer segments in terms of two-particle interactions and as if the segments can move 
independently within the coil. The factor ~v corresponds with the second virial co­
efficient. In the case of excluded-volume interactions only it is equal to ~vc, half 
the excluded volume of one segment as in the case of gases. We now see the close 
connection with the remarks made in section 2.9. 
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4. CONCENTRATED POLYMER SOLUTIONS 

(a) c<c' (b) c ;:c' (e) c> c' 

Figure 11. (a) A dilute polymer solution; (b) a solution at the overlap concentration 
co; (c) a more concentrated solution. 

If we increase the concentration of a polymer solution separate coils will start to 
overlap at a certain point (see figure 11). The corresponding segment concentration 
is called the overlap concentration c·. We can easily make an estimate of c· since at 
that point the total space will be completely filled by coils touching each other. This 
implies that c· is equal to the (average) segment concentration within 1 isolated coil: 

N NI-3v 
c*~ R*3 ~~ ( 4.1) 

Note that, v lying between 1/2 and 3/5, c* can be very small for long polymers 
(large N). Polystyrene at a molecular weight of 1,000,000 can have its c* at 0.5 weight 
%. This means that polymer chains can be strongly entangled and will have a strong 
mutual interactions. The limit is formed by molten polymers (called a polymer melt), 
where a solvent is completely absent, and which are very important for industrial 
applications of plastics. 

4.1. The Flory-Huggins approximation 

A conceptually important description of polymer solutions is the well-known Flory­
Huggins approximation. A derivation is given in AppendLx 7.5. This theory is an 
example of a so-called mean-field theory, where polymer segments are assumed to be 
randomly distributed in space and the interaction is calculated on the basis of averaged 
concentrations in the system. Fluctuations in segment concentrations are completely 
neglected, although they can be large especially for polymers (if only because of the 
fact that segments are attached to each other). The Flory-Huggins approxximation is 
therefore better suited for concentrated solutions (far above CO). Here we are mainly 
interested in qualitative effects of the degree of polymerization N. 

We consider a system of np polymers of N segments and ns solvent molecules 
(occupying n = npN +n. lattice positions) thus having a volume fraction r/> = npN In. 
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The (Helmholtz) free energy of mixing Am within the Flory-Huggins approximation 
is 

Am(n,¢) = nkaT fm(¢) = nkaT [~¢ln¢ + (1 - ¢) In(1 - ¢) + X¢(1- ¢)] (4.2) 

The first two terms are the entropy of mixing. Here the factor 1/ N is noticeable (in 
the " polymer" term), which is absent for low molecular weight liquids. The last term 
represents the internal energy of mixing analogous to the model considered previously 
for the single chain (see (3.8)) and contains the same chi-parameter 

(4.3) 

4.2. Phase separation in polymer solutions 

To be able to predict from the Flory-Huggins free energy whether a polymer solution 
remains homogeneous or that phase separation occurs, we use a graphical method. 
If we plot the free energy per lattice point, fm(¢) (see (4.2)), against the volume 
fraction ¢ we could for instance obtain a picture like figure 12. 

~--------r---~r-~ R' ... . . 

Figure 12. The free energy of mixing for a system without phase separation. 
Situation at R: a homogeneous phase with volume n and volume fraction ¢. 

(Imaginary) situation at R' : separation in two phases with ·concentrations ¢P, ¢Q 
and volumes n p , nQ. 

If this system is homogeneous, the free energy per lattice point at volume fraction 
¢ is given by the value of f m (¢) at point R (here we consider all energies in units 
kaT) . However, if we would suppose that the system separates in 2 phases P and Q 
of volume fractions ¢p and ¢Q, we first have to determine the volumes np and nQ 
of both phases from the following conservation conditions of mass and volume: 

Dp¢ p +nQ¢Q n¢ 

Dp + n Q n 
Its solution is: 

( 4.4) 

( 4.5) 
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Hence the free energy per lattice point of the phase-separated system is 

Aseparated 
m = 

= 

np nQ n fm(¢p) + n fm(¢Q) 

¢Q-¢ ¢-¢p 
¢ ¢ fm(¢p) + ¢ ¢ fm(¢Q) 
Q- p Q- p 

A more precise consideration of this expression shows that its value (per lattice 
point) in figure 12 lies on the line connecting P and Q at a volume fraction of ¢, i.e. at 
R' (expressions (4.4) and (4.5) represent the lever rule for the relative volumes). In this 
case the free energy of the phase-separated system is higher than the homogeneous 
system. For an upward concave function like in figure 12, this is true for every possible 
way of separating the system in 2 phases and the homogeneous system is always the 
most stable. 

i.M) 

Figure 13. The form of the free energy of mixing for a case of phase separation. 
Solutions at ¢ A < ¢ < ¢ B find there lowest free energy if the system separates in 2 

phases of concentrations ¢ A and ¢ B· 

A very different situation occurs when there is a convex part in the graph, like in 
figure 13. Here R' lies clearly below R. P and Q can be chosen in many different ways. 
However, the lowest possible point is situated on the double tangent to the curve and 
this is therefore the equilibrium state with the two coexisting phases as the tangent 
points (this well-known double-tangent construction also assures that both tangent 
points have equal osmotic pressure and chemical potentials) . 

In (4.2) the value of X determines the form of the fm(¢)-curve. At low values of X 
(usually at high temperatures T) its form is upward concave and the system remains 
homogeneous. At higher values of X (low T) 2 minima appear and phase separation 
takes place. This is represented in figure 14 for different values of T . 

T 

Figure 14. A typical phase diagram for a polymer solution. In the cross-hatched 
region phase separation occurs. 
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The X value at which phase separation first ocurs can be found from the fact that 
both minima in figure 13 shift towards each other and merge at this specific value 
(X = xJ· This requires: 

CP/m = 0 and [f3 1m = 0 
8¢} 8¢} 

This point is called the critical point and can easily be determined from (4.2): 

1 
= 

l+JN 

Xc = 1 ( 1)2 
"2 1+ IN 

If N increases, these formulas predict that Xc approaches 1/2 so that the critical 
temperature Tc = z!::!'c/kBXc rises and the critical volume fraction decreases. This 
tendency is clearly visible in figure 15. However, no quantitative agreement with 
experiments is found. This is understandable, since in the neighbourhood of a critical 
point particularly strong concentration fluctuations take place, whence a mean-field 
theory can not be expected to give a good description. 

~ 40 
;..> 
f-., 

30 

Mw=1.02XIO· 

10~ 
o 0.1 0.2 

if> 

0.3 

Figure 15. Coexistence curves for a solution of polystyrene in methylcyclohexane. 
The B-temperature in this system is 70.3°C. 

A further indication of the failing of the Flory-Huggins theory is the osmotic 
pressure. This can be derived from the Helmholtz free energy: 

II = (4.6) 

In figure 16 the experimental osmotic pressure is plotted for a number of molecular 
weights of the same polymer. Note that Van 't Hoff's law (the first term in (4.6)) is 
only reached at the lowest molecular weight (in this representation the curve should be 
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horizontal in that regime). At higher concentrations the second term dominates and 
does not depend on the molecular weight according to (4.6). This is in fact observed 
but the slope is larger than predicted by Flory-Huggins. This effect is attributed to 
fluctuations which we shall discuss later. 

E 
" 10 

... 
::, 
x 

~ 1 
t:::: 

1 100 
ex 102 (g cm-3 ) 

Figure 16. The concentration dependence of the osmotic pressure of 
poly( a-methylstyrene) molecules of different molecular weights dissolved in toluene. 

From the top to the bottom molecular weights of: 7 x 104 , 20 X 104
, 50.6 X 104

, 

7 x 10\ 119 X 104 ,182 x 10\ 330 x 104 ,747 x 104
• 
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5. SCALING THEORY 

"Ve shall conclude these lecture notes with a more qualitative discussion, where we 
give an indication of a number of more modern ideas within polymer theory. If we 
look at the Gaussian distribution function (2.7) for a chain of N segments with step 
length b, it is striking that Nand b enter only as a fixed combination Nb2 • One could 
say that there exists a length scale NI/2b that determines the total distribution and 
therefore also all equilibrium properties on the level of the total chain. The same 
combination is found within the expression for the entropy of the chain (2.12). An 
ideal Gaussian coil has the particular property that its structure reproduces itself at 
different magnifications (see figure 17). This is the property of self-similarity of a 
s~alled fractal object. 

Figure 17. A computer simulation of a "random walk" of 106 random steps. In the 
figure every 103 steps are represented as one segment. The inset zooms in on one 
such segment and represents all steps. The structure of the chain at both levels is 

completely analogous (self-similar or fractal). 

The picture is getting clearer when we ask ourselves whether the monomers within 
a polymer chain are really determined unequivocally. From a chemical point of view 
the monomer will of course be the smallest repetition unit within the chain, but we 
may as well combine several monomers and subsequently use these as the building 
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block of the polymer ending up with the same polymer. To be more concrete: a chain 
of N segments and step length b has an average end-to-end distance Nl/2b. But 
if we first combine 9 segments into a new building block, the (average) distance the 
chain spans within each building block will be bg == gl/2b which now forms our new 
step length. On the other hand we only have N g == N/g of these new building blocks. 
Our newly built coil is a random walk of the new building blocks (see figure 18) for 

which we determine the average end-to-end distance in the usual way: N;/2b g . The 
transformation may be summarized as follows: 

step length 

number 

end-to-end distance 

b ---> bg (== gl/2b) 

N ---> N g (==N/g) 

N 1/ 2b ---> N;/2bg (= Nl/2b) invariant! 

Figure 18. An arbitrary number of segments 9 in a polymer chain may be thought of 
as a new segment. 

The same story also holds for a non-ideal chain with end-to-end distance NVb. 
P. G. de Gennes applied this type of ideas to determine all kinds of properties of 
polymers in a simple fashion. Consider for instance the situation that we put a 
polymer chain in a good solvent (v = 3/5) into a capillary of diameter D. Can a 
simple expression be given for the length L which the polymer will occupy within the 
capillary? We have seen that the size of the building blocks of the polymer can be 
chosen at will. In this case de Gennes chose the step length equal to the capillary 
diameter: bg3/ 5 = D so that 9 = (D/b)5/3. The N/g new building blocks of size D 
will have an excluded-volume interaction like the original segments, so that they only 
fit into the capillary one behind the other. This gives as the total length of the chain 
within the capillary: 

(5.1) 

It is striking that this calculation is supported by much more involved calculations 
and simulations. Two limiting cases of the formula can be immediately checked. 
Firstly, if we consider a wide capillary with a diameter equal to the size of a coil 
outside the capillary, or D = N 3/ 5b. Substitution in (5.1) now gives L :::::; N 3/ 5b, 
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hence in a wide capillary the chain is not distorted (for even larger values of D (5.1) 
of course no longer applies). The second limit is a very narrow capillary of diameter 
D = b. Now the chain is prevented from folding back and can only lie completely 
stretched. Formula (5.1) indeed gives L ~ Nb. The behaviour of L as a function of 
D is schematically represented in figure 19. 

InL 

Figure 19. A double-logarithmic plot of length L occupied. by a chain in a capillary 
of diameter D (see text). 

As we have seen from (2.8) a polymer coil is a strongly fluctuating object. This 
kind of fluctuations is completely neglected in mean-field theory, since there only 
averaged segment concentrations are used. In scaling theory fluctuations are taken 
along. More formal scaling theory uses an analogy between the behaviour of systems 
near to a critical point in phase transitions (which also show large fluctuations) and 
polymer systems (where liN is comparable with the relative distance to the critical 
point). One of its ingredients is the above-described procedure of redefining the 
segments of a chain (also called renormalization). A typical feature in these theories 
is the prediction of all kinds of power laws containing the relative distance to the 
critical point. In that sense an expression like 

R* ~ bNv where v ~ 0.588 

is such a power law where liN is raised to the power -0.588 (the critical exponent). 
On the basis of this type of theories a much simpler description of scaling laws (=power 
laws) is built, using simple physical considerations in a more intuitive way. Nobel prize 
laureate P.G. de Gennes has been the pioneer of this approach. In the next section 
we apply this description to semi-d.ilute solutions. 

5.1. Semi-dilute solutions in a good solvent 

As we have seen in chapter 4 coils start to overlap around 
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(note that also c* is only determined by a global length scale R*). Since every coil 
is a strongly fluctuating object, we also expect strong fluctuations in a semi-dilute 
solution near ¢ *. Therefore the mean-field description (4.6) is no longer applicable. 
The scaling expression for the osmotic pressure is now: 

(5.2) 

We recognize the ideal law (Van 't Hoff's law) valid at very small ¢, multiplied by 
a function I of the relative distance to the overlap concentration ¢/¢*. For ¢ -+ ¢* 
this function approaches 1 and at higher concentrations it follows a power law with 
exponent m: 

(5.3) 

This form is justified by the above-mentioned more extensive theories. The symbol 
is used for scaling relations and implies that prefactors are left out. Note that 

I(x) goes to 1 for x -+ 1 (or ¢ -+ ¢* ). Exponent m is now determined from an 
additional physical condition, i.e. that IT can not depend on N far into the semi­
dilute region. An entangled collection of very long polymers contains after all a very 
small concentration of end points, so that variation in their number can only have 
a very small influence on the osmotic pressure. Combining the 3 previous equations 
then gives m = 1/(3v - 1) = 5/4 and 

IT rv kBT ¢9/4 
b3 

(5.4) 

This law corresponds to the region in figure 16 where all curves coincide (indeed 
independent of N) and shows a stronger dependence on ¢ than the mean-field result, 
which is also found experimentally. 

The above derivation shows the typical structure used to derive a scaling law. 
The unknown quantity is written as a known law in the trivial regime (here Van 't 
Hoff's law in very dilute solutions) times a scaling function I. Now a characteristic 
parameter is assumed (here the segment concentration), which serves as an argument 
in the scaling function I, and the law is written analogously to equation (5.2). The 
scaling function I has the form of a power law (5.3) and connects to the trivial regime. 
An additional physical argument (here the independence on N) finally fixes the value 
of the exponent. 

A similar derivation can be given for the characteristic length scale ~ in a semi­
dilute solution: 

~ = NVbl(¢/¢*) (5.5) 

As we have seen before the characteristic length scale in the dilute regime is N V b. 
We again suppose a power law: 

(5.6) 

We use the same physical argument that the structure far into the semi-dilute 
solution does not depend on N. This now leads to m = -v/(3v -1) = -3/4, whence 
we find 

(5.7) 

28 

- 138 -



5.2. Physical picture of a semi-dilute solution 

Both results (5.4) and (5.7) are very important to understand a semi-dilute solution. 
In this section we try to elaborate upon this picture. The mean-field result for long 
polymers in a semi-dilute solution in a good solvent (X = 0) is given by (4.6) 

II ;:::;; kaT [:t + ~1>2 + ... J rv kaT 1>2 
LIe N 2 b3 

(5.8) 

The osmotic pressure is mainly determined by interactions between segments (the 
ideal part of the entropy is very small because segments are connectedinto very large 
units). The square of 1> in the above expression represents the probability of contacts 
(mainly pair contacts), viz. the probability 1> to find 1 segment times the probability 
1> to find a second segment nearby. 

Scaling theory (5.4) now gives the probability to find a second segment not as 1> 
but as w rv 1>5/4: a smaller number. This comes about because around one 'segment 
in a polymer chain there is always a "cloud" of other segments (of the same chain) 
that reduces the probability of finding a second segment: at a given contact between 
2 segments the surrounding segment clouds also have to come in contact leading to a 
stronger repulsion. 

Given this probability w rv 1>5/4 of a contact between 2 segments we can imme­
diately calculate how many segments 9 will lie between 2 encounters of one specific 
chain with other chains: 

9 rv 1>-5/4 

If we use this to calculate the (" end-to--Bnd") distance between consecutive en­
counters in a good solvent this gives 

gVb rv b1>-3/4 

This "mesh size" of the polymeric network is equal to the characteristic length ~ 
(5.7). A chain part of g segments with total size ~ was called a "blob" by de Gennes 
(see figure 20). 

Blobs 

Figure 20. A realization of the conformations in a semi-dilute polymer solution as a 
network with mesh size ~ or as a system of blobs. 
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Let us determine the segment concentration within such a blob. This is simple: 
there are 9 segments in a volume e which makes the concentration g/e ""' l/>/b3 . 

However, this is equal to the average segment concentration c, so we conclude that 
blobs do touch each other but do not overlap. This picture is confirmed if we rewrite 
the osmotic pressure (5.4): 

A semi-dilute polymer solution is an ideal gas of blobs! ~ apparently also can be 
interpreted as a "screening length" for the excluded-volume interaction: after a chain 
comes into contact with another polymer chain it seems as if it forgets which segments 
are on the same chain and which on neighbouring chains. Beyond this length scale ~ 
the chain will be ideal. 

We can now calculate the end-to-end distance for 1 chain: there are N / 9 blobs 
with "step length" ~ that themselves form an ideal chain. This implies 

(5.9) 

This relation with the volume fraction is experimentally verified. Note that this 
expression approaches the completely ideal expression R -+ Nl/2b when I/> -+ l. 
The same is seen from (5. 7): ~ -+ b. This is caused by the fact that in a melt 
no concentration fluctuations are possible and there is already an encounter with a 
different chain after a single step, so that the chain loses its memory right away. The 
fact that a polymer chain in a melt behaves ideally is also called Flory's theorem. 
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6. SUMMARY 

To end these lecture notes it is appropriate to give the following diagram from de 
Gennes' book, which summarizes many of the results we encountered: 
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Figure IV.S. 

N - 2 Nearly ideal chains -.p 
A crossover line L 
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I 
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" .. .,.- --------------- j 
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: semi dilute solutions in 
I 
: good solvent , 

Phase diagram for a polymer-solvent system. X is the Flory 
interaction parameter, and <P is the volume fraction occupied 
by the polymer. The condition X = 1/2 defines the Flory e 
temperature. In usual cases such as polystyrene-cyclohexane, 
X is a decreasing function of the temperature T; high tempera­
tures correspond to the lower part of the diagram. 
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7. ApPENDIX 

7.1. Derivation of the diffusion equation for an ideal chain 

In order to derive from relation (2.3) 

(7.1) 

an expression for P(R, N), we use the fact that N is large. This implies that 1 is 
small with respect to Nand r N is small with respect to R, so that P(R, N) varies 
only gradually and it makes sense to make a Taylor expansion of the function on the 
right-hand side around R =( x, y, z) and N: 

oP oP 
P(R-rN,N-1) ~ P(R,N) + oN(-l) + L oa(-rN,c<) 

a=x,y,z 

Since this function actually depends on 4 variables (N, x, y, z) with respect to 
which we expand, this simple Taylor expansion looks slightly terrifying (we only write 
down those terms that we ultimately need; i.e. to quadratic order for the derivatives 
with respect to R since the linear term turns out to cancel). We must now average 
this expression over all directions of r N, using the fact that there is no preferential 
direction for r N: 

o (7.3) 

(rN,c<rN,{3) = (rN,c<) (rN,{3) = 0 als a i= f! 

(r~,x) = (r~,y) = (r~,z) = ~ (r~) = ~b2 
Combining (7.1), (7.2) and (7.3) finally leads to to the following differential equa­

tion for P(R, N): 

oP = .!.b26.P 
aN 6 

where Do indicates the Laplacian: 

02 02 02 

Do = ox2 + oy2 + a z2 

Note that this derivation would in fact also be valid if we would not go back just 
one but several steps along the chain (although a small number compared to the total 
number of segments) as long as conditions (7.3) can be fulfilled. This is the case for 
a chain with a so-called short-range memory. Now b represents an effective segment. 
This substantiates the statements of the opening section of 2.4. 
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7.2. Solution for the probability of a Gaussian chain 

If we want to find the solution for (2.4), this can be easily done by using Fourier 
transformation 

P{k) == J eik-R P{R) dR 

and its reverse 

P(R) == (2:)3 J e-
ikR 

P(k) dk 

Taking the Fourier transform of (2.4) gives a simple differential equation for its 
Fourier transform 

with the simple solution 

( 
Nb2k2) 

P(k, N) = exp --6- (7.4) 

which reduces to (2.7) on reverse transformation. 

7.3. The differential equation for a Gaussian chain in an external 
field 

Here we consider a slightly more general case than in section 7.1 by placing a polymer 
chain in an external field. We define <p(R) as the energy a segment obtains at place 
R due to the interaction with this external field. We now have to modify (7.1) by 
taking into account the Boltzmann factor connected with this energy: 

P(R, N) = (P(R - rN, N - l»rN exp{ -<p(R)jkBT) 

In a Taylor expansion like (7.2) we must now also linearize this Boltzmann factor 
(this means that the segment energy must be much smaller than kBT; however, this 
may always be achieved by our freedom of dividing the chain into more segments) 
giving 

(7.5) 

Equation (7.5) is similar to a diffusion equation with an external field. In a 
slightly more general form (where a chain starts at point R' instead of the origin) P is 
replaced by the so-called Green function G = GN(R/R'), which has the character of 
a conditional probability: the probability of finding the end of a chain of N segments 
at point R given that it starts at point R'. ~ should be understood to be the second 
derivative to R (as opposed to R'). The negative of this form is 

(7.6) 

and bears a remarkable resemblance to the time-dependent Schrodinger equation 
for the wave function 7/I(R,t) (of a particle of mass m in an external potential V(R» 
in quantum mechanics 
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81/; Ii? 
-ih7it = - 2m /11/; + V(R)1/; 

with N now in the role of an imaginary time it/Ii. 
We will now follow the lines of argumentation of quantum mechanics in obtaining 

a number of useful results for our equation (7.6). A standard solution method of 
a partial differential equation like (7.6), called separation of variables, assumes a 
solution of the form: 

G = f(N)1/;(R) 

Substituting in (7.6) and rearranging gives 

_.!. df = ~ (-!b2/11/; + cp(R) 1/;) 
f dN 1/; 6 kBT 

(7.7) 

of which the left-hand side only depends on N and the right-hand side only on R. 
Since this would imply that both sides can be varied independently. However, they 
should always be equal so we conclude that both sides must be equal to a constant, 
say A: 

df 

dN 

-!b2/11/; + cp(R) 1/; 
6 kBT 

The solution of the first equation is simply 

= -Af 

feN) = cexp( -AN) (7.8) 

The second equation is an eigenvalue equation completely analogous to the time­
independent Schrodinger equation: 

1i2 
- 2m /11/; + V(R)1/; = E1/; 

so we must now find the eigenvalues An and eigenfunctions 1/;n(R) for this equation, 
obeying 

(7.9) 

Here we review a number of properties of the eigenfunctions of such an equation, 
for simplicity restricting ourselves to the case that the eigenfunctions are real. It is 
possible to construct a complete set of orthonormal eigenfunctions, with the property 

(7.10) 

(8nm = 1 if n = m and 0 otherwise). This can be easily proved for different 
eigenvalues An =1= Am using (7.9): 

(An - Am) j 7/Jn7/Jm dR = j(1/;mAn7/Jn -7/JnAm1/;m) dR 

_~b2 J (1/;m/17/Jn - 7/Jn/11/;m) dR 

o 
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The last step is obtained by integration by parts. Since An =1= Am this proves that 
J 1fJn 1fJ m dR = O. Further proof can be found in books about quantum mechanics. 

Combining (7.7), (7.8) and the solutions to (7.9) gives: 

where cn(R') indicates that the integration constant may be different for every 
n and can also depend on R'. Since (7.6) is a homogeneous, linear equation, linear 
combinations of its solutions are also solutions: 

n 

which is the general solution, since the 1fJns form a complete set. This expression 
can be further simplified since a chain starting at R' must have the same probability 
of ending at R as a chain starting at R to end at R': the expression must not change 
upon interchanging Rand R'. This implies 

n 

In the limit of very short chains (N -. 0) of this expression, we must require that 
the chain ends at the same position where it starts 

Multiplying with 7Pm(R), integrating over R, and applying (7.10) gives am = 1 
for all m. So our final expression is: 

(7.11) 
n 

If we allow complex eigenfunctions we have to insert a complex conjugate *: 

(7.12) 
n 

We can check this formula for the known case of rp(R) = O. Then the solutions of 
(7.9) are: 

exp(ik· R) 

.!.b2k 2 
6 

valid for every value of k. This means that there is a continuous spectrum of 
eigenvalues and the sum over n in (7.11) reduces to an integral over k: 

GN(RJR') = J exp(ik· (R - R'» exp( -~b2k2N) dk 

which is the Fourier transform of the usual Gaussian distribution. 
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7.4. Gaussian integrals 

Integrals containing Gaussian functions exp( -Ax2 ) can be derived in a simple way 
from the following standard integral 

By taking its derivative with respect to A we obtain integrals of the product with 
even powers of x, e.g. 

+00 

! 2 _Axl d __ dI(A) __ ~ pi _ ~ 11"1/2 
X e x - dA - dA VA - 2 A3/2 

-00 

and by taking higher derivatives we generate the higher even powers. Odd powers 
of x give 0 since the integrand is odd in that case: 

+00 J x2n+le-Ax2 dx = 0 

-00 

Using these formulas, averages can be calculated quite easily, e.g. 

From this last relation we can express A in terms of (x2 ). A normalized Gaussian 
distribution (in 1 dimension) is therefore also written like 

7.5. The Flory-Huggins approximation 

In a concentrated solution polymer chains are interpenetrating, so that a description 
at the level of individual chains does not apply. Here, we use the same lattice model 
as in 3.2 to determine the free energy in such a concentrated system. We follow the 
derivation of M. Doi in his Introduction to Polymer Physics (Clarendon Press, 1996). 
\Ve assume that np polymers each occupy N consecutive lattice positions and the 
remainder of the n lattice positions are occupied by n. = n - npN solvent molecules 
(each occupying 1 lattice position). Therefore, the polymer volume fraction in the 
system is r/> = npN In. If we now write: 
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the Helmholtz free energy is approximated as: 

A E 
-- = -In Z ~ -- - In W 
kBT kBT 

(7.13) 

So, like we did for the single chain, we should determine the total number of config­
urations of the system VV and its average energy E. For the average energy we again 
assume random mixing and interaction between adjacent lattice positions only, like 
in (3.8). In total the number of nearest-neighbour contacts is Dzj2, each partner in 
a contact having a probability ¢ to be a polymer segment and (1 - ¢) to be a solvent 
molecule. This gives: 

(7.14) 

The total number of polymer configurations W is harder to establish. Let us place 
the polymer chains on the lattice segment by segment. The first segment of the first 
polymer can be placed in D ways and each following segment at approximately z - 1 
positions with respect to the previous one. This gives WI, the number of realizations 
for the first polymer: 

WI = D(z - l)N-I 
For the j + 1st polymer to be placed the number of possibilities to place its first 

segment is already less, viz. D - N j, and for each of its next segments we must 
account for the probability that a lattice point is already occupied (for simplicity we 
assume that this is the same for every segment within one polymer, viz. (l-NjjD». 
This leads to the following expression for the number of realizations for the j + 1st 

polymer, Wj+!, 

[ ( N·)]N-I (N·)N wi+I~(D-Nj) (z-l) 1- d ~WI 1- d 
The total number of ways to place np polymers on the lattice is therefore 

1 np 

W=~IIWj 
p j=I 

The factor np! corrects for the fact that the polymer molecules are indistinguish­
able. The logarithm of W can be calculated simply by transformation to an integral: 

np 

InW = Lln(wjfj) 
j=I 

(7.15) 

Combining (7.13), (7.14) and (7.15) now gives an expression for the free energy of 
a system of volume fraction ¢ occupying n lattice points, A(D, ¢). In general, the free 
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energy of mixing Am is used, from which the free energy of the components before 
mixing has been subtracted 

Am(n, ¢) = Acn, ¢) - A(n¢, 1) - A(n(l - ¢), 0) 

This now leads to the celebrated Flory-Huggins expression: 

Am(n,¢) = nkBT [~¢ln¢ + (1 - ¢)In(l- ¢) + X¢(l- ¢)] (7.16) 

Note that in this case the usual solute term of the ·entropy of mixing ¢ In ¢ is 
multiplied by a factor 1jN and the energy of mi.xing X¢(l - ¢) contains the same 
chi-parameter as the energy for a single coil (3.9): 

_ z/::"c z(cpp + C33 - 2cps) 
X = kBT = 2kBT 

7.6. Literature 

These lecture notes are largely based upon a number of standard books about polymer 
theory. A modern book on a very basic level is: 

• A.Yu. Grosbergj A.R. Khokhlov, Giant Molecules (1997, Academic Press, San 
Diego) 

Several concepts are described in a relatively simple way in: 

• M. Doi, Introduction to Polymer Physics (1996, Clarendon Press, Oxford) 

Two classical books by Flory are: 

• P.J. E'lory, Principles of Polymer Chemistry (1953, Cornell University Press, 
Ithaca) 

• P.J. Flory, Statistical Mechanics of Chain Molecules (1969, Interscience Pub­
lishers, New York) 

Another older but useful book is: 

• H. Yamakawa, Modern Theory of Polymer Solutions (1971, Harper and Row, 
New York) 

The classical book about scaling theories is: 

• P.G. de Gennes, Scaling Concepts in Polymer Physics (1979, Cornell University 
Press, Ithaca) 

The first chapters of the following book give a short introduction to static prop­
erties: 

• M. DoijS.F. Edwards, The Theory of Polymer Dynamics (1986, Clarendon 
Press, Oxford) 

Finally, the Russian school of polymer physics is very well described in: 

• A.Yu. Grosberg/ A.R. Khokhlov, Statistical Physics of Macromolecules (1994, 
AIP Press, New York) 
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1. THE DL VO POTENTIAL 

It should always be remembered that the origin of forces between colloidal particles is 
molecular of origin. And although we will soon turn, as one of the many 
approximations necessary to arrive at results, to a continuous description of matter, it 
is instructive to write down the different contributions to the interaction potential V 
between two molecules: 

V = overlap repulsion (1) + elctrical multipole - elctrical multipole (2) + 
elctrical multipole - induced elctrical multipole (3) + dispersion (4) 

(1) 

Clearly, all these interactions can in principle be calculated exactly by solving the 
quantum mechanical Schrodinger equation for the two molecules under consideration. 
Such a calculation would give both the absolute intramolecular energies and charge 
distributions. However, this equation can only be solved in (very) simple cases and it 
is more convenient to interpret the total interaction potential as the sum of the 
contributions given in Eq. (l). Each contribution depends on molecular properties that 
can be derived from the Schrodinger equation as well, but some of these terms can 
also be expressed in a more intuitive (semi) classical form. 

Contribution (1) can only be understood in quantum mechanical terms as it 
represents the repulsion that occurs when the electron clouds of two closed-shell 
molecules start to overlap. In order to really let that happen the Pauli exclusion 
principle forbids more than 2 electrons in the same molecular orbital and thus forcing 
the electrons into excited state orbitals upon approach. This produces a strong 
increase in energy with the repulsion being approximately proportional to the square 
of the overlap and increases very strongly as the separation between the molecules 
decreases. This effect determines a molecule's size (cr), and also a distance of closest 
approach in a continuum description of matter. Usually, this overlap repulsion is 
described as a power law in the distance: VCr) = (cr/r)n. For n = 12, we obtain the 
repulsive term in the Lennard-Jones potential and for n = 00, we are in the limit of 
hard spheres. 

Electrical multi pole-electrical mUltipole interactions (2) occur between two 
molecules that posses net charges or an asymmetrical distribution of electrons or 
nuclei. This term can be (approximately) described by classical electrostatics. 

Electrical multi pole-induced multipole interactions (3) occur between a molecule 
with a permanent electrical multipole and a polarizable molecule, a term which can be 
described semi classical. 

Also the dispersion term (4) can only be described in quantum mechanical terms. It 
represents the coupling between a spontaneous dipole-induced dipole interaction. 

In Eq. (1) there is formally a fifth term that describes charge-transfer interactions 
between two molecules if they are very close together and if one of the molecules acts 
as a donator of electrons to the accepting molecule with an electron deficiency. For 
colloidal interactions this term is unimportant and we will not consider it further. 

In the following section we will give some (simplified) expressions for the terms 1-
4 from Eq. (1) in the case of two neutral molecules. The mono-pole moments that will 
be part in the case of charged molecules will not be considered but will be deferred to 
Section 1.4 and 1.5. Taken together these three simplified terms constitute the Van der 
Waals forces: the Keesom interactions, the Debye interactions and the London 
interactions. 
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1.1 \' an der \\' aals forces between two molecules 
Before turning to two spheres consisting of so many molecules that we will take their 
distribution as continuous, we will first consider the Van der Waals forces between 
two polar and polarizable molecules. As pointed out above, we will only keep 
simplified expressions. In terms of Eq. (I), we will only consider the second order 
terms in the full l11ultipole expansion; the mono pole terms arc zero because the 
molecules are uncharged. 

But first a few words about the origin of the names associated with these 
interactions that will turn out all to have an l/rb dependence on the intermolecular 
distance r. 

It was already Newton in 1686 in his Principia, as pointed out by Sparnaay [13], 
who discussed the attraction between t\\'o molecules separated by a distance r, in 
terms of a force, proportional to r'", where n > 4. He did of course not know the origin 
of such a force, but could show that if 11 would be smaller than four the interaction 
energy of a molecule \vith a large plate would turn out to be infinitely large. Van der 
Waals made in 1873 another major step when he treated the equation of state of a gas 
in his famous thesis [14] and separated out the short-range repulsive forces (term 1 in 
Eq. (1)), resulting in the excluded volume term (b), from the long range attractive 
forces that are described by the constant a: 

n-a 
7 J P+-

1 
.(V-nb)=nRT 

V-
(2) 

This is how the term Van der Waals forces came into being and in the beginning of 
the previous century several workers sought an explanation for these long range 
forces. The three contributions that turned out to be the most important are named 
after their inventors Keesom, Debye and London forces. 

Keesom interactions are Boltzmann-averaged interactions between two permanent 
dipoles (term 2 in Eq. (1)). It follows from simple electro statics that two dipoles 
placed head to toe are in their lowest energy configuration which is given by: 

(3) 

with III the dipole moment of the molecules and Eo the dielectric permIttivity of 
vacuum. To give some idea of the magnitudes of these interactions: two opposite 
elementary charges separated by a distance of 0.1 nm gives a dipole moment m = (0.1 
nm) x (1.6 x 10- 19 C) ::: 1.6 X 10-29 C.m = 4.8 D. The Debye is often used for dipole 
moments and equals 3.336 x lO~J() c.m. Permanent dipolc moments occur in 
asymmetric molecules and thus not in single atoms. Water has a dipole moment of 
1.85 D. Two dipoles with 11/ = lOin their lowest energy configuration have in 
vacuum an energy of kfJT (with kfJ Boltzmann's constant and T the absolute 
temperature) at a separation distance of 0.36 nm. These figures indicate that c1ipole­
dipole interactions in liquids, where the interactions are reduced by a factor [ the 
relative dielectric constant (i'j() for water), are not strong enough to lead to substantial 
mutual alignment. Therefore, the interaction energies between t\\O dipolar molecules 
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can he (Boltzmann) averaged rotationally in order to amve at the following free 
energy w(r) (see e.g. [7,5] for the derivation): 

(4) 

From the above it will be no surprise that the interaction between a polar molecule 
with a polarizable other molecule with polarizability a also has to be (Boltzmann) 
orientationally averaged leading to the so-called Debye or induction interactions: 

(5) 

Or, more generally if we consider two polarizable molecules with two dipole 
moments: 

(6) 

In order to get an intuitive idea of the ongm and magnitudes of the (electronic) 
polarizability a, let us imagine a one-electron atom whose electron (charge e) circles 
the nucleus at a distances R, which also defines the radius of the atom. If under the 
influence of an external electric field E the electron orbital is shifted by a distance 1 
from the original orbit around the nucleus (see Figure 1), then we get for the induced 
dipole moment: 

mind = a.E = l.e (7) 

The external force on the electron due to the field E is given by: 

Fext = e.E 
(8) 

which must be balanced at equilibrium by the attractive force between the displaced 
electron orbit and the nucleus and is given by the Coulombic force e2/4moR 2 

projected along the direction of the field (see Figure 1). The internal restoring force 
thus becomes: 

(9) 

At equilibrium Fex! = Fint and thus 

( 10) 

whence we obtain for the polarizability: 
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R.1 a= 41tEll ( I 1 ) 

The unit of (the electronic) polarizability is therefore 41tEo x (volume) or C
2
.m

2
.J 1 

and 
it is of the order of 41tEo x (molecular radius)3. For example, water has CX/41tEo = 1...1.8 X 

10.30 013, which would lead to a molecular size of 0.114 nm, where 0.114 nm is about 
15 % less than the real radius of a water molecule (0.135 nm) [5]. 

E .... 

E .... 

(a) (b) 

Figure 1 Induced dipole in a one-electron atom: a) no external electric field, b) in an external electric 
field with magnitude E which shifts the orbital a distance I from the nucleus, so that the induced dipole 
moment is nIlOd = I.e == a.E, where the polarizability is given by: a == 4n£oRJ [5]. 

The London or dispersion forces are conceptually the most difficult contribution to 
the Van der Waals forces because they are of quantum mechanical origin. They could 
therefore only be derived after the advent of this theoretical framework. Intuitively, 
their origin may be understood from realizing that for a non polar molecule the time 
average of its dipole moment might be zero, at every instant there exists a finite dipole 
moment because the electronic charge and the nuclear proton charge do not reside at 
the same position in space. This instantaneous dipole moment can induce by 
polarization a dipole in a nearby neutral molecule (or in other words the two 
fluctuating dipoles will couple). The resulting interaction between the two dipoles 
gives rise to an instantaneous attraction between the nonpolar molecules with a time 
average that is not zero. For getting even a semi quantitative feeling of this interaction 
we take an example from Israelachvili's book on interaction forces [5J. 

Let us consider the dispersion interactions between two Bohr atoms. In the Bohr 
atom one electron is orbiting a proton. The smallest distance (that there is a smallest 
distance and its size follow only from quantum mechanics) between the electron and 
the proton is known as the first Bohr radius ao. At this radius the Coulomb energy of 
the system, il41tEoao is equal to 2hv, or, 

2 
au = e 12(41tEo) hv = 0.053 nm (12) 

where h is the Planck constant and v the orbiting frequency of the electron. For a Bohr 
atom, V = 3.3 X 10 15 5:' and thus hv = 2.2 x lO<w 1. This is the energy of an electron in 
its first Bohr radius and equals the energy to ionize the atom, i.e., the first ionization 
potential!. As argued above the Bohr atom has no permanent dipole moment, but at 
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any moment the instantaneous dipole moment m is given by: m :::: ([".t' whose field will 
polarize a nearby other neutral apolar atom giving rise to an attractive interaction that 
is completely analogous to the dipole-induced dipole interaction discussed above. The 
energy of interaction is therefore given by (see Eq. (6»: 

(13) 

here u is the polarizability of the second Bohr atom, which from Eq. (II) is 
approximately given by 41t€o ao 3. Using this expression for u and Eq. (12) gives: 

~ .., 6 
w(r) ~ - u- hv/( 41tEotr (14) 

Apart from a numerical factor Eq. (14) is equal to the result that London derived in 
the 1930's using quantum mechanical perturbation theory. London's expression for 
the dispersion interaction between two different molecules is: 

3 U 1U 2 1/2 

2 ( 4 1tE J 2 r 6 . (II + 12 ) 

(15) 

Although London's equation has of course been foIlowed by more exact, and more 
complicated, expressions (see section 1) it gives fairly accurate numbers, though 
somewhat on the low side compared with more rigorous values. The 'derivation' of 
Eq. (14) also demonstrates that although the dispersion forces arise from quantum 
mechanical effects (which gave the strength of the instantaneous, but fluctuating 
dipole moments), the interaction itself can stiIl be seen as essentially electrostatic. The 
name dispersion force stems from the relation of the forces to the dispersion of light 
in the visible and UV part of the spectrum (as exemplified by v in Eq. (15». A more 
thorough account of molecular Van der Waals forces can be found in [5, 15]. 

1.2 Van der Waals forces between two spheres: Hamaker approach 
All contributions to the Van der Waals forces, induction, orientation and dispersion, 
have the same functional form and can be taken together as: 

(16) 

where the constants C can be taken from Eqs. (4), (6) and (15). From tabulations of 
the constants given in Eq. (16) it becomes clear that in almost all cases the dispersion 
forces are the most important, except for small polar molecules like water. 

The simplest approach to calculate the Van der Waals forces between macroscopic 
bodies (macroscopic in the sense that we will treat them as consisting of continuous 
matter) is to assume that the molecular contributions given above are pairwise 
additive. (Which as it turns out is for most substances not such a bad approximation). 
We can than obtain interaction energies from simple integration an approach first 
taken by a Dutch physicist called Hamaker [16]. The interaction energy dUll between 
two infinitesimal volume elements dVI=cLtl dYI dZ I and dV2=cLt2 dY2 dZ2 inside bodies 
1 and 2 respectively becomes then: 

( 17) 
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where the fJ's are the number densities of the molecules in the material I and 2. It is 
now a matter of algebra (or a numerical calculation) to obtain the interaction energies 
between the two bodies. An interesting feature of the 6th power dependence is that the 
resulting energies are scale invariant. (That means that two colloids at a separation of 
10% of their distance, say 10 nm, have the same interaction energy as two apples a 
few cm apart.). We will first present the interaction energy VI? between two infinite 
half-spaces at a distance h (because the half-spaces are infinite the energy is given per 
area of the half-spaces): 

(18) 

where we have combined (for historical reasons) 2rrC l 2PIP2 to form the Hamaker 
constant A I 2. (There is a very nice anecdote connected to this derivation (see [17])). 
The integration has turned the short range r-6 dependence into a quite long range H2 
dependence! Integration ofEq. (17) between two spheres of size 2R gives [16]: 

V - - AI2 [1 1 21 (X2 -1 'lJ' 12 --_. -'-+-1 + n --1-
12 .X-- - 1 ~X-- .r" 

(19) 

where x = rI(2R) is .the reduced distance between the spheres. 
Equations like Eq. (18) are still of not too much use in the description of 

interactions between two colloidal particles, because these are always dispersed in a 
dispersion medium and Eq. (18) describes interactions in vacuum. The very nice 
feature of the pairwise summation assumption is that it leads in a straightforward way 
to the interactions between two bodies 1 and 3 dispersed in a medium 3. The same 
principle behind the derivation therefore holds also for other forces that can be 
summed in a pairwise fashion (like gravity) and the principle behind it is therefore 
also called the principle of Archimedes (see Appendix A). From this principle it 
follows directly that by immersion of the two bodies into a third medium not the 
geometrical terms are changed but instead only the Hamaker constant according to the 
following equation (see Appendix A): 

(20) 

Similarly as for the case which Archimedes made famous with his outcry of 'Eureka', 
the combined Hamaker constant can both be positive and negative. For interactions 
between two similar bodies Eq. (20) reduces to: 

(2l) 

If we look at Eq. (16) it can be sho\\n that A 121 can be positive only and equals Ibc 
indicating that Van cler Waals forces between two bodies of the same material are 
always attractive! As mentioned for most substances the most important contribution 
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(c~rtaillly fur apolar substances) to th~ Hall1~lkcr cOllstant is gi\~11 by the dispersion 
interaction. from Eq. (15) it follows that approximately: 

(22) 

thus Eq. (21) and Eq. (20) become: 

(23) 

and 

(24) 

which is negative if A II > A:;:; > A33 or A II < A22 < A33. This situation occurs most often 
when a liquid (2) wets a solid surface (I) in air (3). Then A33 "'" 0 and often A II > An. 
This explains for instance why liquid helium \vill be attracted by a wall of a vesseL 
and form a relative thick film on the container wall. Because of its low viscosity it can 
even tlow out of the container (see for theory about \vetting phenomena the lectures 
by Blokhuis). 

Although a lot of approximations have been made these kind of combining 
relations are quite useful to estimate Hamaker constants between different materials 
from known values. To give just two examples: the Hamaker constant for a CaF2-

helium-air interaction would be predicted by Eq. (24) to be: Am "'" 
(~7.2--J0.057)(0-~0.056)x 10-20 = -0.58 X 10-20 J. A more rigorous value gives -0.59 
x 10-20 1. Similarly, for a quartz-octane-quartz system Eq. (23) gives: AI21 :::; 

'6 -! - ~ -~o 0 -~o 3 0-"0 [ E' ('./ ).3- '14 . .J rx 10 - = .15 x 10- J compared to 0.1 x 1 - J 5 J. ~stJmates can also 
be made from the following approximate values for interactions in water: 
A121: (30-10 for metals, 3-1 for oxides and halides, - 0.30 for hydrocarbons) x 10-20 1. 

1.3 Van der \Vaals forces between two spheres: Modern Theory 
For many situations in colloid science the approximate formulae derived in the 
previous section are accurate enough. However, it is clear that many approximations 
were made and that there are many places/levels where improvements can be made. 

In a book dedicated to him on the occasion of his retirement Overbeek remarks that 
is was perhaps his major discovery that he realized that the London-Van der Waals 
forces must show retardation at separations larger than the London wave length [18]. 
I n the same heuristic way as the dispersion forces were introduced above, it is not 
hard to understand \vbere such a retardation comes from. It was assumed above that 
the dipole moments that were present at each instant in time could induce a dipole in 
the other molecules instantaneously. It is clear that this can not be correct and in 
reality such an induced interaction can not travel faster than 'vvith the speed of light. 
This means that if the distance between the molecules becomes so large that the 
dipole moment in the first molecule has already changed, the interaction with the 
induced dipole moment is reducl'd. Overbeek asked Casimir whether he saw a way to 
a theoretical treatment of this problem and Casimir and Polder succeeded in 
formulating a quantum mechanical theory for these effects in the case of two metals 
[19]. It turns out that in the retarded limit the 1Ir (, potential is reduced to a faster 
decaying 1/ r 7 functional form. (Note that the other contributions to the Van der 
\Vaals forces do not 5hO\\ this rdardation). 
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U~iIl1:'. ad\al1ced quantum field theury cUl11bined \\ith ~tati\tical mechanics, Lir~hilf 
1201 and I:ller Dfyalu~hil1~kii 1211, derived the 1:'.l'neral case il1cluoin1:'. didel'lric 
materials. In this theory non-additivity effects and retardation are all treated in a 
natural way. Because the results were so complex it took a long way for them tu reach 
the complex tluids community. This only happened after Van Kampen and others, 
along the same treatment as \vas used by Casimir and Polder, had rederived the 
essential equations using a much simpler (semi classical) approach. It goes very 
roughly along the heuristic lines indicated abO\'e about the coupling of 
electromagnetic fluctuations traveling from the one body to the other, but is cast 
completely in terms of the dielectric responses of the bulk materials. Quite a lot of 
researchers subsequently simplified the equations to such an extent that it is possible 
to calculate Hamaker constants from just a few relevant dielectric properties of the 
materials under consideration. Here we witl just refer to the standard books on this 
subject [15, 4, 5, 7, 8, 10]. All geometrical equations of the previous section are 
obtained as limiting cases though, and the material properties like the Hamaker 
constant, are not derived from molecular but bulk dielectric properties. 

1,4 Overlap of flat double layers: Debye-Hiickel approximation 
The interactions between a charged surface and the distribution of ions, both frol11 
added salt (we will limit ourselves to so-called z-z symmetric salts) and counterions 
will be treated within the self-consistent mean-field Poisson-Boltzmann approach. In 
this approach the Poisson equation, which follows directly from the Coulomb law of 
electrostatics, is combined with the statistic mechanical Boltzmann equation in order 
to obtain the distribution of ions in the potential field of the plate v.lith a certain 
surface charge. We will treat the distribution of the ions along one plate first, after 
Gouy and Chapman who were the first to do this along these lines, and subsequently 
calculate the free energy difference of bringing two such plates together. 

The surface charge is supposed to be of uniform density and the ions are treated as 
point objects with no size, embedded in a solvent which is approximated as a 
continuous dielectric medium. The surface charge on the plate sets up a potential \jf in 
the solvent, which depends on the distance from the plate and which puts the free ions 
in the solution at an electrical potential energy. Conversely, the distribution of ions 
determines the local potential. The iterative or self-consisted way in which these 
dependencies are expressed is a combination of the Poisson equation, which relates 
the local charge density to the local potential, and the Boltzmann equation which 
describes the probability of finding an ion at a certain (electrical) free energy. The 
Poisson equation is given by: 

div(urad llf) = V\f = - P 
b ~ SE 

o 

(25) 

here p is the local volume density of charge, i.e., the number of charges per unit 
volume: 

r)="II-e 
t .L.J 1""'1 (26) 

vvhere the summation is oyer all the species of ion present with valency Zi and number 
density l1i, here ZI includes the sign of the charg.e. 
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The Boltzmann equation reads for an ion at potential 0/: 

(27) 

where Wi represents the work done in bringing an ion i up from the bulk, where its 
number density is nui, to a point in the double layer where the potentials is 0/. The 
amount of work Wi is now approximated as Wi = Zieo/. In other words the only work 
done that is taken into account is the electrical work done on or by the ion when it is 
brought into the double layer. This ignores work done to move other ions away or 
create a hole in the solvent, or any effect the ion has on the structure of the solvent or 
the distribution of the other ions. As stated above the ion is simply treated as a point 
charge. 
Combining Eqs. (25)-(27) gives the Poisson-Boltzmann equation (PB): 

(28) 

If the electrical energy is small compared to the thermal energy (Izieo/I < kBn it is 
possible to expand the exponential in this non-linear equation. Neglecting all but the 
first to terms: 

(29) 

The first summation must be zero because of charge neutrality in the bulk solution, 
thus: 

(30) 

where 

(31 ) 

This linearization of the PB equation is called the Debye-Htickel (DH) approximation 
because it was used by these workers in their theory of strong electrolytes. Eq. (30) 
can be solved easily and one obtains: 

(32) 

with % the surface potential. The quantity K·
j 

the Debye-Hiickel screening length 
plays an important role in the theory of the double layer. From Eq. (32) it can be seen 
why, as in this approximation it determines the extension of the double layer and the 
region at which the potential around a colloid is different from that of the bulk where 
it is zero. Apart from some fundamental constants, K depends only on the temperature 
and the ionic strength I defined as: I == (1I2)I,Ci Z j2 where Ci is the ionic concentration 
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in moi/i. A useful rule of thumb is obtained by filling in the constants for water at 
room temperature (25°C): 

(33) 

Thus for a solution of 1: 1 electrolyte at 10.3 M the double layer thickness is 9.6 nm. 
At 10.6 M it is 304 nm. 

For flat plates the non-linear PB equation can be solved analytically using a 
mathematical trick. However, in these notes we are more concerned with spherical 
double layers so we will refer to the literature for this result [2, 4, 9]. Without giving 
the full result it is easy to see that even in the case of high surface potentials at large 
distances 'V becomes small and the long distance tail of the potential takes on the 
exponential form given by Eq. (32), but now with a different scaling factor which is 
determined by the full solution. Because an other particle will only sample the not too 
high potential regions the exponential form is often used. 

(j 

o 
h/2 

h z 

Figure 2 Two interacting negatively charged surfaces 
separated by h experience a repulsive force as they are pushed 
together. 

Before turning to the 
much more difficult 
problem of a double layer 
around a sphere, we will 
first gi ve one 
thermodynamic path of how 
to obtain the amount of 
work done if two flat double 
layers are brought in each­
others neighborhood and 
start to overlap, i.e., the free 
energy as a function of 
distance between two 
infinitely large spheres. In 
the case of overlapping 
double layers the 
mechanism of surface 
charge regulation becomes 
of importance. There are 
several mechanisms by 
which a surface can obtain 
and regulate a surface 
charge, some of the most 
important are: 1) A very 
small imbal ance in the 
amount of crystal lattice 
anions or cations (e.g., as in 

the case of AgI crystals in water). 2) Surface dissociation. 3) Crystal lattice defects. 4) 
Surface absorption of ionic species. The problem of how the surfaces regulate their 
charge on the surface on overlap of two double layers is complicated and also depends 
on the mechanism of charge generation and maybe even the speed of approach. This 
problem has not yet been solved unambiguously [9]. However, it can be shown that 
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real systems will lie within the borders of a constant surface charge upon approach 
and a constant surface potential, for the moment we will assume the latter. 

One other subject that is still to this date a matter of controversy in the literature is 
the experimental determination of the surface charge or potential. Again going into 
this would lead us much too far astray, but is should be mentioned that a lot of 
experimental observations are not yet explained satisfactorily [7,9]. 

Lets now tum to the work required to bring two plates from infinity to a separation 
distance x in the limit where we can use the DH approximation. There are several 
ways to obtain this free energy difference of double layer overlap Vd10 in the case of 
flat plates [1-2], here we will only go into one, called the 'force method' by Overbeek 
[2]. If the plates are brought together reversibly all the forces on the system should 
cancel because a reversible path goes through equilibrium states. We can use this 
balancing of forces to recognize that the free energy difference can be obtained by 
integrating the osmotic pressure n difference (compared to the bulk) at the midplane 
between the plates from infinity to the separation distance h: 

It 

Vd/o = -f ndx 

o 
Zmid 

(34) 

Figure 3 Superposition approxi­
mation for two similarly charged 
surfaces. If the surface charges on the 
surfaces on the plates are thought to 
be unaffected by the overlapping 
double layers, the resul ting charge 
distribution is the sum of the two and 
by the linearity of the Poisson 
equation the resulting potential at the 
midplane will also be the sum of the 
unperturbed potentials, which can be 
related to an osmotic pressure at the 
midplane by the Boltzmann equation. 

The rationale behind Eq. (34) is that symmetry dictates that at the midplane the 
electrical forces on the ions are equal and thus there is no excess charge at this 
position as well, both because the potential has a minimum here. In the PB approach 
there are no correlations between the ions so the osmotic pressure of the non 
interacting ions is simply given by the 'ideal gas' value: 

n := kBY eLI ndmidplane - [I ndinfinity). 

In the linearized DH approximation of small potentials one can take the potential at 
the midplane as twice the potential of the single plate potential as given by Eq. (32), 
see Figure 2. This leads to the following double layer overlap potential: 

Vllo = 2££oK\jf~ exp( -K' h) (35) 

Similarly as stated above, in the limit of large separations also the curves with high 
surface potential will adopt a limiting form similar to Eq. (35), again with a different 
'apparent' surface potential, see Figure 4. It should be remarked that even in the 
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'simple' two plate geometry the general case can not be treated analytically anymore 
and all kind of approximate formula's or numerical schemes have to be used (see for 
more details [2, 9]). 

1O~ 

Constant 
charge 

Constant potential 
~ 
~ 

(-. 

~ 
~ 
~ 'f's'" 1 
~ 
~ 

10-3 '--___ -'--___ ---'-___ -L __ -----L 

o 2 4 6 8 
\'h 

1.5 Double layer overlap between two spheres 

Figure 4 Two identical 
overlapping flat double 
layers immersed in an ionic 
solution. Results are shown 
in reduced units and as force 
curves for two different 
surface potentials and 
assuming both a constant 
charge and constant surface 
potential. The curves are 
calculated using the exact 
theory also indicated are 
approximate results along 
the lines of Eg, (35). At large 
separations the approximate 
results are quite good [4J. 

It will be no surprise that in the much more awkward geometry of two spheres 
analytical results are even harder to obtain. Not even for a single double layer around 
a sphere are there analytical results that hold for a reasonable range of parameters and 
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semi-empirical equation's have been proposed [9}. Only in the case of the DH 
approximation one obtains an analytical result. Because of the symmetry of the 
problem the PB equation can best be given in spherical coordinates. In these 
coordinates the Laplace operator takes the form: 

1 d (2 d 'V) -II --- r - = ,6,llf = - n 7. exp(-7 e llf / k T) 
J d d 't' iii "I ~l 't' B r- r r EEo I 

(36) 

linearizing the exponential (e-x
"" 1- x) leads to (compare with Eq. (30)): 

(37) 

Solving Eq. (37) gives a screened Coulomb or Yukawa potential: 

'V='Vo aexp[-K(r-a)] 
r 

(38) 

where a is the sphere size. 

At double layer overlap the situation is even worse. Only for very thin double layers 
compared to the sphere size it is possible to use the so-called Derjaguin 
approximation. This approximation comes down to using the results obtained between 
flat plats to derive equations for large interacting bodies. For interactions between two 
colloidal spheres the limit of very thin double layers is totally uninteresting. However, 
because the Derjaguin approximation can also be used with other potentials and is 
useful in interpreting measurements done with the surface force measurements it is 
gi ven in Appendix B. 

For smaller values of Ka « 5) the Derjaguin procedure breaks down. Verwey and 
Overbeek have shown that for low surface potentials and if an error of up to 40% can 
be tolerated approximate formulae in the spirit of Eq. (35) (i.e., by taking sums of 
potentials) can be derived resulting in again a Yukawa or screened Coulomb form: 

here x = r/a=r12R. 

1 exp[- Ka(x -1)]· 
V diu = 1tEE 0 Ka'V 0 -=-=-------'''­

x 

1.6 Summation of forces 

(39) 

The combination of the forces resulting from the overlap of two double layers treated 
theoretically within the assumptions behind the PB equation and the Van der Waals 
forces constitute the DLVO potential: 

(40) 

In this equation we have added the forces that determine the closest distant of 
approach of two colloids through a strong and steep repulsion caused by the Pauli 
exclusion principle of electrons in filled orbitals (see Eq. (1 ». This repulsion is also 
quite naturally taken up into a closest distance of approach in the Van der Waals 
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forces that would otherwise diverge. For two spheres of the same size and using the 
approximations for the interactions as used in these notes the DL YO potential 
becomes: 

., exp[ - Ka(x - 1)] . 
V DLVO = 1t££" Ka\jf;) + 

x 
(41) 

One can find numerous forms of DL VO equations, even within the PB approach, it is 
therefore important to look at which of the many approximations have been used and 
for what situations the equations are valid. 

In a schematic way the different potential shapes, depending on the constants, Eq. 
(41) can give rise to are given in Figure 5. 
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Figure 5 Schematic interaction potentials between two charged colloidal spheres according to Eq. (41) 
[5]. 
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1.7 Deviations from DLVO 
Most of the shortcomings of the Van der Waals forces have already been discussed 
and with sufficient effort they can at the moment be calculated to great accuracy. The 
most serious problems arise from the fact that the Lifshitz treatment is a continuum 
approach and thus if effects that are a consequence of the molecular discreteness are 
involved the theory fails. For most colloidal interactions there are no indications 
though that these effects are very important. 

There are more (known) problems with the PB description of the double layer 
interaction potentials. Already mentioned is that in this equation the finite size of the 
ions and correlations among them are completely neglected. Finite size corrections 
were realized quickly and the 'Stem' layer of closest approach of hydrated ions is one 
of the earliest examples to remedy this neglect. It has not been until the advent of 
computer simulations, however, that both new theoretical improvements and the 
accuracy of the PB approach could be explored fully. It goes too far to discuss these 
matters in length here (see e.g. Refs. cited in [7, 22]). One of the most important 
conclusions is that for 1-1 electrolytes at not too high surface potentials and not too 
close separations the PB equation gives a fair to good description. (It is also relevant 
in preparation of what follows to remark that between two equal surfaces no 
attractions have been observed). If the coupling between ions becomes stronger, like 
for higher valency ions, PB breaks down and qualitatively different behavior is 
observed [7, 22]. 

It also seems that equations that are derived under the DH approximation are 
relati vel y useless because in practice surface potentials are often higher than ca. 25 
m V. However, it is already discussed that this assumption also gives a good 
description at larger separations if an adjusted surface charge or potential is used. 
Furthermore, it has been shown theoretically that the DH approximation results in a 
description that is thermodynamically consistent and can be derived as a limiting case 
within the framework of liquid state theories (see e.g., the lectures of Briels). This 
thermodynamic consistency is not achieved by solutions obtained from the full non­
linear PB equations! Both theoretical work and computer simulations have given 
additional justification to the use of potentials of the Yukawa form. For instance, 
Alexander et al. have shown through calculations of salt and counterion profiles in a 
spherical Wigner-Seitz cell that also for strong interactions between the colloids an 
effective Yukawa pair interaction is obtained if the volume fraction of the particles is 
not too high. The charge must be renormalized and the double layer thickness 
adjusted compared to the DH value [23]. Furthermore, Lowen and Kramposthuber 
have shown from ab initio theory that screened Coulomb potentials can be used in 
many instances as good approximations, but that both the screening length and 
effective charge have to be adjusted. Moreover, it tums out that in these strongly 
interacting systems the effective surface charge and screening length become 
dependent on the phase as well [24]. 

Now that we have some understanding of the ideas, approximations and limitations 
behind the DL VO potential(s) it is time to see what experimental methods have been 
developed over the years to measure these interactions in a direct way. A development 
which recently has been speeded up, partially from new input from the related field of 
biology inspired physics and from recent experimental findings that will be described 
in Section 3. 
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2. MEASURING INTERACTION POTENTIALS 

[n this Section we will limit ourselves to a qualitative description of direct methods to 
measure interaction forces. With 'direct' is meant that the measurements give force­
distance curves in an unambiguous way. This excludes methods like osmotic pressure 
measurements, where only information of a thermodynamic nature is obtained, which 
can not be directly translated into a force law, or methods that determine only a 
certain aspect of the force distance relationship like adhesion measurements or 
coagulation studies. We also exclude potential measurements that rely on an inversion 
of structural information obtained through scattering studies. Although this method is 
in principal direct in the above sense it is clear that, largely because of experimental 
limitations, the inversion procedure is 'ill-defined' and does not give unambiguous 
potentials (see e.g., [25,26] and refs. cited). 

2.1 Surface Force Apparatus (SFA) 
The first attempts to measure both double-layer and Van der Waals forces started in 
the early fifties in Russia by Derjaguin [27] and in the Netherlands by Overbeek [28] 
and their coworkers. These studies were performed with set-ups that were essentially 
similar to what would later be called the surface force apparatus. However, the forces 
measured were limited to the retarded regime at large surface-to-surface separations 
because of the roughness of the fused quartz and glass surfaces that were used. It was 
not until the end of the sixties that Tabor and Winterton started using cleaved mica 
which made it possible to measure force-distance curves down to molecular 
separations [29]. Native mica crystallizes in layer structures which can be easily 
cleaved providing a clay-like atomically smooth surface over a large area, ideally 
suited for force measurements both in vacuum annd in liquids. It is quite remarkable 
though that just such a 'trivial' matter of obtaining atomically smooth surfaces over 
large areas has held up the measurement of forces at non-retarded and important range 
of distances for quite a number of years. 
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Figure 6. Surface Force Apparatus (SFA) with which force-distance curves can be obtained 
between molecularly smooth mica sheets with A (0.1 nm) resolution and a force sensitivity around 
10 nN (10.8 N) [5J. 

The modem version of the surface force apparatus is conceptually simple and is 
depicted in Figure 6 [5]. The separation between the mica surfaces, which are glued 
onto two quartz pieces with a radius of curvature of 1 cm and are silvered on the back 
with a partially reflecting silver film, can be determined with an accuracy of ] A (0.] 
nm). This high accuracy is reached by analyzing the interference that results from 
multiple reflections of white light by the silver layers on the mica in a spectrometer. 
Measuring the di stance between the surfaces with A accuracy is only half of the story, 
it is also necessary to have this accuracy in positioning the surfaces. This is 
accomplished by a three-stage mechanism. The smallest scale displacements (between 
1-\ 0 A) are achieved by means of a piezoelectric tube that can translate the upper 
mica surface. In piezo electric materials an electric field can cause the crystal lattice 
to expand or contract, e.g ., by about 1 nm per volt that is applied across the surface of 
the cylinder wall. Positioning of the lower mica surface on the] nm level is achieved 
by a two spring construction where the difference in stiffness or spring constant 
between the stiff double-cantilever spring and the helical spring attached to the lower 
micrometer rod. Therefore, a displacement of the lower micrometer results in a nm 
displacement of the lower mica surface, in the absence of forces between the mica 
surfaces. Afte r calibration of this positioning system the actual displacement of this 
surface can be measured from the interference between the crossed mica surfaces. The 
difference in displacement can be converted to a force by using the calibrated spring 
constant of a force measuring spring. The second, lower mica surface is attached to 
such a force measuring spring of which the stiffness can be varied (by a factor of 
1000) by moving a clamp. In this way both attractive and repulsive forces can be 
measured with a ~cnsitivity of about 10 nN (J 0.8 N). Finally, an upper rod can move 
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the whole section of springs over distances between I l-lm and I cm, but it is not used 
during the actual force measurement. Within the Derjaguin approximation (Appendix 
B), which is clearly a very good approximation between these macroscopic surfaces, 
the ratio of the measured force and the radius of curvature, FIR, equals 2rrU, where U 
represents the interaction potential per unit area. Physically, this equivalence means 
that at a distance h between the curved mica surfaces an average is measured of all 
interaction forces larger than h. The result of this averaging, the total force equals the 
sum of the forces between the surface segments from infinity to h, is the energy at h. 

In vacuum the forces between the mica sheets are solely due to Van der Waals 
forces. After all kind of corrections, like change of curvature of the mica sheets due to 
deformation of the glue by the strong attractive forces, the measured force curves 
come to within 10 per cent of the calculated curves using the Lifshitz approach over 
the full range of separations [5]. Immersed in water the mica surfaces obtain a 
negative surface charge by the dissociation of potassium ions and a double-layer is 
formed. In this way the DL VO theory was tested at different ionic strengths and 
potential determining ions (see Figure 8 and Figure 9). 
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Figure 7 Attractive van der Waals forces between two curved mica surfaces 
measured in an aqueous electrolyte solution with the SFA [5]. The measured 
non-retarded Hamaker constant is 2.2 x 10.20 J. Retardation effects become 
apparent at distances above 5 nm. 

At this date the SFA has been quite important in the measurement of all kinds of 
forces, besides Van der Waals forces and double-layer forces [30, 31], examples are: 
capillary forces, solvation forces [32], adhesion forces [33], 'hydration' forces [34, 
35], depletion forces [36, 37J, steric repulsion forces [38, 37], or special 'gel-like 
short-range' forces on silica [39, 40], and forces that were hardly considered before 
the experiments, like attractive hydrophobic forces [41, 5] and oscillatory structural 
forces [5]. All these forces are not elaborated on here, because under conditions under 
which they are measured it is clear where the assumptions underlying the DLVO 
potential are not met and/or why the description breaks down. It should be mentioned 
here that recently these tests are not limited anymore to just one kind of surface, mica 
in water. For instance, the mica can be used as a substrate to adsorb a thin film of 
some other material, for example, lipid monolayers, metal films. proteins etc. (sec for 
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Refs. in [5 D. In the case of opaque materials a capacitance method replaces the optical 
technique for measuring distances with similar overall accuracy [42]. Furthermore, 
Horn t't al. have finally found a way to make silica surfaces smooth enough so that 
they could be used in the SFA as well down to molecular levels [43] . The trick is to 
blow small glass bubbles very fast from the melt so that the surface tension can keep 
the surface molecularly smooth. 

Recently, the SFA measurements have also been extended to the measurement of 
dynamic interactions and time-dependent effects like the viscosity of liquids in very 
thin films, measurements which are outside the scope of these lecture notes . 

Under circumstances where the assumptions and limitations of the PB approach are 
met and at distances not too close to contact, no important deviations, that were not 
expected see Section 1.5 , have been reported see e.g. Figs. 7-9. 
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Figure 8 Measured double layer and Van der Waals forces betwee n two curved mica sheets in the SFA 
in dilute sa lt so lutions [5]. Curves are C:llcu lated using a Hamaker constant of 2.2 x 10.20 J (see Figure 
7) and the constant charge and potential limits are drawn. 

The most serious critique against the SFA apparatus measurements is that it is never 
clear how well the macroscopic surfaces are representative for the surfaces of 
colloidal particles was somewhat alleviated by measurements with the SF A between 
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two surfaces at which colloidal spheres were adsorbed [44]. Of course this kind of 
approach goes at the cost of accuracy in the distance determination and the geometry 
becomes less well defined. Also the critique that the time scales of approach are 
completely different than in the colloidal domain is not alleviated. With the 
measurement of depletion potentials, where it is also assumed in the theories that one 
of the colloidal entities is much larger than the other, the measured potentials are 
probably close to 'true' colloidal potentials. For instance, recent measurements in 
which depletion forces were measured at a high volume fraction of microemulsion 
droplets [36]. In this case a true potential of mean-force was measured showing 
maxima and minima in the force curves as a consequence of the structuring of the 
droplets by the high volume fraction and the presence of a wall. 
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Figure 9 DL VO potentials measured between two sapphire surfaces in J 0-3 M NaCI solutions at different pH. Full 
curves have been calculated using the potentials shown and a Hamaker constant of 6.7 x 10-20 J [5 j. 

2.2 Atomic Force Microscopy (AFM) 
The development of the atomic force microscope was a direct consequence of the 
development of the scanning tunneling microscope (STM), but can in retrospect also 
be seen as a natural continuation of the ideas behind the SF A. The most important 
difference is that the forces are not measured between two macroscopic bodies, but 
between a fine tip and a surface [45]. The tip radii can be as small as one atom or 
larger than 111m. Because of this reduction in size compared to the SFA the spring 
constants need to be much smaller and the displacements of these springs need to be 
measured still with high accuracy. Already, spring constants as small as 0.5 N.m-' are 
used and displacements as small as 0.01 nm can be accurately measured. A schematic 
diagram of a typical set up is given in Figure 10. Position detection of the spring is 
achieved by reflecting a laser off the back of this spring onto a position-sensitive 
detector. The tip is moved over the surface by a piezo-scanner (not shown) and the tip 
deflection is used in a feedback loop operated via another piezoelectric tube to 
maintain a constant force between the tip and surface by changing the height of the 
tip_ With the tip signal from the feedback loop as a function of position an image of 
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the surface can be created. Or with the known spnng constant force versus distance 
curves can be obtained. 
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Figure 10 Schematic depiction of an Atomic Force Microscope (AFM). Spring constants as small as 
0.5 N.m'l can be combined with position determination of the spring of 0.01 nm to allow for the 
measurements of forces smaller than 100 pN (10,]0 N) [7J. 

Although 'atomic forces' can in principal be measured with the AFM we are here 
more interested in the extension of this technique to the measurement of forces 
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Figure 11 DL YO potentials as measured between a silica sphere (size 5 11m) and a glass plate in water 
with added salt measured with an AFM. Surface potentials were taken to be equal for the sphere and 
plate at values of -105 mY and -42 mY [501. 
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between a particle in the colloidal size range and a wall. Ducker t't a/. [46] and Butt 
[47J were among the first to do this between a silica sphere glued to the AFM tip and 
a tlat glass surface in aqueous salt solutions out to surface separations of 60 nm. 
Similar measurements with silica particles were done by Meagher [48]. Li et a/. 

extended the method in the sense that they measured the potential between two 
polystyrene particles [49] of which one was glued to the tip and one was stuck to a 
glass surface. All these measurements found fair agreement with potentials derived 
using the PB approach (some used linear equations others like Butt and Li et al. 
numerically solved the full non-linear equations). Excellent agreement was found by 
Hartley et af. [50] who not only measured the force-distance curves between silica 
spheres and mica and silica surfaces, but also independently determined the ~ 
potential of the spheres by electrophoresis measurements and of the surfaces by 
streaming potential measurements [9]. An example of their careful and accurate 
measurements is given in Figure 11. 

2.3 Total Internal Reflection Microscopy (TIRM) 
Prieve and coworkers [51, 52, 53] developed a method to measure the interaction 
force between a colloidal particle and a wall, which is referred to as total internal 
reflection microscopy (TIRM). The name is somewhat confusing as it was already 
used as a general microscopy technique where imaging relied on an evanescent field. 
When light is incident upon an interface from the more optically dense side (for 
instance glass) at an angle exceeding the critical or Brewster angle, total internal 
reflection occurs producing an evanescent wave in the less dense medium (e.g., air or 
water). If the interface is smooth no light is transmitted normal to the interface into 
the less dense medium. Imperfections the size of the wavelength or larger will scatter 
light and appear bright against a dark background. This way of imaging is used to 
inspect optical surfaces or as a special contrast technique in biology and is also 
abbreviated TIRM. Prieve et af. made use of the fact that the irregularity in the 
evanescent field could also be a colloidal particle. If such a particle will have a 
sufficiently large refractive index and is brought within a few thicknesses of the 
evanescent wave it can start scattering and thus transfer energy from the evanescent 
field into a propagating wave travelling away from the dense material. This situation 
is called 'frustrated total internal reflection' and Chew et af. [54] solved the Mie 
scattering problem of a single dielectric sphere by an evanescent wave. This solution 
can be used to accurately determine the height of a colloidal particle close to a wall. 

prism 

Figure 12 Schematic diagram showing the scattering cell for total internal retlection microsco[)y 
(TIRM) measurements on colloidal particles; the (photometric) microscope is not shwon [51]. 
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In this method a relatively large colloidal particle, e.g., a silica sphere with a 
diameter of 10 11m is allowed to sediment until the gravitational pull and the repulsive 
interaction forces with the wall are of even strength. Because of the Brownian motion, 
the particle will not be stationary but sample positions around this equilibrium point. 
These distances are measured as mentioned above and the potential between the 
particle and the wall can be evaluated around this equilibrium point by assuming a 
Boltzmann distribution of the distances. 

Brown et af. extended the technique by combining it with optical tweezers (see 
Appendix C) which give additional control over where the equilibrium position of the 
particle could be placed and thus were the potential could be sampled [55, 56, 57J. In 
addition the tweezers made it possible to measure the absolute separation distance 
between the sphere and the reflecting surface. 

Interaction potentials of polystyrene latex spheres of different size and at different 
ionic strengths were measured carefully by Bike et al. [58, 59J. They did not use 
tweezers, but were able to get absolute distance measurements. An example of the 
potentials, which were in good agreement with DL VO potentials, they obtained is 
given in Figure 13. 

Dynamic measurements of the hindered diffusion of the colloid can also quite 
easily be made by feeding the light to a correlator [51, 60J 

o 0.2mM 
• 0.5 mM 
o I.OmM 
• 3.0 mM 

• \ • • • 
• ~ 
• ~ • \ • • 
• '¢ 
• 0 

0 

• • 
• 

, ~T---'-"----'-~~"j 

Cb 
o 
~) \ 

• 0y, 

~O • • • • • • • 

o 
o 
o 
o 
o 
o 

j 

I 

1~L-~~~~~~~~~~~~~~~L-~~~~~ 

o 50 100 150 200 

h (nm) 

Figure 13 Double-layer potential as measured with TIRM of 15 flm diameter latex sphere above 
glass as function of the ionic strength [59]. 

2.4 Direct Imaging 
The above mentioned methods always involve one component that is not of a 
colloidal size. Quite recent methods, almost all relying in some way or another on 
direct imaging of the particles, finally make it possible to measure force-distance 
curves between two colloidal particles and have the potential to be used even in the 
very relevant concentrated regime. However, to this date only a handful of 
measurements have been reported between two colloidal spheres in 3D in the very or 
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semi-dilute regime where only a few particles are interacting. It is expected though. 
that it is only a matter of time before the assumption of pair-wise additivity of 
colloidal interaction potentials can be tested experimentally under concentrated 
conditions. In the following we will briefly discuss the papers that have appeared 
already. 

The first papers [61, 62, 63], appeared in 1994 and the interaction potentials were 
extracted by using digital video analysis to obtain particle coordinates and an analysis 
based on the radial distribution function, g(r), to obtain the pair-wise inter particle 
interaction potential U(r) through the relationship: 

U(r) = -k8Tln(g(r) (42) 

The radial distribution function essentially gives the chance of observing a particle 
pair with a separation distance r, see the lectures by Briels. In general U(r) is not the 
effective pair potential, but the so-called potential of mean-force. This potential 
describes the potential of a pair of particles in the presence of the interactions with all 
the neighboring particles as background. Only in the limit of 'infinite' dilution when 
only isolated pairs of particles interact one obtains the effective pair potential. 

Fraden et al. analyzed the interactions between two spheres that were confined to 
an almost two-dimensional (2D) plane by the double layer repulsion of two glass 
walls separated by only several micron [61, 64]. The only way they could get good 
statistics was to measure at finite concentrations where more than two particles were 
interacting at the same time. In order to correct for these effects and obtain a true pair 
potential they used Brownian dynamics computer simulations in an iterative 
procedure. Carbajal-Tinocco et al. used the same experimental procedure as Fraden et 
aI. and also got similar results [65]. They measured also potentials at higher 2D 
concentrations and used the Ornstein-Zernike equation together with several closures 
to obtain the effective pair potential from the measured potential of mean force (see 
the lectures of Briels). These results will be discussed more fully in Section 3.4. 
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Vcrsmold el 01. analyzed their potentials at sufficiently low density that three body 
interactions could be neglected and they analyzed their separations at least 2 micron 
away from the glass walls [63J. To get good statistics more than 20.000 video pictures 
were analyzed. (However, they do not describe how it was possible to get accurate 
distance measurements, because an ordinary microscope was used and the particles 
were not confined in any way .) 
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Figure 14 Measurement of pair potential 
from direc t imaging and optical tweezers 
manipulation [66]. Top: Distribution of 
particle separations initially at ret) which 
evolved to ret + 33 ms). Deviations from 
the line are the result of interactions 
between the spheres. The density of 
points does not renect the probability of 
finding the spheres at a certain 
separation, but rather the frequency of 
which they were put there with the 
tweezers. Inset shows a his togram of the 
same data set but now normalized as a 
propagation matrix. Bottom: sample 
potential curve between two latex 
spheres in water. Fit is to a 'charge­
regulated' DLVO potential [66,67] . 

Also in 1994, Grier et al. presented interaction potentials between two charged 
colloids in water far enough in the bulk to exclude any wall effects [62]. They 
measured the potential by analyzing the statistics of the displacements of the colloids 
in a set time interval after they were first put at a specific initial separation with laser 
tweezers (see Appendix C) [66]. In this way they were sure to measure only pairs and 
still got good statistics relatively easily. There were also no problems to determine the 
true separations, because the tweezers confined the particles first in the focal plane. 
To give some numbers: around 20.000 images of sphere pairs taken in 1130 sec 
intervals suffice to measure an interaction potential with a 60 nm spatial resolution 
and 0.2 kT energy sensitivity over a range of 6 Jlm [66]. A sample measurement from 
their paper on the experimental details of the determination of the pair potentials is 
given in Figure 14 [()6]. (It should be men tioned here that some aspects of the 
procedure Grier ef al. use in their analysis are unclear [67]) . 

Of more recent date are measurements performed by Sugimoto et al. who did not 
use Eg. (42) to obtain U(r), but instead used the potential well created in the ccnter of 
the optical traps (sec Appendix C) to obtain the pair potential of latex spheres in water 
[68]. (Although not the potential of interest for these lectures , depiction forces 
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induced by polymers between a latex sphere and a glass wall have also been measured 
with optical tweezers [69]). 

The ability to measure interaction forces between two colloidal particles both in the 
bulk of a dispersion and in confinement, have already provided very interesting 
results. even though almost all were limited to the very dilute regime. These will be 
discussed in the Section 3.4. 

In this section two papers that make use of magnetic forces to measure colloidal 
force-distance curves are also worth mentioning, despite the fact that this method is at 
the moment limited to emulsion droplets with quite special properties. The emulsion 
droplets are filled with a ferrofluid, which can be magnetized in a magnetic field. The 
magnetic dipolar interactions can subsequently be used to 'handle' the particles in 
similar ways as can be done with the optical tweezers. Bibette et al. used the dipolar 
interactions to have the ferrofluid droplets, which interact without the magnetic fields 
as charged particles, self-organize in strings [70]. By changing the field strength the 
equilibrium distance between the magnetic dipoles could be balanced against the 
double-layer repulsion. By calibrating the dipole moments and measuring the inter 
particle distances in the chains through the Bragg reflection (but this could have also 
been done by imaging) force curves in agreement with DL VO were obtained. 'Weitz et 
al. used a variation of this method to measure attractive interactions as well. In order 
to do this they changed the geometry by forcing the particles in a 2D layer between 
two glass plates [71]. In this geometry the dipoles are repulsive. They obtained the 
attractive forces drawing the particles together after the magnetic field was switched 
off by analyzing the (stationary) velocity of the particles as a function of distance and 
converting this to force vs. distance with the known drag coefficient. 
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Appendix A The Principle of Archimedes: Effect of the suspension medium 

We will calculate the effect of the suspension medium on the Van der Waals forces 
between two bodies, but the principle used is quite general and we will only use the 
additivity assumption. In order to calculate the interactions between the two bodies 1 
and 2 dispersed in 3 we consider the thermodynamic path depicted in Figure 25. In the 
initial state bodies 1 and 2 are immersed in 3 but infinitely far apart. We can regard 
the molecules 3 in the place where body I will finally be as constituting a 'ghost­
body' 3 as depicted. Now lets remove both body 1 and 3 from the medium to vacuum. 
The change in free energy for this step is: 

(44) 

where D is the distance from 'body 3' to body 2 and Fi is the interaction energy of the 
isolated body i with a universe of medium 3. The energy change in removing body 3 
not just - F3 but -CFJ-VJj(D) + V32CD» as its environment is not just pure 3. The 
energy V32CD) - V]JCD) represents the change in the interaction energy of body 3 with 
its environment, when the molecules of 3 that would have occupied the position of 
body 2 are replaced by body 2. In the second step body 3 and body 1 are placed back 
into the medium but with their positions changed. The free energy change of this 
second process is: 

(45) 

The interaction energy V123CD) of bodies 1 and 2 at separation D immersed in medium 
3 is given by 

V123 (D) = M'+M = VI2 (D)+ V33 (D)- VI3(D)- V31 (D) 
(46) 

Because of the pairwise summation method: Vk;(D) = -Akj V(D) where V(D) is a 
positive function only of the geometry of the system and independent of the nature of 
bodies I and 2 and Akj is the vacuum Hamaker constant. Thus Eq. (20) is obtained in 
which 

(47) 

Figure 25 Thermodynamic path for calculating the interaction energy between two 
bodies 1 and 2 immersed in a third medium 3 [6]. 

I'".(f) )~ 1r+1r 
~V,.(f) )+V,,(f) )-v,,({) )-\',.(1)) 

45 

- 178 -



Appendix B Derjaguin Approximation 

Derjaguin realized that when surfaces are uniformly curved, their (attractive) force 
relates to the interaction energy between two planar surfaces. As an example 
demonstrating this principle (see [7]) we will consider the interaction (here taken to 
be Van der Waals) between a sphere with radius R at separations h + R, which will be 
taken to be very small, from a half-space as given in Figure 26. Thus we assume in 
the deri vation that R > > h. Then we can calculate the force F acting on the sphere by 
considering the interaction energy V at two positions displaced by an infinitesimal 
distance dh: 

F = _V_C_h )_-_V_( h_+_d_h_) 

dh 
(48) 

When hlR is small, we need only to consider the shell with thickness dh (in the ::. 
direction) closest to the half-space; the shell on the other side of the sphere makes a 
negligible contribution to the force because of the large separation of the interaction 
potential contribution. 

At a lateral distance r from the point of closest approach of the sphere, the shell is 
at a distance hi from the surface. From hi to hi + dh there exists a circular strip with 
volume 2nr dr dh . From simple geometry it follows that hi = h + //2R as long as R 
» r. We know the interaction energy per unit volume as Vdh). As in Eq. (48) we 
obtain the total force by integrating over r so that 

R=.oo 

F;2 = f 2npV12(~)d r 
(49) 

o 
= 

= 2npR f V;2(~)d ~ 
h 

Where we have used the geometrical relation between hi and r and extended the upper 
integration limit because we assume Vdh) is negligible for hi of order R. If we 
compare Eq. (49) with the interaction energy between two planar surfaces, Eq. (18). 
The final integration step leading to Eq. (18) amounts to an integration over planar 
sheets of thickness dZ2 so that 

= 

V I2 (h) = area f PVI2 CZ )d Z 
o 

(50) 

with Vi2 is the interaction energy between a molecule and a half-space. The integrals 
in Eqs. (55) and (50) are the same except for the integration variables and thus 

(51 ) 

as long as radius R is large enough compared to the range of Vdh). 
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In the derivation only the additivity assumption is used, not the interactions self, 
therefore this result is quite general as long as the potentials are additive and the range 
is short compared to R. Similar equations can be derived for two crossed cylinders 
with radii R I and R2: 

And for two spheres: 

R 

Sphere 

--------.... 

Ring of Radius r 
Volume 2rcr drdh 

Figure 26 Calculating the force between a sphere and a half-space. 

(52) 

(53) 
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Appendix C Optical Tweezers or Single-beam gradient optical traps 

The ability to measure forces in the pN range over nm distances with light was 
initiated by Ashkin in the early 70's when he showed that it is possible to move and 
trap atoms and dielectric particles with a highly focused laser beam [134]. The 
particle refractive index, np, has to be higher than that of the dispersion medium, nllZ, 
or, m= nlnm, has to be larger than 1. There are several regimes, depending on the 
ratio of the particle diameter, a, and the wavelength in the medium, A, and m, in 
which these forces can be calculated or approximated. 

The first regime of electromagnetic radiation interacting with a dielectric sphere is 
called the Rayleigh regime. A Rayleigh scatterer is a particle with a size much smaller 
than the wavelength, a « A. In this regime the particle can be replaced by an 
effective dipole moment. If we consider the most simple optical trap formed by 
focusing a laser beam with a Gaussian intensity profile across the beam (e.g., like the 
fundamental spatial mode of a laser, the TEMoo mode) propagating along the z 
direction and with polarization in the x direction than we can distinguish for this 
scattering regime two kinds of forces acting on the particle. These are the gradient and 
scattering forces. The gradient force tends to pull the particle into the region of 
highest intensity thus minimizing the energy of the dielectric sphere in the 
electromagnetic field. In the transverse directions the gradient is due to the Gaussian 
intensity profile. In the z direction the presence of a focal point creates the gradient. 
The second force, the scattering force, is due to radiation pressure and destabilizes 
along the z-direction by pushing the particle out of the trap. There is, however, a small 
region where the gradient force exceeds the radiation pressure, thus defining the 
trapping region. Although most particles of interest will not fall in the Rayleigh 
regime, it is only for this regime that analytical results can be given. We will present 
these formula's, because they give at least a feeling for the relevant parameters of the 
problem. Under the above mentioned assumptions the gradient force, Fgrad on a 
particle is given by [135]: 

F = 41ta 3 ( m 
2 

- 1 ). VI 
grad C m2 +2 

(54) 

here c is the velocity of light in vacuum, I the light intensity. The scattering force is 
given by [135J: 

(55) 

The most important conclusions, which are valid in the other regimes as well, that can 
be drawn from these equations is that there is an unequal dependence of the forces on 
the sphere size and refractive index and that there is an optimal radius and refractive 
index difference for trapping of spheres. 

On the other extreme are particles that are (much) larger than A. Here one enters the 
regime of geometrical optics and the forces can be calculated (numerically) by using 
ray optics and summing over all directions of the highly focused light. Again the 
forces can be decomposed in a trapping gradient contribution and a destabilizing 
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scatlering contribution [136]. These calculations can be summarized by stating that 
the optimal refractive index difference is close to m = 1.6. (In this regime the results 
are not depending on the radius anymore). It is likely that the ray optics calculations 
still give a reasonable estimate at particle sizes of about SA [136]. 

In the intermediate regime, the most relevant for most applications of the tweezers, 
the particle size is of the order of the wavelength (m is relatively large) and the 
interactions with light are called Mie scattering. In this regime the forces are by far 
the most difficult to calculate and for the geometry of a highly focused light beam 
these calculations have not yet been done! For Mie scattering in the case of a plane 
wave of incidence, it is still possible to find an analytical solution, although in the 
form of a slowly converging series. For most other particle forms or a strongly 
converging light beam this is not the case. 

The development of optical tweezers and very sensitive position detection has 
benefited a lot from researchers from the biophysical community. In this field there 

Figure 27 Schematic diagram of 
a single beam optical trap or a 
pair of optical tweezers [140]. 

have already been quite a number of successful measurements of very small forces (~ 
I pN) on bio-molecules and a lot of quite advanced manipulations with the optical 
tweezers. To build up a simple set of tweezers is not hard and well described in the 
literature [137, 138, 139]. Recently, tweezers are finding their way to the colloid 
community as well [140]. 
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2 PARTICULATE COLLOIDS: ASPECTS OF PREPARATION AND 

CHARACTERIZATION 

ALBERT PHILIPSE 

2.1 Introduction 

Dispersions of inorganic colloids have been prepared and processed since the very 

beginning of human technology. Already around 7000 Be, about 4000 years before the 

invention of the wheel, the Near East produced complicated ceramic shapes, which 

manifested a thorough practical knowledge of concentrated clay dispersions and their 

processing. Such knowledge is still indispensable in the fabrication of traditional 

ceramiCS, such as pottery. The desired outcome of shaping techniques, such as the slip 

casting of clay dispersions, critically depends on the skilful preparation of collOidal 

suspensions. Important parameters are the shape and size distribution of particles, 

their concentration and state of aggregation, which is controlled by ionic strength and 

polymeric additives. Optimization of these parameters is often a labOriOUS trial and 

error process and, so, it is not surprising that details of industrial preparation are 

usually either patented or kept confidential. Another impressive and historical example 

of dispersion preparation underlies the very pages on which this text is written. 

Papermakingll starts with the degradation of wood chips to an aqueous suspension of 

cellulose fibres with a large percentage of fibres with dimensions in the collOidal size 

range. Inorganic particles, in the form of silica or bentonite sols, are added to improve 

the quality and rate of papermaking, a process which comprises the filtering and 

drying of the mixture of fibres and sol particles on a wire. Dried sheets run out of a 

papermaking machine at a rate of a few hundred metres per minute, or even faster, 

and any slight change in the properties and composition of the starting dispersions 

may have a dIsastrous effect on this very rapid process. 

Paper also reminds us of other colloidal fluids, such as paints and ink, with roots 

nearly as ancient as those of ceramic suspensions. The example of ink preparation by 

the Egyptians for writing on papyrus is well known2). The Roman author Vitruvius 

1) S.G. Mason. Tappi 33 (1950) 440; R.B. McKay (Ed.). Technological Applications of Dis­
persions, Marcel Dekker (1994 J. 
2) K. Beneke, Zur Geschtchte der Grenzjldchenerschetnungen, Verlag Reinhard Knof. (1995 J. 
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2.2 PREPARATION AND CHARACTERIZATION 

(born around 100 BC) mentions in his De Architectural) the deposition of soot on a 

wall and its manufacture to ink by miXing it with gum (resin). This is an early reference 

to steric stabilization of inorganic collOids, in this case carbon particles in water. The 

carbon colloids function as pigments giving the ink its colour. Many other pigments in 

printing ink:, paints and plastics are found in the form of finely ground inorganic oxides 

or hydroxides. Iron oxides (see also sec. 2.4d) such as red haematite (a-Fe20 3 ), dark 

brown maghemite (y-Fe20 3 ) and black magnetite (Fe30 4 ), were widely applied in 

ancient painting2l and still belong to the most important pigments3l. 

In paintmaking we probably fInd the earliest examples of colloid preparation that 

goes beyond the mere processing of natural materials. The ancient Egyptians, for 

example, knew how to synthesize the green pigment verdigris, mainly composed of 

Cu(OH)2' and a silicate pigment known as Egyptian blue with CaCuSi40 lO as the main 

component4 ). Also, for these synthetic materials grinding or mil1tng must have been 

required to obtain the desired pigment dispersion. For direct precipitation of inorganic 

particles in a liquid phase, or at least reports thereof, we have to make a leap in 

history. The Flemish chemist van Helmont (1577-1644) fused silica sand with excess 

alkali to form so-called waterglass and discovered that silica was recovered by treating 

the waterglass with acid5 ). Interestingly, waterglass is still a major source for the prep­

aration of silica particles and gels. The method, as will become clear in this chapter, is 

also a didactic illustration of many aspects of particle formation (see also sec. 2.4a). 

Another earlier documented example of inorganiC collOid synthesis is that of the 

pigment Prussian Blue (iron (III) hexacyanoferrate (II)). It was discovered in l71Or;) that 

when solutions of potassiumferrocyanide and ferric chloride are mixed, deep blue 

particles precipitate instantaneously6l. This beautiful classroom demonstration of 

colloid formation raises a number of questions for the attentive student, as soon as it 

is realized that precipitates are actually sub-Visible collOidal particles or agglomerates 

thereof (a by no means triVial insight). What determines the sizes of the collOidal 

particles and how can they be controlled? What factors determine the growth rate of 

particles and why is it that nucleation is sometimes extremely fast and sometimes 

extremely slow? How can we characterize and control the size distribution of particles? 

What other methods are suitable to mOnitor properties of the dispersed colloids? 

1) VitruVius, On Archttecture, edited and translated by F. Granger, Harvard Univ. Press (1931-

34). Two volumes. 
2) W.J. Russell, Ancient Egyptian Pigments, Nature 49 (1894) 374. 
3) A. GiItes, Eisenoxid Ptgmente in; Ptgmente, Ullmann's Enzyklopadie der Technischen 
Chemie, 3 AufI., Band 13, Verlag Chemie (1951-70). 
4) K. Volke, Kolloidchemie tm Altertum, Akadernie der Wissenschaften der DDR. Forschungs­
institut fUr Aufbereitung Freiberg (1989). 
5) W.H. Brock, The Fontana History oj Chemistry, Fontana Press (1992). 
6) Prussian Blue colloids are a true classic: Selrni studied their precipitation as early as 1847. 

Renewed interest was sparked by their magnetic properties, see S. Choudhury, N. Bagkar, G.K. 
Dey, H. Subramanian, and J.V. Yakhmi, Langmuir 18 (2002) 7409. 
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Such questions motivate us to study in this chapter several aspects of preparation 

(sec. 2 .2) and characterization (sec. 2 .3) of mainly inorganic colloids. The aim is to 

provide a brief introduction. comprising some basic principles. useful facts and 

characterization methods. together With references for the reader to pursue a topic in 

much more depth than is possible or desirable in this chapter. The focus will be on 

colloids With (approximately) spherical shapes, which simplifies the treatment, and is 

also reasonable in view of the Widespread study of colloidal spheres. Nevertheless, an 

occasional reference will be made to anisotropic particles to do some justice to the 

inorganic colloids in nature and industry With sometimes quite extreme aspect ratios 

(fig. 2.1), as in the clay dispersions referred to earlier. 

2.2 Preparation 

Insoluble substances. such as metals and their oxides, do not disperse spontaneously 

in water, so work is needed to bring them into a dispersed colloidal state. One strategy 

is prolonged milling and fracturing of minerals in a solution of stabilizing surfactants 

or polymers until a colloidal system is obtained. A drawback is the broad variety in 

Figure 2.1. Examples of random packings of inorganic model colloids With Increasing shape 
anisotropy: (a) silica spheres. (b) haematite spindles . (c) boehmite-silica rods, and (d) imogolite 
fibres. (Sources, see ref. ll .) 

1) Pictures redrawn from D.M.E. Thies-Weesie, A.P. Philipse, J . CollOid Interface Sci. 162 
(1994) 470 (a); D.M.E. Thies-Weesie. A.P. Philipse. and S. KluiJtmans . J. CollOid Interface Sci. 

174 (1995) 211 (b); M.P.B. van Bruggen, Langmuir 14 (1998) 2245 (c); and G.H. Koenderink. 
S . Kluijtmans, and A.P. Phillpse. J. Colloid Interface Sci. 216 (1999) 429 (d). 
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2.4 PREPARATION AND CHARACTERIZATION 

b - .... · ..... -

d 

Figure 2.2. Some examples of industrial inorganic colloids: (a) cordierite particles prepared by 
milling used in refractories, (b) kaolinite platelets used in porcelain, (c) magnetite particles in 
ferrofluids (courtesy of Diona Bica, Timi§oara, Romania) and (d) alumina grains In sintered 
ceramics. 

shapes and sizes of the final colloids (fig. 2.2). To achieve better control of the 

morphology of colloidal particles, a condensation (or precipitation) method is 

preferred. Here, the colloidal state is approached from a molecular solution in which 

solute molecules are made to precipitate or polymerize into large units. The distinction 

between the two methods, milling and precipitation, can be illustrated by using a glass 

beaker in the preparation of a silica sol as the starting material. Glass largely consists 

of amorphous silica and hardly dissolves in water of pH - 7. So, to bring the material 

of the beaker into a colloidal state, we could fracture it and treat the glass pieces in a 

ball mill in water until a sol is obtained. The condensation alternative would be fIrst to 

dissolve the glass pieces in a strongly alkaline sodium hydroxide solution to obtain 

waterglass, which is then diluted to a low weight percent of soluble silica and aCidified 

to neutral pH, during which collOidal silica Will preCipitate (see also sec. 2.4a). 

Acidification is needed here to achieve a sufficiently large supersaturation of dissolved 

silica, exploiting the fact that the solubility of silica strongly decreases below pH - 10. 

The glass milling produces a polydisperse sol, whereas silica polymerization in a 

waterglass solution can be controlled to yield silica particles With a narrow size 

distribution in what can be counted as one of the classic sols of inorganic collOid 

- 199 -



PREPARATION AND CHARACTERIZATION 2.5 

chemistryl J. 

In principle, any substance can be brought into colloidal dispersion via precipitation 

in a supersaturated solution. All that is needed is a method to achieve a sufficiently 

large supersaturation of the desired material to induce homogeneous nucleation (sec. 

2.2b) and prevent or control heterogeneous precipitation (sec. 2.2f). Of course, 

measures must be taken to ensure colloidal stability of the growing particles, such as 

increasing the particle surface charge (keeping the pH far away from the isoelectric 

pOint) or adding a stabilizing protecting polymer. A high supersaturation can, for 

instance, be achieved by a chemical reaction which produces a poorly soluble 

substance. A clasSic example2J is bubbling hydrogen sulphide through a saturated 

arsenic trioxide solution to produce an arsenic trisulfide sol 

[2.2.1] 

Other strategies involve mixing two soluble salts: 

[2.2.2] 

the reduction of a metal salt to produce metal collOids 

[2.2.3] 

[2.2.4] 

and the hydrolysis of metal salts to form oxides or hydroxides 

[2.2.5] 

[2.2.6J 

PreCipitation can also be induced by a change in temperature, pH or solvent com­

pOSition. For example, when water is added to a sulphur solution in ethanol, sulphur 

particles precipitate because sulphur has a much lower solubility in water3J. Metal 

alkoxides are increasingly used as alternatives for inorganic salts in collOid synthesis. 

The alkoxides easily hydrolyze to reactive monomers, which polymerize to form 

discrete particles or gels (networks of particles). The archetypical example is silicium 

tetraethoxide or tetraethoxysilane (TES)' which hydrolyzes as 

[2.2.7] 

1) R.K. Her, The Chemistry of Silica, John Wiley (1979). 
2) For this and other clasSical examples, see Colloid Science I, Irreversible Systems, H.R. 

Kruyt, Ed., Elsevier (1952). 
3) This is the so-called Von Weimarn sulphur sol. 
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2.6 PREPARATION AND CHARACTERIZATION 

where R is an ethoxy or other alkoxy group. Partially hydrolyzed TES molecules 

polymerize Via condensation reactions such as 

(OR)3Si-OH + HO-Si(OR)3 -7 (OR)3 Si-OSi(OR)3 + H20 

[2.2.8J 

(OR)3Si-OR + HO-Si(OR)3 -7 (OR)3 Si-O-SHOR)3 + ROH 

Such condensation reactions, depending on the reaction conditions (see e.g. the silica 

synthesis in sec. 2.4a), may under well-controlled conditions lead to well-defined silica 

spheres or networks and gels of aggregated small particles. For inorganic colloid 

syntheses, such control of particle size and structure is the exception rather than the 

rule, and is based on in-depth studies as illustrated by Her's classic study on silicall . 

2.2a Size control 

Dispersed systems, in which all particles have the same or nearly the same size, 

have always attracted the attention of colloid SCience. Such monodisperse (also 

referred to as homodisperse or isodisperse) sols may be of practical importance; 

colloidal crystals in photonic materials require uniform particles, and semiconductor 

colloids in the nanometer size range have specific optical properties, which are very 

sensitive to particle size2J . The sizes of silver halide colloids for so-called photographic 

emulsions need to be controlled to less than about 5% to optimize their photographic 

properties3J ; a demand which implies tight control of particle nucleation and growth. 

However, for many practical suspensions, such as in paints or ceramic processing, a 

modest polydispersity is not a serious problem, and is sometimes even beneficial. For 

example, the random packing density of spheres mixtures is greater than that of 

monodisperse particles and, consequently4J, the Viscosity of the mixtures is generally 

below the ViscoSity for monodisperse spheres at the same volume fraction. Thus, 

manipulating the size distribution may be helpful for the processing and densification 

of sols of ceramic particles. 

One academic motivation for monodispersity is its requirement of a critical test for 

theories of colloidal systems or thermal systems in general. Thermodynamically 

speaking, colloids are nothing but giant molecules but their large sizes allow studying 
:J 

for example, their (thermo)dynamics Via light scattering techniques or microscopy. 

Preferably there is only one particle size, or a very narrow size distribution, in the sol 

to keep theory and data interpretation manageable. James Clark Maxwell, unaware of 

the eXistence of isotopes, argued5J that the monodispersity of atoms could only be 

Il R.K. Her. loco cit. 

2) See for example C.B. Murray, C.R. Kagan, and M.G. Bawendi, Ann. Rev. Mater. Sci. 30 
(2000) 545. 

31 LH. Leubner. Current Opinion Colloid & Interface Sci. 5 (2000) 151. 

4) For the viscosity as a function of volume fraction, see secs. 6.8 and 6.10. 

5) .J.e. Maxwell, Nature 8 (1873) 437. 
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PREPARATION AND CHARACTERIZATION 2.7 

secured by the Lord himself. The need for divine intervention on the colloidal scale 

may be disputable, but the preparation of large quantities of nearly identical inorganic 

colloids is certainly a demanding task, largely due to unavoidable thermal fluctuations 

in a precipitating solution as will be explained later. The importance of monodispersity 

was already clearly perceived from the beginnings of colloid science, as witnessed in 

the work of Jean Perrin Il on the verification of Einstein's theory for Brownian motion 

and his demonstration of the thermodynamic equivalence between colloids and 

molecules referred to above. Einstein derived that the average mean square 

displacement, <r2) = 6Dt, of a collOidal particle in time t is determined by the 

translational diffusion coeffiCient 

D=kT/f [2.2.9] 

which expresses that Brownian motion, driven by the thermal energy kT, is counter­

acted in a liquid by the hydrodynamic friction factor f . Einstein's results are valid for 

particles of arbitrary shape2J but, of course, for an experimental test f must be 

specified. The obviOUS choice is the Stokes friction factor, namely f = 61f1]Q. , which is 

valid for a hard sphere of radius a in a solvent with viscosity 1]. Thus, the diffusive 

displacements of monodisperse spheres with known radii provide a test of the Einstein 

equations without any adjustable parameter. The well-known outcome of this test by 

Perrin3J is often considered as the first decisive evidence for the existence of 

molecules4J
. Perrin realized that this evidence was as strong as his colloids were 

monodisperse and, so, he and his co-workers undertook a laborious fractional sed­

imentation procedure to obtain a few hundred milligrams of uniform resin spheres 

from an initial weight of a kg of gamboge or mastic. This substance was dissolved in 

methanol and then precipitated by dilution in a large volume of water, resulting in 

monodisperse fractions of emulsions of spherical particles with a wide variation in size 

between these fractions. 

Fractional sedimentation, which in Perrin's case took several months, is not a very 

practical procedure. An interesting alternative is the addition of non-adsorbing 

polymers, which cause a depletion attraction (see sees. V.l.S an 9) with strength 

depending on the particle size. The repeated, size-selective, phase separations may 

produce quite uniform emulsionsSJ . Nevertheless, if possible we would like to avoid 

fractionation altogether. Realizing that nature provides a very limited source of mono­

disperse COllOids, at least with respect to inorganiC particles, we need to understand 

the essential aspects underlying preparation of uniform particles by preCipitation from 

a solution. 

II J. Perrin, LesAtomes, Alean (Paris) (1913). 
21 A. Einstein, Ann. Phys. 17 ( 1905) 549. 
31 J. Perrin. Ann. Chim. Phys. (8) 18 (1909) 5. 
41 M. Kerker, J. Chem. Educ. 51 (1974) 764. 
51 ,J. Bibette. J. CollOid Interface Sci. 147 (1991) 474. 
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2.8 PREPARATION AND CHARACTERIZATION 

We note here that the triad in Perrin's approach. namely the preparation of well­

defined collOids. the characterization of their size distribution (dispersityJ. and their 

eventual application to investigate a physical problem. has served as a model strategy 

ever since. An example of such an application is the study of concentrated monodis­

perse sols to be discussed in chapter 5. 

T 
stable Tc 
solution 

spinodal 
decomposition 

2.2b Homogeneous precipitation 

x 

Figure 2.3. Schematic phase diagram 
for a solution. which becomes super­
saturated upon cooling; x is the solute 
mole fraction and T is the tem­
perature. 

If a substance becomes less soluble by a change of some parameter. such as the 

temperature decrease in fig. 2.3. the solution may enter a metastable state on crossing 

the binodal in the phase diagram. In the metastable region. the formation of small 

precipitates or nuclei initially increases the Gibbs energy; thus. demixing by nucleation 

is an activated process, occurring at a rate, which is extremely sensitive to the extent of 

penetration in this metastable region, as will be discussed in 2.2c. In contrast, when 

we quench the solution into the unstable region on crossing the spinodal (fig. 2.3), 

there is no activation barrier to form a new phase. This is the so-called spinodal 

decomposition (briefly alluded to at the end of sec. 1.2.19) in which a spongy phase is 

formed With a characteristic wavelength 1) rather than the collection of particulate 

colloids formed by nucleation and growth. The morphological contrast is illustrated by 

fig. 2.4 shoWing a labyrinth-like silica structure, resulting from spinodal decomposition 

in a cooling silicate melt2J compared With discrete silica spheres prepared by 

nucleation and growth in a silica precursor solution (Stober synthesis. see sec. 2.4a). A 

slow rise in supersaturation by slowly changing temperature or pH in fairly dilute 

solutions favours the formation of particulate colloids. because we then avoid a deep 

quench in the phase diagram (unless we are close to the critical point). Well-known 

examples are the slow precipitation of silica particles in aqueous silicate solutions at 

near-neutral pH and the nucleation of sulphur colloids upon addition of water to a 

sulphur solution in ethanol (see also sec. 2.4). 

1) J.W. Cahn, Trans. Me tall. Soc. of AIME 242 (1968) 166. 

2) H. Xihuai. J. Non-Cryst. Solids 112 (1989) 58: S.G.J.M. Kluijtmans. ,J.K.G. Dhont, and A.P. 
Philipse, Langmuir 13 (1997) 4976. 
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PREPARATION AND CHARACTERIZATION 2.9 

Figure 2.4. Left: a spongy structure of amorphous silica (so-called porous glasses). prepared 
by spinodal decomposition of a silica-containing melt. Right: amorphous silica spheres. formed 
by nucleation and growth in a solution (see sec. 2.4a). The spheres have been imaged in situ by 
cryogenic electron microscopy (see sec. 2.3 a). 

We will briefly recapitulate ll the thermodynamics of homogeneous nucleation. i.e. 

particle formation in a solution with one solute only. a topic initiated in sec. 1.2.23d. 

Classical nucleation theory is based on an approximate macroscopic description 

according to which a precipitating particle (later referred to as a nucleus or cluster) is 

considered to consist of a bulk phase, containing N? molecules and a shell with Nf 
molecules of type i (fig. 2.5). The particle is embedded in a solution containing 

dissolved molecules i. The volume of this solution is large as compared with that of the 

particle, so that the former acts as the surroundings of the latter. The Gibbs energy of 

the particle consists of a bulk part and a surface part 

[2.2.101. 

This follows from [I.A3 .81. except that the amounts of substance and the chemical 

potentials are now written in terms of molecules rather than moles. The surface 

tension is taken as a constant and. for lack of better inSight. equated to its bulk value. 

which is hardly measurable anyway, see sec. IILl.13. Implicit is the assumption that 

the size of the particle is large enough to ignore its influence on r. Unlike the 

equilibrium state underlying [I.A3.81. characterized by equality of 111 throughout. we 

now conSider a non-equilibrium situation in which the solution is supersaturated; the 

activity a j > a j (sat). As a result, transfer of molecules takes place. We compute the 

change 60S upon the transport of a small number N j of molecules from the solution 

to the particle. Obviously. this consists of two contributions 

I ) For an extensive treatment see F.F. Abraham. Homogeneous Nucleation Theory. AcademiC 
Press. (1974) and P.C. Debenedetti, Metastable liqUids: Concepts and Principles . Princeton 
University Press. (1996). The last author also discusses spinodal decomposition and the still 
poorly understood transition from nucleation at very high supersaturation - deep into the 
metastable region - to spinodal decomposition. 
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2.10 PREPARATION AND CHARACTERIZATION 

( a) (b) 

Figure 2.5. In classical nuclea­
tion theory a nucleus (left) is 
modeled by a droplet com­
posed of bulk molecules and 
surface molecules, which have 
a higher free energy per 
molecule than the bulk. The 
nucleus is not necessarily 
spherical and is modeled here 
(right) by a spherocylinder. 

[2.2.11) 

Of these, the first is negative (it is the driving force), the second is positive (work has to 

be carried out against the expansion of the interface). We have, upon Withdrawing N 

molecules from the solution, transferring them to the bulk of the particle, 

[2.2.12) 

where the superindex L refers to the solution. From this 

~OS (bulk) = - Ni kT In [ at / at (sat) ] [2.2.13] 

which can also be written as 

[2.2.13a) 

after introducing the supersaturation ratio S as 

[2.2.14] 

Regarding t-.Os(surface) , we can say that the surface area A is proportional to 

(N~)2 / 3 With a proportionality constant fi depending on the shape of the nucleus. 

Hence the Gibbs energy increase caused by the transfer is 

[2.2.15] 

Combination gives 

t-.OS 
=: -NkTlnS + yfiN2/3 [2.2.16] 

where we have omitted the subindex i because there is no confusion. We shall use 

[2.2.161 as an integrated equation, Le. with 1'1 =: N S , but omit the superscript for 

typographical reasons. For relatively small clusters the surface area term dominates, 

whereas 1'10 as a function of N only starts to decrease due to the bulk term beyond a 
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critical value N * (see fig. 2.6). This critical cluster size follows from the condition 

dL'10/dN = 0 

(N *)1/3 = 2y/3 
3kTInS 

[2.2.17J 

which can be used to rewrite the Gibbs energy for formation of a cluster as 

[ 2( N )1/3] L'1G=Ay 1-3 N* [2.2.18J 

This form is independent of the shape of the cluster and equally holds, for example, for 

crystalline cubes and amorphous spheres. The maximum in the Gibbs energy is 

1 
L'1G* = -A * y' 3 ' 

A* = /3(N *)2/3 [2.2.19) 

This maximum is the activation barrier in the formation of colloidal particles by 

homogeneous nucleation in a supersaturated solution or vapour. Note that the 

(reversible) work needed to form the surface of the critical cluster equals A * yand that 

the maximum in L'1G is only one third of this value because bulk is also formed. This 

expression for a critical cluster explains why a high supersaturation favours the 

formation of small collOids; a large S pushes the critical size N * to smaller values and 

simultaneously lowers the activation barrier (fig. 2.6). A decrease in the interfacial 

tension y between colloid and solution, for example by adsorption of surfactants, has, 

according to [2.2.17J and [2.2.19J, a similar effect. This is understandable since a low 

y cannot compete with the spontaneous bulk formation driving the precipitation, 

unless the clusters are very small. 

CollOidal particles, of course, often do not precipitate as well-defined spheres, which 

is why we left the cluster shape unspecified via the parameter /3 introduced in [2.2.1 s1 
As a specific example of a non-spherical preCipitate, we consider a cylinder of length L, 

capped at both ends by a hemisphere of radius a (fig. 2.5). The number of molecules 

in the spherocylinder with volume V equals N = V / vm ' where vm is the molecular 

volume. The Gibbs energy for the formation of the spherocylinder is 

s=o 
L'10 ~~:reasing S 

tlO* 

a 
Figure 2.6. Sketch of [2.2.16 J for 
nucleation and growth of a spherical 
precipitate of radius a in a solution 
With supersaturation ratiO S. 
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~G== 4;ra2 1+- y-(4/3);ra3 1+-( 
L) ( 3L)kTlnS 

2a 4a vm 
[2.2.20] 

For a sphere .6.G Will always pass through a maximum when the radius is large enough 

(fig. 2.6), but increasing the length of the spherocylinder does not necessarily produce 

spontaneous growth at some point. We find 

CJ.6.G = 0 
CJL 

for 
2vm y 

a*=--=--
kTlnS 

[2.2.21] 

and that this derivative is positive for a > a * and negative only for a < a *. So. a 

cylinder can only grow spontaneously in length above a certain critical diameter. which 

is another consequence of the competition between surface and bulk effects. If the 

cylinder is too thin. there is insufficient increase in bulk volume to compensate for the 

increase in surface area caused by the lengthWise growth. By the same token, a disc or 

plate only grows spontaneously above a certain thickness. Nevertheless, even if ~G is 

negative for lengthWise growth the spherocylinder can always lower its free energy 

further by reorganizing itself into a sphere which, after all, is the shape With minimum 

surface area for a given cluster volume; amorphous colloids are spherical - at least in 

their equilibrium form. Nucleation and sustained growth of non-spherical colloids 

requires clusters With various faces, which differ in solubility and surface tenSion, in 

other words. small crystals ll. In the further discussion of nucleation and growth in 

sections 2.2.d-f. we focus for simplicity on non-crystalline spheres and therefore take 

the limit L ~ 0 in [2.2.20] 

With a maximum given by 

* 2vm y a ::::----
kT InS 

[2.2.22] 

[2.2.23] 

The results in this section for the energetics of nucleation are based on a des­

cription. which at first Sight leaves much to be deSired. Nuclei cannot become 

arbitrarily small Without the macroscopic treatment at some point breaking down2J , 

which is why [2.2.16] contains the inconsistency that ~G, the excess Gibbs energy 

relative to unassociated molecules, does not actually reduce to zero for N = 1. Further. 

any internal degrees of freedom of clusters, and their translational entropy are not 

included in [2.2.16J. Finally, the cluster surface is entirely characterized by only one 

1) For crystals with faces i. each having an area ~ and surface tension Yj. each face 
contributes ~Yi/3, to the activation Gibbs energy, so the form [2.2.19] remains valid, see 
R. Defay, L Prigogine. A. Bellemans, and D.H. Everett. Surface Tension and Adsorption, Wiley 
(1960). 
2) Debenedettt lac. cit. 

- 207 -



PREPARATION AND CHARACTERIZATION 2.13 

surface tension, whereas non-spherical crystalline precipitates may have more than one 

interfaCial tension oWing to different crystallographic orientations of the particle 

surface Il. (As noted before, shape anisotropy does not change the form of the activation 

energy [2.2.19]). Granted that only one y suffices to evaluate the activation barrier in 

[2.2.231, its interpretation is still problematic. Usually y is equated to the surface 

Gibbs energy of a planar interface at phase co-existence. Thus, y in [2.2.23] is taken to 

be independent of the actiVity of molecules in the solution (I.e. the supersaturation 

ratio S). A numerical evaluation of the activation energy for crystal formation in a hard­

sphere fluid by computer simulation2J shows that the classical expression [2.2.221 is 

essentially correct, but that the value of y needs to be adjusted to obtain agreement 

between [2.2.221 and the numerical results. Extrapolation of the effective y to zero 

supersaturation y1elded1 ) the expected surface tension at phase coexistence, but as 

these surface tensions are experimentally hardly accessible, quantitative predictions 

from [2.2.221 are in many cases at best conjectural. 

2.2c Precipitation kinetics 

In the precipitation kinetics of colloids in a metastable solution3), we can, in accord­

ance With fig. 2.6, distinguish two regimes. When the colloidal particle is significantly 

larger than the critical size, it is in the regime of irreversible growth With kinetics to be 

discussed later. First, we conSider the initial regime where small particles struggle With 

their own solubility to pass the Gibbs energy barrier LlG *. This passage is called a 

nucleation event, which for simplicity we will define as the capture of one molecule by 

a critical cluster, assuming that after this capture the cluster enters the irreversible 

growth regime upon which a new collOid is born. This assumption, of course, neglects 

the finite probability that supercritical clusters may also dissolve. For an estimate of 

the nucleation rate, however, this simple picture is sufficient. Hence, the number I of 

collOids which per second come into existence is proportional to cm and C * 

[2.2.241 

where k is a rate constant; cm and c * are the concentrations of single, unassociated 

molecules and critical clusters, respectively. Note that [2.2.241 predicts second-order 

reaction kinetics because of our choice to consider only encounters between a critical 

cluster and one molecule as the rate-determining events. To quantifY I, we first 

evaluate the frequency at which molecules encounter a spherical cluster of radius a by 

diffusion, follOwing in essence Smoluchowski's diffusion model for coagulation kinetics 

1) See for example A.C. Zettlemoyer (Ed.), Nucleation, Marcel Dekker (1969). 
2) S. Auer, D. Frenkel, Nature 409 (2001) 1020; Nature 413 (2001) 71l. 
3) For in-depth studies on various inorganiC collOids the work of de Bruyn and co-workers is 
recommended reading. See for example, J. Dousma, P.L. de Bruyn, J. Colloid Interface Sci. 64 
(1978) 154; H.A. van Straten, B. Holtk<lt'11p, and P.L. de Bruyn, J. Colloid Interface Sci. 98 
(1984) 342; M.J.M. van Kemenade, P.L. de Bruyn, J. Colloid Interface Sci. U8 (1987) 564. 
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(see sec. 4.3). The diffusion flux J of molecules through any spherical envelope of 

radius r is, according to Fick's first law, 

J = 4JZT2 D de(r) 
dr 

12.2.25J 

where D is the molecular diffusion coefficient relative to the sphere positioned at the 

origin at r = 0 . Each molecule that reaches the sphere surface irreversibly attaches to 

the insoluble sphere, and we assume that the concentration em of molecules in the 

liquid far away from the sphere remains constant 

c(r=a)=O 12.2.26) 

For these boundary conditions 12.2.25J yields 

J =4nDa*cm 12.2.27] 

if it is assumed that J is independent of r, that is, if the diffusion of molecules 

towards the sphere has reached a stationary state. Such a state is approached by the 

concentration gradient around a sphere in a time of order a 2 / D needed by molecules 

to diffuse over a sphere diameter. Assuming that sphere growth is a sequence of 

stationary states, we can identtty the nucleation rate I as the flux J multiplied by the 

concentration c* of spheres with critical radius a* 

12.2.28] 

The concentration e* may be evaluated as follows ll. Since the reversible work to form 

a cluster out of N molecules is the ,1G from fig. 2.6, the Boltzmann distribution 

c(N) = cm exp [ -,1G / kT] 12.2.29] 

determines the equilibrium concentration of clusters composed of N molecules. 

Applying this result to clusters with a critical size, we find on substitution in 12.2.28] 

for the nucleation rate 

I == 4nDa* c~ exp[ -,1G * I kT] ,1G* = (4n'l3)(a*)2 y [2.2.30] 

where ,1G * is the height of the nucleation barrier; the exponent may be identified as 

the probability (per particle) that a spontaneous fluctuation will produce a critical 

cluster. The use of an equilibrium Boltzmann distribution in a nucleation flux is 

perhaps unexpected2 ), but one can think of a distribution of subcritical clusters from 

I) For an extensive discussion sec Debenedetti lac. cit. 

2) In the thermodynamics of reversible coagulation an expression can be derived for the dis­
tribution of aggregate size which is very Similar to [2.2.29J. See D.H. Everett. Basic Principles oj 

Colloid Science. Roy. Soc. Chem. (1994). 
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which critical clusters are removed as soon as they capture additional molecules. Each 

removal is compensated by the insertion of an equivalent number of single molecules 

into the metastable bulk solution. In this manner. one can define a steady state 

nucleation rate for a given supersaturationll. Equation [2.2.30] shows that the 

nucleation rate is extremely sensitive to the value of a* and. thus. to the super­

saturation Via [2.2.23]. The maximum nucleation rate at very large supersaturation. 

the pre-exponential kinetic factor in [2.2.30]. is of the order 

[2.2.31] 

as follows from substitution of the Stokes-Einstein diffusion coefficient D = 

kT /6mp*. where we neglect the size difference between molecules and critical 

clusters. For an aqueous solution at room temperature With a molar concentration 

em = 10-3 M . we find a maximal nucleation rate of order 1029 m-3 sec-I. A decrease in 

supersaturation to values around S == 5 suffices to reduce this astronomical rate to 

practically zero. For silica precipitation in dilute, acidified waterglass solutions (see 

sec. 2.2e), the supersaturation is in order of magnitude close to S == 5 and nucleation 

may take hours to days. For comparison, the industrial, continuous precipitation of 

the highly insoluble silver halide collOids2l, the basis of classical photographic 

materials, occurs at a supersaturation, which generally exceeds S - 106 . 

The kinetics of precipitation in a homogeneous solution is notoriously difficult to 

assess Within better than an order of magnitude because of uncertainties in. for 

example. the interfacial tenSion that are strongly amplified in [2.2.30]. Nevertheless. 

the trend predicted from [2.2.30] is qualitatively correct. Within a narrow range of 

supersaturation after croSSing the binodal in fig. 2.3 the rate of homogeneous precip­

itation increases from negligibly small to astronOmically large. In practice, however. the 

increase is limited because experimental nucleation rates often go through a maximum 

at suffiCiently high supersaturation3l . In concentrated solutions, the assumption of 

freely diffusing molecules underlying the pre-exponential factor in [2.2.30] breaks 

down. though reduced diffusiVity is unlikely to be the sole cause of any maximum in 

the precipitation rate. At high solute concentrations, long-time self-diffusion admittedly 

Will vanish but for nucleation only local rearrangements of molecules are required. 

which may be feasible up to (and possibly even including) close-packing densities. 

Another factor of importance is that. as already noted in sec. 2.2b, the interfacial Gibbs 

energy r is actually not a constant. Simulations of absolute nucleation rates show that. 

]) R. Becker. Theorle der Warme. Springer Verlag (1978). 
2) LH. Leubner. Current Opinion in CollOid & Interface Sci. 5 (2000) 151. reviews nucleation 
models for silver halides. 
3) P. Pusey. in LiqUid. Freezing and Glass Transition J.P. Hansen. D. Devesque. and J. Zinn­
Justin. Eds. 763-931. North Holland (1991). 
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in any case for hard-sphere fluids ll , the maximum in the nucleation rate is indeed 

primarily due to an increase of r With supersaturation. This increase diminishes the 

probability that a critical cluster Will form on account of [2.2.30]. So, any quantitative 

prediction for the nucleation rate must at least take this change in r into account. 

The reader may have noticed that [2.2.30] is very similar to the classical Becker­

Doring result2J for homogeneous nucleation in a vapour (see sec. 1.2.23). The 

difference is the form of the pre-exponential kinetic factor, which is obtained here using 

a diffusion model instead of kinetic gas theory. Consequently, the result [2.2.31] is 

equivalent to Smoluchowski's expression for the rate of diffusion-controlled 

coagulation of identical spheres in the initial state of coagulation (see sec. 4.3). In 

Smoluchowski's treatment. incidentally, there is no activation barrier because of the 

assumption that colloids irreversibly stick whenever they happen to collide by Brown­

ian motion. However, when attractions are at a level of weakness such that colloidal 

clusters3J can be disrupted by the thermal energy, the existence of a critical aggregate 

size can be expected With a rate of formation similar to [2.2.30]. 

2.2d Particle growth and polydispersity 

When no precautions are taken, precipitation from a supersaturated solution 

inevitably produces polydisperse collOids because nucleation of new particles and 

further particle growth overlap in time. This overlap is a consequence of the statistical 

nature of the nucleation process; near the critical size particles may grow as well as 

dissolve. To narrow down the initial size distribution as much as possible, nucleation 

should take place in a short time, followed by equal growth of a constant number of 

particles. La Mer4J pOinted out that this can be achieved by rapidly creating the critical 

supersaturation required to initiate homogeneous nucleation after which particle 

growth lowers the saturation suffiCiently to suppress new nucleation events. It should 

be noted that La Mer's scheme rests on the extreme sensitivity of homogeneous 

nucleation rates to supersaturation. An instance of La Mer's scheme is found in the 

double-jet preCipitation of silver halide colloids, in which AgN03 and NaBr solutions 

are simultaneously added to an agitated gelatin solution. Here, the number of newly 

formed crystals quickly reaches a constant value and further addition of reagents 

causes only further growth of fairly monodisperse cubic crystals5J . Another option is to 

add nuclei (seeds) to a solution With a subcritical supersaturation as when silica 

particles are added to a saturated aqueous silicate solution (heterogeneous nucleation, 

I) S. Auer. D. Frenkel, Nature 413 (2001) 711. 
2) R. Becker, loc.cit. 

3) For reverSible coagulation see also ,J. Groenewold, W.K. Kegel, J. Phys. Chem. BI05 (2001) 

11702. 

4) V.K. La Mer, R.H. Dinegar, J. Am. Chem. Soc. 72 (1950) 4847. 

5) ,J.S. Wey, R.W. Strong. Photogr. Sci. Eng. 21 (1977) 14; c.R. Berry, Photogr. Sci. Eng. 18 

(1974) 4. 
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see sec. 2.2e). The advantage of this seeded growth technique is that the final particle 

size can be influenced by the concentration of seed particles. 

A fortunate consequence of particle growth is that in many cases the size distrib­

ution is self-sharpening. We Will illustrate this effect for collOidal spheres of radius a, 

which irreversibly grow by the uptake of molecules from a solution according to the 

rate lawll 

da -k n -- oa 
dt 

[2.2.32J 

where ko and n are constants. This growth equation leads either to spreading or 

sharpening of the relative size distribution, depending on the value of n, as can be 

demonstrated as follows. Consider at a given time t any pair of spheres With arbitrary 

size from the population of independently groWing particles. Let 1 + £ be their size ratio 

such that a(l + £) and a are the radiUS of the larger and smaller sphere, respectively. 

The former grows according to: 

[2.2.33J 

which can be combined With growth equation [2.2.32J for the smaller sphere to obtain 

the time evolution of the size ratiO: 

£~o [2.2.34J 

Clearly, the relative size difference £ increases with time for n > 1, in which case 

particle growth broadens the distribution. For n = 1 the size ratio between two spheres 

remains constant, whereas for n < 1 it monotonically decreases in time. Since this 

decrease holds for any pair of particles in the growing population, it follows that for 

n < 1 the relative size distribution is self-sharpening, a conclusion also drawn by other 

authors2 ). It should be noted that what applies to the growth kinetics of two spheres 

also holds for two suffiCiently sharp distributions. Thus, [2.2.34J also describes the 

time evolution of the relative distance of two peaks in a bimodal size distribution. 

These two peaks are much easier to monitor in time than the Width of a single size 

distribution, which is why growth of a binary sphere mixture is a convenient source of 

experimental information on kinetic mechanisms, as has been demonstrated for latex3J 

and silica4 ) dispersions. 

I) The concentration of molecules is incorporated here in thc rate constant ko and may depend 
on time because of a generating chemical reaction. Such dependence does not alter the effect of 
exponent n on the polydispcrsity because kO is the same for all particles. 
2) J.Th.C. Overbeek, Adv. Colloid Inteiface Sci. 15 (1982) 251. 

3) E.B. Bradford, J .W. vanderHoff, and T. Alfrey ,Jr., ,J. Colloid Inteiface Sci. II (1956) 135. 

4) A. van Blaaderen. ,J. van Geest. and A. Vrij, A., J. Colloid Inteiface Sci. 154 (1992) 481. 
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The requirement n < 1, for self-sharpening, is in practice a realistic one. For 

example, when the growth rate is completely determined by a slow reaction of 

molecules at the sphere surface, we have 

[2.2.35] 

implying that da / dt is a constant, so n = O. The opposite limiting case is growth 

governed by the rate at which molecules reach a colloid by diffusion. The diffusion flux 

for molecules with a diffusion coeffiCient D, relative to a sphere centred at the Origin at 

r == 0 ,is given by [2.2.25]. We assume that the saturation concentration is maintained 

at the particle surface, neglecting the influence of particle size on e(sat) (the Kelvin 

effect, see sec. 2.2e), and keeping the bulk concentration of molecules constant ll 

e(r = a) = e(sat) e(r -7 00) = c(oo) [2.2.36] 

For these boundary conditions, the stationary (I.e. r-independent) flux towards the 

sphere equals (see [2.2.27]): 

J == 4 n-Da [e(oo) - e(sat)] [2.2.37] 

shoWing that the rate at which the colloid intercepts diffusing molecules is proportional 

to its radius and not to its surface area. Suppose every molecule contributes a volume 

vm to the growing colloid, then for a homogeneous sphere the volume increases at a 

rate 

d 4 
--n-a3 = Jv 
dt3 m 

[2.2.38] 

which on substitution of [2.2.37] leads to 

da 1 
- == DVm [e(ool -e(satl]a-
dt 

[2.2.39] 

with the typical scaling a 2 - t as expected for a diffusion-controlled process. Thus, the 

exponent in [2.2.32] for diffuSion-controlled growth is n = -1, and consequently the 

relative width of the size distribution decreases in time. This conclusion is based on a 

diffusion flux, which assumes a steady-state diffusion of molecules towards collOids, 

which grow independently from each other. Reiss2J , however, has shown that also when 

these assumptions are invalid, diffUSional growth still sharpens the size distribution. 

DiffUSion-controlled growth of a homogeneous sphere was first studied by Lang­

mwr3l, who introduced a formula very Similar to [2.2.39], albeit for the evaporation of 

1) A decrease in c due to exhaustion of a finite bulk is treated in A. Phllipse. Colloid Polym. 
00 

Sci. 266 (1988) 1174. 
2) H. Reiss, J. Chem. Phys. 19 (1951) 482. 
3) 1. Langmuir. Physical Rev. 12 (1918) 368. 
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a sphere for which the derivative in [2.2.39] is negative. Langmuir used a diffusion 

model to explain the evaporation rate of millimetre-sized iodine spheres in quiet air. 

He found that the rate of weight loss of the spheres confirmed diffusion control. and 

obtained from the rate a reasonable value for the diffusion coefficient of iodine 

molecules in air. Equation [2.2.39] is also useful to estimate colloidal growth rates. 

Molecular diffusion coefficients in water at 25°C are of the order D", 10-5 cm2 s-1 

and taking a typical volume fraction vm [e(oo) - e(sat)] :::: 0.0 I of reactive molecules we 

find from [2.2.39] that for diffusion-controlled growth the surface area increases in 

time as da2 / dt "" 20 (,um)2 s-1. This implies a nearly instantaneous growth of 

sub micron colloids, which indeed is observed in, for example, the precipitation of 

magnetite (see section 2.4d). Whenever particle growth is much slower, the kinetics 

may be determined by a slow reaction step at the surface of the colloid, or by the slow 

production of precipitating molecules via a chemical reaction as in the case of sulphur 

sols (see sec. 2.4b). 

This is not the place for in depth refinement1) of diffusion-controlled kinetics 

beyond a flux of the form [2.2.37), but we cannot totally ignore the involvement of 

charged species in the preCipitation of inorganic colloids. Hence, an electrostatic 

interaction may be present between the growing colloids and the molecules they 

consume, which will either enhance or retard the growth, depending on whether 

colloids and monomers attract or repel each other. From the classic studies of 

Kramers2) and Debye3) on diffusion in a force field, we can infer that the diffusion 

coefficient D of the monomers in the diffusion flux J has to be replaced by an effective 

coefficient of the form 

D 
Deff :::: -------- [2.2.40] 

a f e-u(r)/kT r-2 dr 

a 

where u(r) is the interaction energy between molecule and colloid. The same type of 

integral, incidentally, appears in the theory of slow coagulation in sec. 4.3b. Suppose 

the molecules are ions with charge ze and that the colloidal sphere has a surface 

potential l(/>. To obtain an upper estimate of the effect of the ion-colloid interaction on 

the growth kinetiCS, we consider the low salt limit where the interaction is unscreened. 

Then u(r) is obtained from Coulomb's law as 

u(r) a 
--=u -
kT 0 r 

ze'f° 
uo =~=zyO [2.2.41 ) 

where U o is the colloid-ion contact interaction energy and yO = e~ ! kT, as before. 

II D.P'. Calef. JM. Deutch. Ann. Rev. Phys. Chern. 34 (1983) 493. 
21 H.A. Kramers, Physica 7 (J 940) 284. 

31 P Debye. Trans. Electrochern. Soc. 82 (1942) 265 
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Thus, this Coulombic interaction [2.2.401 yields 

[2.2.42J 

So, for colloids that have to grow by a diffusion flux of like-charged ions, the growth 

kinetics is slowed down exponentially by the Coulombic repulsion; when lffo == 75 mV 

the effective diffusion coefficient for divalent ions is about 0.0 I D. Added salt screens 

the colloid-ion interaction and, therefore, moderates the influence of Yo on the growth 

kinetics. 

The interaction between monomers and the groWing colloid, Within the approxima­

tions underlying [2.2.421, does not change the growth equation [2.2.39] and, hence, 

does not affect the conclusion that diffuSional growth sharpens the size distribution. 

We Will investigate whether this conclusion still holds when we drop the assumption 

that the growing sphere is a homogeneous object of constant mass density. It is well 

known that diffusional growth may produce heterogeneous structures With an internal 

density profile. A familiar example ll is the precipitation of silica at low pH, where 

ramified clusters are formed rather than the fully condensed Si02 particles at alkaline 

pH. The difference is due to the low reactiVity of silanol groups towards condensation 

at acid pH, which obstructs the densification of a cluster. Suppose a monomer volume 

fraction profile ¢(x) is present in the growing colloid, where x is the distance to its 

centre. Then, the rate of growth is, instead of [2.2.391, given by 

da 1 
¢(a)- == DVm [c(oo) -c(satJ]a­

dt 
[2.2.43] 

because each monomer contributes a volume vm / (b(a) to the groWing colloid upon 

arrival at its surface at x == a . When this volume contribution increases with the colloid 

radius, i.e. when the average mass density of the colloid decreases, the large particles 

in the size distribution have a gain in growth rate. This scenario will occur for the 

fractal clusters produced by d!1fusion-limited aggregation2 .3J (DLA). PreCipitation by 

DLA forms an interesting, purely kinetic contrast to classical nucleation and growth, 

where the excess surface Gibbs energy proVides the nucleation barrier, as well as the 

driVing force for further growth by ripening (see sec. 2.2e). The kinetics of fractal 

growth will be treated in sec. 4.5c; here, a further completion of [2.2.431 will suffice. 

Consider monomers with volume p3 which diffuse towards a single spherical cluster 

with total radius a. The number of monomers, N, in the cluster scales as4 ) 

I) RK. Iler lac. cit. 
2) T.A. Witten ,Jr, L.M. Sander, Phys. Reu. Lett. 47 (1981) 1400. 
3) P Meakin, Faraday DLscuss. Chem. Soc. 83 (1987) 1. 

4) L.G.B. Bremer, Fractal Aggregation in Relation to Formation and Properties of Gels, Ph.D. 
thesis, Wageningen Agricultural University. The Netherlands ( 1992). 
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[2.2.44] 

where d f is the fractal dimensionality. The average monomer volume fraction in the 

cluster is accordingly 

[2.2.45] 

assuming, as usual in DLA models, that the monomers are spheres. However, the 

cluster may also be composed of randomly oriented fibers or platelets. They 

significantly reduce the average density of a cluster, but do not necessarily change its 

fractal dimension ll . The local volume fraction at a distance x from the cluster centre is 

as can be checked by its substitution into the definition of the average density 

a 

(¢)::: ~f¢{X)4JZx2dx 
4;ra 

o 

Thus, the volume fraction at the edge of the cluster is 

¢(a )_ df (¢) 
c 3 

[2.2.46] 

[2.2.47] 

[2.2.48] 

which on substitution into [2.2.43] leads to the following scaling of the growth rate of 

the outer radius of the cluster 

da 2-d --a f 
dt 

[2.2.49] 

For d f == 3, we recover the familiar square-root time dependence of diffusional growth 

of a homogeneous sphere. A fractal dimensionality, d f < 3 , enhances the growth rate, 

but as long as d f > 1, the form of da / dt is such that self-sharpening will occur. 

Clusters with a fractal dimensionality d f ::: 1 are rather unlikely for collOidal growth as 

they should consist of straight spikes of length a growing from a common source into a 

radial direction, such that the mass increases linearly With the radiUS (N ~ a in 

[2.2.44]). Since for three-dimensional DLA, the fractal dimensionality certainly exceeds 

unity, a value as high as d f := 2.49 has been reported2J , it follows that self-sharpening 

Will occur for diffusional growth of both homogeneous and heterogeneous clusters. 

Two comments should be made here. First, we have disregarded the 'fingered' surface 

structure of a fractal cluster by assuming that a monomer will stick whenever it arrives 

II Heterogeneous structures and gels of inorganic fibres are reviewed in A. Philipse and A. 
Wierenga, Langmuir 14 (1998) 49. 
21 M. Fleischmann. D.J. TildesJey. and R.C. Ball, Fractals in the Natural Sciences. Princeton 
University Press (1990). 

- 216 -



2.22 PREPARATION AND CHARACTERIZATION 

at a distance a from the cluster centre, i.e. the cluster surface is uniformly sticky. 

Taking structural details into account may change the scaling relations [2.2.49J. 

Second, consistent With the approach discussed elsewhere in this chapter we look at 

clusters groWing independently in a bulk. In a later stage of growth, it is clear that 

aggregation of fractal clusters themselves becomes the kinetically dominating event in 

the formation of large aggregates and space-filling gels, a topiC extensively treated 

elsewhere. 

The size distribution resulting from the precipitation and growth of inorganic 

particles is often (and also here) regarded as a purely kinetic phenomenon. The 

colloids simply stop groWing when supersaturation has dropped suffiCiently. The size 

distribution may further change in time due to cluster-cluster aggregation and Ostwald 

ripening (see sec. 2.3e) and, of course, by coagulation due to Van der Waals forces, but 

there is no evolution towards a thermodynamically stable size distribution. That, at 

least, is the classical View for inorganic colloidal dispersions. It is well known, however, 

that other dispersed systems eXist, such as micro emulSions , in which the dispersed 

phase is actually in a state of thermodynamic equilibrium. This is a consequence of 

very low interfacial tensions oWing to the adsorption of surfactants. There is no a priori 

reason why inorganic collOids could not be thermodynamically stable due to adsorbed 

layers, which puts a Gibbs energy penalty on further decrease of the surface area. 

Various authors have alluded in the past to this pOSSibilityIl, and recent experiments 

on the preparation of silver halide sols2) proVide clear examples of inorganiC colloids 

With thermodynamic control of the size distribution. Understanding this control and its 

occurrence is undoubtedly important for further improvement and extension of 

preparation methods for well-defined colloids. 

2.2e Particle solubility and Ostwald ripening 

For collOidal spheres of given radius a and surface tension r, there is one solute 

concentration eta) at which the collOids have a critical size and reside at the Gibbs 

energy maXimum in fig. 2.6. This concentration, e(a) , also called the equilibrium 

solubility of the colloids, follows from [2.2.23], which in the context of solubility 

usually is written as 

In[ e(a)/ e(sat)] =: 2;VVm / a* kT [2.2.50] 

which is a result known as the Gibbs-Kelvin equation; e(sat) is the equilibrium 

solubility of a flat surface as we already encountered before, see [1.2.23.24J. Note that 

we have replaced the actiVities in the supersaturation ratio S by concentrations, so 

[2.2.50 J is Valid only for dilute solutions. The increase in solubility for small spheres 

1) <I.Th.G. Overbeek. Faraday Discuss. Chem. Soc. 65 (1978) 7. 
21 LL. MJadenoVic, W.K. Kegel. P. Bomans, and P.M. Frederik. J. Phys. Chem. BI07 (2003) 
5717. 
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Figure 2.7. Equilibrium solubility of a 
sphere With radius a according to the 
Gibbs-KelVin equation [2.2.50J. For silica 
particles With a radius around a = 1 nm, 
the solubility in neutral water is about 300 
ppm (see text for discussion). 

(or in the vapour pressure of small droplets) is equivalent to an enhanced, excess 

Laplace pressure f1p = 2y / a, which can be recognized in [2.2.S0]. An important 

feature of the Gibbs-Kelvin equation is its generality; its form does not depend on the 

assumption of amorphous spheres characterized by only one surface tension. For the 

equilibrium solubility of a crystal, the equation applies to each of the faces of the 

crystal1) 

2i = Y2 = ... Yj = kT In c(a) 
r1 r2 'i 2vrn c(sat) 

[2.2.51] 

Here, Yi is the surface tension of face i, which is at a distance 'i from the centre of the 

crystal; only faces of the equilibrium polyhedron are taken into account and corners 

and edges are ignored. In these WUlJf relations, the ratiO Yi / 'i for a crystal face plays 

the same role as Y / a for a spherical droplet. Alternatively, one can also interpret 

[2.2.51] as describing polydisperse spheres with different surface tensions such that 

they are all in equilibrium with the same solution with concentration c(a). The Wulff 

relations fix the equilibrium shape of the crystal since in the equilibrium form there 

eXists one centre such that these relations are satisfied. 

The increased solubility according to [2.2.S0], also referred to as the Gibbs-Kelvin 

effect, is not easy to quantify for sols of inorganic particles as their surface tension is 

difficult to determine experimentally (see sec. III. 1. 13) and has to be indirectly 

obtained from adsorption data. For an order of magnitude estimate of the Gibbs-Kelvin 

effect, we consider the case of amorphous silica in water (fig. 2.7). Iler2J reports the 

range y = O.OS-O.l N/m, corresponding to an eqUilibrium radiUS in the range 

a*ln[c(a)/c(satl] "" 1-2 nm [2.2.S21 

J) See for a derivation and further discussion: R. Detay, L Prigog1ne, A. Bellemans. and D.H. 
Everett. Surface Tension and Adsorption. Wiley (1966). 
21 R.K. Ilcr, loco cit. 
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at T = 298 K, for a molar silica volume of urn = 27.2 cm3 /mol. At neutral pH the bulk 

solubility c(sat) of silica is about 100 ppm, which implies that in an aqueous 

waterglass solution containing c(a) = 300 ppm of soluble silica the equilibrium radius 

is in the range a* = 0.9-1.8 nm. At alkaline pH the bulk solubility of silica rapidly 

increases to a value of c(sat) = 300 at about pH = 10. Thus, in the 300 ppm water­

glass solution at pH = 10 the critical particle size of [2.2.231 tends to infinity, so 

precipitation of silica particles in this case is extremely unlikely. The expected 

Significant solubility of silica particles in the nanometer size range is indeed observed 

in practice, as is the drastic effect of pH. It is not a coincidence, but a consequence of 

the Gibbs-Kelvin effect. that in aqueous silica sols particle radii are usually at least a 

few nm and that the pH of the sols is usually set below 10. 

The interfacial tension in the Gibbs-Kelvin equation [2.2.501 is, of course, not a 

fixed parameter and may be intentionally decreased to enhance particle solubility. A 

classical example is AgI, which is hardly soluble in water. However, when excess silver 

or (in particular) iodide ions are added the solubility increases dramatically as 

manifested by the formation of complexes or small silver iodide clusters, which 

apparently have a reduced interfacial tension. It has been shown that these small 

particles (up to -1 nm in size) form spontaneously}). Clearly, such reverSible 

dissolution of inorganic salts is a possibility whenever ions or other species strongly 

adsorb on the material in question. Modification of a particle surface, of course, may 

also decrease the solubility or rather reduce the rate of particle dissolution due to a 

protective layer of insoluble material. Even much less than monolayer coverage may be 

suffiCient for this purpose as in the case of the solubility of Silica, which is drastically 

reduced by adsorption of aluminate species in minute quantities2J . 

Returning to the Gibbs energy maximum in fig. 2.6, we note that it presents an 

unstable equilibrium, which can be maintained only for critical particles of exactly the 

same size. For polydisperse particles (with the same surface tension), there is no 

single, common equilibrium solubility; particles either grow or dissolve. Clearly, the 

largest particles have the strongest tendency to grow owing to their low solubility. This 

coarsening of collOids, i.e. the decrease of specific surface area in time, is also known 

as Ostwald ripening and it is an important ageing effect, which may occur in any 

polydisperse system of sufficiently small particles. It is observed in emulsions and 

aqueous sols, as well as collOidal metal catalysts in a high temperature gas (decrease of 

catalytiC activity in time). An obvious consequence of Ostwald ripening is loss of 

specific surface area, which may proceed quite rapidly for small, highly soluble 

particles. Illustrative examples are aqueous sols of nanometer-sized silica particles (fig. 

2.8), which immediately after preparation undergo a rapid decrease in surface area on 

a time scale of hours to days, followed by a much slower decay, which may continue to 

I) 1.L. MladenoVic et al.. loco cit. 

2) R.K. Her, loco cit. 
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Figure 2.8. Aqueous sols of very small silica particles, freshly prepared by aCidifYing a 
waterglass solution, exhibit a rapid, initial decrease in specific surface area (measured following 
the Sears method) due to Ostwald ripening. On a time scale of months the surface area 
saturates at a value typically in the range of 700-800 m 2/g. (Courtesy of Kenneth Larsson and 
Bo Larsson, EKA Chemicals, Sweden). 

stabilize at 700-800 m 2 g-I after several months. The area is still high and on TEM 

pictures very small clusters can be seen. Ageing is accompanied by a slight increase of 

pH. The behaviour of small, highly soluble particles, as in fig 2.8, illustrates that in the 

condensation method there is actually no sharp distinction in time between 'sol 

preparation' and 'ageing.' In the initial precursor solution, the specific surface area 

decreases as soon as precipitates start to grow. The surface area, of course, is a 

macroscopic quantity, which loses its meaning for particles with radii down to 

molecular size. Note, however, that we introduce a preCipitate surface area A via 

[2.2.11 J and, therefore de facto, also a specific surface Ag which continuously 

decreases upon the growth of the particles of fig. 2.6. 

We will now briefly outline the kinetics of dissolution and ripening. In a polydis­

perse sol, the bulk concentration c(oo) is not constant, but slowly decaying in time due 

to the gradual disappearance of small, soluble particles. At any moment in time there 

is one sphere radiUS ao ' which is in metastable equilibrium with the bulk concen­

tration 

c(oo) = c(sat) exp [2rvm 1 
aokT 

[2.2.53J 

where c(sat) is again the equilibrium solubility of a flat surface. If the local solute 

concentration near a sphere with radius a i is also fLxed by the Gibbs-Kelvin equation. 

the steady state diffusion flux for sphere i is 
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[2.2.54J 

It is clear that spheres with radii a i < ao dissolve because J < 0 , whereas for a i > ao ' 

the particles grow. The average particle radius and, of course, the critical radius ao 
increase in time, so that the exponents in the diffusion flux can be linearized at a later 

stage of the ripening process. In that case, we can write for the growth (or for the 

dissolution rate) of sphere i the approximate result 

d 3 YUm 1 I 
2 [ 1 -a. '" 6Da.c(sat)-- ---­

dt 1 I kT ao a
j 

[2.2.55J 

One limiting case of Ostwald ripening allows for a simple analytical solution, namely 

monodisperse spheres with radius a, from which dissolved matter is deposited on very 

large particles or a flat substrate. If this substrate controls the bulk concentration, ao 
is infinitely large and consequently 

da3 yu2 
-- '" -6Dc(sat)---ill. 
dt kT 

[2.2.56] 

Thus, for this case the particle volume decreases at a constant rate. To go beyond such 

a bidisperse model and evaluate the time evolution of a continuous size distribution of 

spheres, growing and dissolving according to [2.2.55], is a demanding task, dealt with 

in the classical studies of Lifshitz and SlezovlJ and Wagner2J (LSW theory). We quote 

the essential results, referring to reviews for more discussion on the principles3J and 

applications4J of the LSW theory. The assumptions in this theory are the same as those 

underlying [2.2.55J: there is only transport due to diffusion, the sphere solubility is so 

low that the Gibbs-Kelvin equation can be linearized and there is no interaction 

between the spheres other than that their growth rates are coupled by the average bulk 

concentration. The LSW theory predicts for large times the asymptotic result 

d(a)3 8 YU~ 
-- ~ -Dc(sat)--

dt 9 kT 
[2.2.57J 

i.e. in a late stage of the ripening process, the average particle size increases as t l / 3 . 

Further, the supersaturation correspondingly falls as e l/3 and the number of spheres 

as C l . A remarkable finding of the LSW theory is that due to Ostwald ripening the size 

distribution approaches a certain universal, time-independent shape, irrespective of 

the initial distribution. The LSW theory appears to work well for emulsions41 ; for 

1) I.M. Lifshits. VV. Slezov, Zhur. Eksp. Teor. Fiz. 35 (1958) 479. The names are also trans­
cribed as Lifshitz and Slyezovor Slyozov, for instance in J. Phys. Chem. Solids 19 (1961) 35. 
2) C. Wagner, Z. Elektrochem. 65 ( 1961) 581. 
31 W. Dunning, Particle Growth in Suspensions. A.L. Smith, Ed .. Academic Press (197:3). 

41 P. Tavlor. Adv. Colloid Interface Sci. 75 (1998) J 07. 
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inorganic particles, a comparison with experimental data is less straightforward lJ. It is, 

in any case not correct to use the e l/3 scaling as the general hallmark for Ostwald 

ripening in view of the restrictive validity of the LSW theory, also see sec. V.8.3b. For 

example, close to the nucleation stage when many highly soluble particles are present, 

linearization of the Gibbs-Kelvin equation and the assumption of non-interacting 

particles will be invalid. Another important factor is the topology, which for grain 

growth in a polycrystalline material (fig. 2.2dJ or bubble growth in a foam2 ), is 

obviously very different from the isolated spheres in the LSW theory. 

2.2f Seeded nucleation and growth 

So far, we have assumed that particles nucleate and grow in a solution of only one 

solute. In practice, strict homogeneous precipitation is difficult to realize because of the 

omnipresence of contaminants, dust, motes and irregularities on the vessel wall, which 

may act as nucleation sites for the new phase. This so-called heterogeneous nucleation 

may have a dramatic effect on the kinetics as can be observed after opening a bottle of 

beer or champagne when carbon dioxide bubbles rapidly nucleate on the glass surface. 

See also sec. V.7 .2a. The reader may wish to verify the effect of adding extra nucleation 

sites in the form of sugar or sand grains. Heterogeneous nucleation, however, is not 

necessarily a nuisance. Actually, it is an important strategy to decrease size poly­

dispersity. This was first exploited by ZSigmondy3) who used the extremely fine 

Faraday gold so14) as a seed solution for the preparation of quite mono disperse gold 

collOids. The seed can also differ chemically from the precipitating material, leading to 

the formation of core-shell collOids. Of the many examples, we mention the growth of 

silica on gold cores5 ), and other inorganic parttcles6 ) and the preparation of core-shell 

semiconductor particles7). Such well-defined composite colloids are increasingly im­

portant in materials SCience, in addition to their use in fundamental studies. 

The efficiency of seeds or a container wall to catalyze nucleation is due to the 

reduction of the interfaCial Gibbs energy of a precipitating parttcle. As a simple but 

illustrative exampleS) we conSider a phase a, which nucleates as a spherical cap of 

radius a on a flat seed substrate f3 immersed in a liquid L. The cap wets the substrate 

with a contact angle B as shown in fig. 2.9. As in the case of homogeneous nucleation 

1) l W. Dunning, oc. cit. 

2) N. Rivier in: D. Bideau and A. Hansen, Eds., Disorder and Granular Media, North Holland 
(1993). 
3) R. Zsigmondy, P.A Thiessen, Das Kolloide Gold, Akad. Verlag. Leipzig (1925). 
4) M. Faraday, Phil. Trans. Royal Soc., 147 (1857) 145. Faraday prepared gold particles with a 
diameter around 3 nm by reduction of a gold salt with phosporus in ether. 
5) L.M. Liz-Marzan, M. Giersig, and P. Mulvaney, LangmUir 12 (1996) 4329. 
6) F. Caruso. Adv. Mater. 13 (2001) II. 
7) H. Weller. Quantized semiconductor particles. Adv. Mater. 5 (1993) 88. 
S) For a detailed treatment of heterogeneous nucleation, including other nucleus shapes, see the 
chapters by R.A. Sigsbee and A.G. Walton in Nucleation, A.C. Zettlemoyer (Ed.) Marcel Dekker 
(1969). 
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Figure 2.9. Heterogeneous nucleus of sub­
stance a in the form of a sphcrical cap on a 
planar seed ~ immersed in a liqUid L. The 
precipitating phase a partially wets the seed 
with a contact angle B. 

in 2.2.b, it is assumed here that a nucleus is a macroscopic piece of structureless ll 

bulk matter to which equilibrium thermodynamics can be applied. The Gibbs energy 

change due to the formation of the cap in fig. 2.9 then equals 

2 2 . 2 4 3 kTlnS 
AGhet == 2;ra (1- cos B)r aL +;ra sm 8(r a~ - r~L) - -;ra J(B) 

1 
J(B) == -(1-cosO)2 (2 + cos B) 

4 

3 vrn [2.2.58] 

This expression comprises the surface area with interfacial tension r aL between a 

and the liquid, the interfacial area between a and the substrate times the difference 

r a~ - r~L' and the decrease in Gibbs energy due to the volume of the cap. The 

geometrical factor J(8) is the ratio of the volume of the spherical cap in fig. 2.9 to that 

of a sphere with the same radius. The interfacial tensions in [2.2.58] are related by 

Youngs equation, which is valid when 0 is the contact angle for equilibrium with 

respect to the horizontal force components 

r~L == ra~ + raL cosO [2.2.59] 

Substituting this result into [2.2.58], we find from the condition d(AGhet)/da == 0 that 

the critical radius equals 

• 2vrn raL 
a -----

het - kT InS 
[2.2.60] 

which is the same as the critical radius in [2.2.23] for homogeneous precipitation in 

the absence of a substrate. The energy barrier can be written in terms of the 
* homogeneous energy barrier AGhom in [2.2.22] 

[2.2.611 

showing that J(O) quantifies the catalytic effect of the substrate. The presence of this 

substrate does not change the critical radius of the sphere, but only reduces the Gibbs 

energy maximum due to complete or partial wetting by the newly preCipitated phase. 

1) We disregard here any effect of crystal structures and their (miss)match in epitaxial growth. 
see Zettlemoyer loco cit. 
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Note that for complete dewetting. when g =: 180" and fiB) =0 1, the Gibbs energy ma'(-

* imum equals t.Ghom ; then, precipitation proceeds as if no seeds or substrates are 

present. For any contact angle in the range 0 s: B < 1800

• the substrate lowers the 

activation energy for nucleation because 0 s: fiB) < I. If the contact angle is nearly 

zero. it Will be impossible to maintain supersaturation in the presence of the substrate. 

In view of the strong dependence of the nucleation rate on the activation energy in 

[2.2.30], it is clear that seeds may speed up precipitation kinetics considerably. The 

heterogeneous nucleation rate I het Will have a form similar to that of the homogeneous 

rate I hom in [2.2.30], and the pre-exponential factor [2.2.30J Will remain the same in 

order of magnitude. Thus 

Illet - Ihom exp[ llG~om (1- f(B))/ kTJ [2.2.62J 

For contact angles B s: 30°. fiB) is practically zero and the nucleation rate is enhanced 

by a factor of exp(llG~om / kT) . 

The independence of the critical size of the presence of a substrate in [2.2.60J is 

perhaps unexpected and, in any case, unlikely to be a general feature of heterogeneous 

nucleation. Here. this independence is a consequence of geometry assumed in fig. 2.9; 

the radius of curvature of the cap on the smooth. flat substrate is the same as for the 

spherical nucleus in a homogeneous solution. Therefore. neither the solubility nor the 

critical radius changes because these are fixed by the curvature. When the cap is 

deformed. or when the substrate is curved or structured. the situation is evidently 

more complicated. Steps and kinks on the substrate may act as active sites because 

they enable more of the surface of the nucleus to be in contact With the substrate, 

which lowers its surface excess Gibbs energy. One extreme case is a cavity in the 

substrate. which allows maximum contact for a (non-cylindrical) nucleus as discussed 

elsewhere ll. See also fig. V.7.5. 

Such a cavity is actually a simple example of a template. which may direct the mor­

phology of a groWing cluster. For homogeneous nucleation in a solution, the possibilit­

ies for controlling particle shape are very limited. There is, admittedly. an impressive 

variety of methods for synthesizing anisotropiC colloids in a bulk solution2 ). but in 

most cases the outcome of a method can rarely be anticipated. Particle shape is sen­

sitive to various parameters, such as pH. temperature, reactant concentrations, nature 

of anions and organiC additives that may block certain faces. Thermodynamics. of 

course. only provides us With an equilibrium shape for crystals according to the Wulff 

relations [2.2.51 J. However, growth of the equilibrium form is rarely encountered3
) and 

the effect of the experimental parameters mentioned earlier on the growth kinetics of 

1) D.R. Uhlmann, B. Chalmers in Nucleation Phenomena, D.E. Gushee. Ed., Am. Chem. Soc. 

PubL. (1966). 

2) E. Matijevic. Chem. ,Hater. 5 ( (993) .+ 12. 

3) W. DUDning. loco cit. 
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the faces of a polyhedral particle is hard to predict. So, in this respect heterogeneous 

nucleation and growth on (or in) a host is an attractive alternative to achieve shape 

control. Potential hosts, such as micelles and other self-assembled structures, are 

reViewed elsewhere l .2 ). 

2.2g Comminution and other preparation methods 

In condensation methods, colloidal particles are prepared from molecular species, 

whereas in dispersion methods the colloidal size range is reached by breaking down a 

macroscopic phase into progressively smaller parts. A well-known example of the latter 

is emulsification, which comprises the dispersion of one liquid in the presence of 

another (see sec. V.S.2). Sometimes shaking or stirring suffices to obtain an emulsion, 

and in other instances strong mechanical forces from 'colloid mills' are needed. Only 

when the interfacial tension between the two liquids is very low may the thermal 

motion of the molecules proVide the energy required for emulsification, a well-known 

practical example being the spontaneous emulsification of agricultural chemicals in 

water. Mostly, this situation leads to microemulsions. 

Emulsification is also an ingredient of increasing importance for the preparation of 

inorganic colloids; a liquid reactant is emulsified and then polymerized to form a solid 

particle3 ). This strategy is being used, among others, for the synthesis of very small, 

mono disperse silica partlcles4). Instead of an emulsion, one can also start from an 

aerosol; here, the dispersion step is the formation of airborne liquid droplets, which 

contain some inorganic precursor. In spray drying (an important method in the 

ceramic industry), such droplets are dried in a flow of hot air to produce inorganic 

powders. In other aerosol methods water is not removed, but deliberately added to 

obtain inorganic particles, as in the case of titanium (IV) ethoxtde aerosols that react 

With water vapour to yield spherical, amorphous titania colloids. 

One can say that from the viewpoint of inorganic colloid synthesis, emulsification 

and aerosol methods are nothing but condensation methods, except that the 'reactor' 

has been formed by a dispersion technique. The dispersion of inorganic material itself, 

also called comminution5 ), is the process of mechanical fracture in a ball mill. Such a 

mill is a rotating cylindrical vessel, containing inorganic materials (crystals, aggregates 

of particles) and tungsten carbide or alumina balls. The ease With which a mineral or 

clay can be ground depends on the surface tension y and the mechanical strength of 

1) M. Pileni. Nature Materials 2 (2003) 145. 
2) J.H. Adair, E. Suvaci, Curro Opin. Colloid Interface Sci. 5 (2000) 160. 
3) The procedure reminds of monomer droplets which polymerize to latex colloids by the 
addition of a monomer-soluble initiator. See e.g. R. Buscall, T. Corner. and J.F. Stageman. 
Polymer Colloids, Elsevier (1985). 
4) K. Osseo-As are, reviews microemulsion-mediated synthesis of inorganic colloids in the nano­
meter range in Handbook of Microemulsion Science and Technology, P. Kumar and K. Mittal, 
Eds., Marcel Dekker (1999) 549. 
5) See the review by De Castro and Mitchell, mentioned in sec. 2.5a. 
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the solid. The minimum work needed to break a column of material of cross-sectional 

area A equals the surface excess Gibbs energy AG = 2yA. If the newly formed surfaces 

are immersed in a solution. any adsorption Will lower the surface tension according to 

the Gibbs adsorption equation [1.2.13.8J 

dy = -RT rdlna [2.2.63J 

where r is the surface concentration. a the activity of the adsorptive. Thus. in view of 

the Gibbs isotherm. we can understand why comminution is carried out on solids 

submerged in a solution rather than in air. In aqueous solutions. the species adsorbed 

on inorganic surfaces include ions which form an electrical double layer. Alternatively, 

often surfactants or polyelectrolytes are added to further reduce the tendency of 

particles to adhere to one another after comminution. However. most of the energy 

input is not invested in increasing the interfacial area. but dissipated as heat in the 

agitation process which must achieve a very high energy density close to the particles to 

break them down. The applied stresses must overcome the mechanical strength of the 

particles. There are several ways to achieve that. Agglomerates can be dispersed by 

impact on a surface (of the vessel or of balls that are added). or the particles are forced 

to undergo pressurization and decompression in rapid cycles. Brittle particles are 

better dispersed by the impact mechanism, elastic particles rather by shear. A variety 

of mills are commercially available, both for dry and for wet milling. 

It may be added that the Van der Waals attraction is also reduced by the solution, in 

comparison to dry powders in air or another gaseous atmosphere. The notorious 

"caking' of dry powders, incidentally, is partly caused by capillary forces when the 

powders are actually not dry enough. A Similar attraction is observed for colloids in a 

liqUid miXture, With one component preferentially wetting the colloids. 

The comminution method produces particles With a broad distribution in shape 

and size and, in general, the (relative) distribution becomes Wider for a longer milling 

time. The lower end of the size distribution is a particle size of 0Cum) for a typical 

milling time of hours to days. A much higher degree of dispersion is difficult to achieve 

because very high shear forces are required to fracture solids in the sub-micron range. 

Milling, nevertheless, is frequently applied in industrial practice for the preparation of 

dispersions, not only to break up particle aggregates but also to simultaneously and 

intensively mix particles and polymeric additives prior to processing the dispersions. 

2.2h Separation andfractionation techniques 

Preparation of a sol is usually followed by a separation procedure. which may serve 

various purposes. Distillation is the obvious method to remove volatile components, 

such as ammonia from a silica alcosol (see sec. 2.4aJ. It may also be used to concen­

trate sols (at reduced pressure) or to transfer particles to other solvents. Dialysis and 

electrodialysis are employed to remove low-molecular compounds and contaminating 

electrolytes. which migrate out of the sol across a semipermeable membrane into a 
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liquid reservoir. A simple but effective dialYSiS setup is a flexible cellulose bag, filled 

with sol and suspended in a flow of demineralized water. (Such membranes, incident­

ally, are not chemically inert because cellulose fibres may hydrolyze.) Often the sol level 

in the cellulose tube rises due to the increasing osmotic pressure. The loss of 

electrolyte also manifests itself in a viscosity increase due to the electroViscous effects, 

see sec. 6.9b. Solute diffUSing across the cellulose membrane may also stem from 

dissolving collOids because of the Gibbs-Kelvin effect. For example, prolonged dialysis 

of silica sols produces a notable weight loss due to the continuous removal of soluble 

silica, which promotes dissolution of small particles. 

Dialysis against a salt solution is equivalent to ion exchange. Ion exchange resins are 

available for simultaneously exchanging cations for H+ and anions for OH-. These 

'mixed-bed' resins are used for preparing nearly salt-free sols with a large Debye 

length. To separate the collOids themselves from the liquid phase, either filtration or 

sedimentation is required. These two methods will be discussed in some more detail; 

for filtration below, for sedimentation in 2.3d. 

In a filtration process, the collOids are separated from the suspension by their 

accumulation on a filter or membrane, which is permeable for solvent and 1 ow­

molecular species ll. Liquid flow is driven by a pressure difference, which for vertical 

filtration is due to the weight of the liquid itself, plus a piston or external gas pressure. 

The liquid transport through the membrane and the grOwing packing of colloids, with 

typical microstructures as in fig. 2.1, is an example of flow in a porous medium. Thus, 

important trends, such as why small particles are difficult to separate, can be 

explained in terms of d'Arcy's law [I.6.4.36] for viscous flow of an incompressible fluid 

through a porous medium, which we write here as 

B 
u=--Vp 

17 
[2.2.64] 

Here u is the average flow velocity of the liqUid with viscosity 17 in a medium with 

permeability B, driven by an average hydrostatic pressure gradient Vp. The porous 

medium in filtration is the layer of deposited colloids, which grows in time. Thus, the 

draining liquid experiences an increasing drag, which retards the filtration rate, as is 

observed in processes such as slip casting of inorganic sols and water purification. To 

quantifY this retardation, conSider a sol with solid volume fraction ¢' which forms a 

filter cake with volume fraction ¢c and thickness L. Conservation of particle volume 

implies for the growth rate dL / dt of the cake: 

¢ -¢ d 
u == _c---L(t) 

¢ dt 
[2.2.65] 

Using d'Arcy's law [2.2.64]. we can eliminate u as -(B/lJ}(tJ.p/ L(t)), which can be 

1) For an illustrative example on poly(styrene) colloids, see K. Bridger, M. Tadros, W. Leu, and 
F. Tiller, Sep. Sci. and Techn. 18 (1983) 1417. 
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substituted in [2.2.651 and integrated to obtain theJiltration law, which quantifies the 

rate at which colloids are separated 

[2.2.661 

where t¥J is the absolute pressure drop across the cake. Hence, the colloid deposit 

grows according to L - tl/2 and the liquid veloCity decreases as v -l/tl/2. The 

scaling L - tl/2 reminds one of diffuSional growth, which, however, is clearly not the 

case here; particles are convected by the flowing liquid and diffusion is neglected. The 

square-root time dependence of the layer thickness L is due solely to an increase in 

time of the hydrodynamic reSistance. The absolute filtration rate is determined by the 

specific surface area Ag of the colloids (see sec. 2.3c), which, according to the Kozeny­

Carman (KC) relation (see also [1.6.4.41]) enters the liquid permeability Via: 

[2.2.671 

Here, C is the Kozeny constant ll, which for a random sphere packing is about C "" 5. 

The KC relation is very useful because a value of C - 5 also holds for dense packings 

3 
pAg=a 

6 
pAg=d 

4 - -
d 

Figure 2.10. Specific surface area Ag related to a or d for a variety of partlcle shapes. For 
high aspect ratlos. Ag only depends on the smallest dimension d. 

1) J. Kozeny, Sitzber. Akad. Wissensch., (Wien) UJa) 136 (1927) 271. 
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of non-spherical particles (including fibers Ill, as well as mixed particle sizes2.3 ). The 

specific surface area (fig. 2.10), therefore, provides a reasonable estimate of Band, 

consequently, of the filtration rate of a particular dispersion of particles. 

We note here that C may vary with the concentration rjJ of the filter cake. For 

example, substituting in [2.2.67J values for Band rjJ from an extensive study on flow in 

fibrous media 4), we find that the Kozeny constant starts to decrease significantly below 

rjJ ~ 0.1. For rjJ > 0.15, however, C values scatter around 5 ± 1, so indeed [2.2.671 

with C = 5 is sufficiently accurate for dense filter cakes of particles of the type shown 

in fig. 2.1 a-c. 

It is sometimes stated that the KC relation is purely empirical, but this is not quite 

correct. The pore geometries in a filter cake are clearly too complicated to allow an 

exact solution of the Stokes equations for viscous flow. The KC relation is an 

approximation for this solution at the cost of introducing a constant C, which in most 

cases is indeed empirical. The KC scaling itself, however, is a consequence of 

Poiseuille-like flow as can be seen as follows4 ). Consider a packing of particles (as in 

fig. 2.1) with solid volume fraction rjJc and surface area A . We can assign a charac­

teristic length dp to the pore space, with volume Vpor between the particles, which 

scales as 

[2.2.68] 

where Ag is the specific surface area of the particles, here5 ) defined as the surface area 

per particle volume. The liquid permeability has the dimensions of a length squared 

(for example, a tube radius squared in the case of the Hagen-Poiseuille law, see sec. 

I.6d sub (2)). Hence, the permeability of the pore space scales as 

[2.2.69] 

In a filtration experiment, however, we do not measure fluid flow in the pores, but the 

flow rate averaged over the whole filter cake, including the solid phase. Since inside a 

solid the flow rate is zero, the overall permeability that determines the filtration rate is 

[2.2.70J 

which is the KC scaling in [2.2.67J. It is clear that B and, hence, the filtration rate, is 

determined by the smallest dimension of a particle, e.g. the thickness of a platelet, 

J) E.J. Wiggins. W.B. CampbelL and O. Maass. Can . .J. Res. B17 (1939) 318. 

2) PC. Carman, Trans. Inst. Chern. Eng. 15 (1937) 150; J. Soc. Chern. Ind. 57 (1938) 225. 
3) G.W. ,Jackson. D.F ,James. Can . .J. Chern. F:ng. 64 (1986) 364. 

41 D.M.E. Thies-Weesie. A.P. Philipse. J. CollOid InreTjace Sci. 162 (1994) ·170. 
"ii 2 . [n [2.3.161 and elsewhere Ao is in m per gram. 

b 
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which determines the specific surface area (fig. 2.10). Particles with all dimensions in 

the micron range are easy to separate by filtration, whereas any dimension in the 

nanometer range necessitates very high pressures. We refer here to the filtration of 

stable sols; aggregation of small particles to large clusters will enhance the filtration 

rate ll. Sedimentation is not a suitable alternative to separate stable particles, which 

are too small for filtration because settling and filtration rate have the same particle 

size dependence, as will become clear in section 2.3 d on sedimentation. 

An interesting aspect, lastly, of the filtration of colloidal suspensions is that the 

density of the particle deposit strongly depends on particle shape. For example, for 

rigid fibers or rods2J with high aspect ratio L / d » 1 , the packing density of randomly 

oriented particles asymptotes towards zero as ¢c -d/ L . Thus, for an a priori estimate 

of permeability and the filtration rate on the basis of the KC-scaling, this shape effect 

must be taken into account. 

2.2i Surface mOdification 

Surface modification is the deliberate attachment of (macro )molecules to the surface 

of an inorganiC collOid to change its physical properties or chemical functionality. This 

change, of course, is only permanent if the attachment cannot be undone by thermal 

motion. Such surface modification occurs either via a covalent bond or Significant 

adsorption energy. The canonical example is a polymer shell, which stabilizes collOidal 

cores in a medium where they otherwise would coagulate, as in the case of soot col­

lOids in aqueous ink, which are protected by arabic gum. This polymeric stabilization 

and its entropic and enthalpic origin will be discussed in detail in sec. V.I. Here, we 

will only briefly address some general aspects of surface modification, referring to the 

literature for detailed examples3J. 

Surface modification seems at first sight a straightforward procedure: ident:ifY 

reactive groups on the inorganic colloid surface, choose a molecule with a suitable 

chemical linker, work out the chemical reaction conditions and perform the reaction 

itself. For the hydroxyl groups on metal(hydr)oxtde particles, one could think of a 

linkage to carboxylic acids or alcohols, or a modification using reactive siliconalk­

oxtdes. The surface silanol groups of silica, for example, react under mild conditions 

with so-called silane coupling agents (SCAs), i.e. siliconalkoxtdes with one alkoxtde 

replaced by a functional organic group3J. SCAs were initially designed to intermediate 

between inorganic surfaces and an organiC matriX (hence, their name), but they are 

also very Suitable for the in situ modification of colloids in a so14J. A major advantage is 

1) The filtration rate can be used to monitor the effectiveness of polymeric flocculants. An en­
trance to relevant literature is J. Gregory, AE.I. de Moor. ACS Symp. Ser. 240 (1984) 445. 

2) S.R. Williams. AP. Philipse, Phys.Rev. E 67 (2003) 051301. 

3) E.P. Plueddeman. Silane Coupling Agents (Plenum) (1991); D.E Leyden, Ed .. Silanes. Sur­
faces and Interfaces. Gordon and Breach (1986). Also see sec. 2.4. 

4) A. Philipse. A. VriJ. J. Colloid Interface Sci. 128 (1989) 121. 
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the large variety of functional mOieties, which can be attached to the particle surface, 

and even buried inside particles when the processes of silica synthesis and mod­

ification are mixed D. 

SCAs hydrolyze to reactive silanols, which graft themselves onto silica via formation 

of siloxane linkages. As an illustration. immerse a hydrophilic glass slide for about 30 

minutes (or even less) in a solution of typically one percent of SCA2 ) in ethanol, With 

some acid or base added to facilitate hydrolysis of the SCA. Next. rinse the slide With 

pure ethanol to remove free SCAs and dry it in hot air. The slide is now poorly wetted 

by water as a manifestation of its surface modification. In a similar manner. one 

obtains hydrophobiC sand or the functionallzed silica grains used in affinity­

chromatography. For the particles in a silica sol, the surface modification chemistry is 

basically the same as for macroscopic silica, but an important additional challenge 

arises and that is to avoid coagulation during the modification procedure. 

Once reactive oligomers or polymers attach to a colloidal core, the core-shell par­

ticle behaves as one kinetic unit With an average kinetic energy of (3/2)kT. This energy 

has to be weighed against the replacement of a large number of solvent molecules by 

the adsorbed species. Even a very small Gibbs energy penalty per replacement may 

suffice to produce aggregates that do not break apart by thermal motion. Such 

aggregation can also be induced by minute changes in the nature or composition of the 

solvent. a subtle effect that is often difficult to predict or to explain afterwards. The fact 

is that any small change in composition involves a large number of low-molecular 

species, With a net enthalpy change that easily compensates the entropy loss due to 

aggregation of large colloids. Thus, the image of colloids coated by reactive molecules 

while diffusing around in an inert, neutral solvent background is clearly inappropriate. 

All molecular interactions must. in principle, be accounted for, a challenge which we 

cannot meet yet. 

One obvious counterexample to this neutral background is any solvent adsorption 

on (modified or unmodified) colloids. Water adsorption on silica is well known, see 

sec. 3.13b, but polar organic solvents such as dimethylformamide or triethylphosphate 

also adsorb in Significant amounts on bare silica particles. often suffiCient to prevent 

their coagulation. One could make a case that accurate characterization of a colloidal 

dispersion includes measurement of the immersion enthalpy of particles in their 

solvent, see sec. II.2.3d. Surface modifiers have to compete With solvent adsorption, 

which will lower the grafting density3J. 

We have indicated several reasons why transfer of charged colloids in polar liquids 

to modified particles in stable organic sols is a triCky process, which often has to be 

I) A. van Blaaderen, A. VriJ. LangmUir 8 ( 1992) 2921. 
2) Take a coupling agent with a hydrophobic group, such as the TPM in sec. 2.4a. 
3) A.M. Nechifor, A.P. Philipse, F. de Jong, J.P.M. van Duynhoven. R.J.M. Egberink, and D.N. 

Reinhoudt, LangmUir 12 (1996) 3844. 
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optimized by trial and errorll. Small particles, it should be noted, also have a kinetic 

disadvantage, because the number densities of nanometer-sized particles are high. 

Therefore, any coagulation will occur rapidly, since the coagulation rate is proportional 

to the square of the number density. For modified, stable collOids, of course, the small 

particle size becomes a benefit in view of the many functional groups per gram. 

Lastly, one attractive option, which should be mentioned, is the simultaneous syn­

theSis and modification of inorganiC collOids by their nucleation and growth in the 

presence of the modifying agent, which also influences (and perhaps even controls) the 

particle size. Examples are the formation of small magnetic particles2J by thermolysis 

of metalcarbonyl-precursors in surfactant solutions, and the synthesis of extremely 

small gold collOids by reduction of gold salts in the presence of silane coupling 

agents3J . 

2.2j Other methods 

Preparation methods mentioned so far certainly do not exhaust the routes for 

obtaining collOidal sols. Metal colloids, for example, can also be formed by electrical 

disintegration methods. Here, an arc is passing between electrodes under water, 

vaporizing electrode material to a metal gas that subsequently condenses into particles 

of collOidal dimensions. The formation of aqueous metal sols by electrical dispersion 

techniques was pioneered by Bredig and others4 } but has been replaced by more con­

venient alternatives such as the reduction of metal salts or the thermal decomposition 

of metal-carbonyl compounds and metal ions complexed by chelating agents (for 

example, triethanolamine)5J. Another preparation strategy already explored in the early 

days of colloids science, however, has been more lasting, and even evolved into a 

separate branch of materials research, often referred to as sol-gel processing6J. 

Thomas Graham 7) not only coined the term 'collOids' but also the terms 'sol' and 'gel' 

to denote, respectively, the initial and final state in the coagulation of a liquid 

dispersion to a space-filling solid-like material. Graham studied this tranSition for 

silica, alumina and other inorganic substances in water as well as ethanol. He found, 

for example, that water-glass in alcohol may change from an 'alcosol' to an 'alcogel' 

with nearly the same volume at already very low silica concentrations (see also section 

2.4a). Sol-gel tranSitions and other coagulation phenomena became a claSSical topic of 

collOid science; the field of sol-gel processing is broader and aims to cover the whole 

route from a liqUid sol via gelation, drying and sintering to the final solid state, usually 

1) C. Pathmamanoharan, PhD. thesis, Utrecht, The Netherlands (1998). 

2) T.w. Smith, D. Wychick, J. Phys. Chem. 84 (1980) 1621. 

3) P.A. Buining, B.M. HumbeI. A.P. Philipse, and A.J. Verkleij, LangmUir 13 (1997) 3921. 

4) G. Bredig, Z. Angew. Chem. 11 (1898) 951; T. Svedberg, Die Methoden zur Herstellung 

Kolloider L6sungen Anorganischer Stoife, Verlag von Theodor Steinkopff (1909). 

5) For an update on electrical methods see Delplancke's review in sec. 2.5. 
6) C.J. Brinker, G.W. Scherer, Sol-Gel Science, AcademiC Press (1990). 

7) T. Graham, Phil. Roy. Soc. London 151 (1861) 183; J. Chem. Soc. August (1864) 618. 
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a ceramic material I ). The process may start with a precursor solution of aqueous salts 

or metal-organic compounds; in particular metal alkoxides are widely used in sol-gel 

research (sec. 2.4 proVides examples of both types of precursors). In addition to 

molecular precursors, sol preparation may also employ dry powders synthesized by 

vapour-phase methods at the high temperatures produced by a furnace, flame, plasma 

or laser. Advantages are the high purity of the powders, and the possibility of atomic­

scale mixing in the vapour phase. 

Metal alkoxide precursors are convenient because they readily react with water to 

form metal (hydr)oxides at room temperature. In a limited number of cases (silica, 

titania and zirconia) monodisperse spheres are formed2). These amorphous spheres 

have a significantly lower mass density than the corresponding bulk oxide and contain 

solvent as well as residual organic groups. The specific surface area is generally much 

greater than expected from particle dimensions measured With TEM, and at least for 

silica it is well known that the spheres noticeably shrink when exposed to the vacuum 

in an electron microscope. These features clearly show that hydrolysis of metal 

alkoxides does not produce massive spheres but rather spherical sponges haVing suf­

ficient internal cross-linking to maintain their shape, and sufficient porosity to allow 

permeation of solvent and small molecules. 

The variety of preparation schemes in sol-gel processing involVing either precursors 

or powders, is enormous, see the extensive literature survey in ref. ll. Sol-gel literature 

is, consequently, often a useful information source on inorganic collOid synthesis, and 

the chemiStry of hydrolysis and condensation of metal ions in solution3 ) or reactions 

involVing metal alkoxide precursors l
). However, what has been said in section 2.2f on 

the limited predictability and control of particle size and morphology remains true. We 

may rightfully look With some envy to the controlled collOid formation in biomineraliza­

tion4 ). Examples are the single crystals of magnetite (Fe30 4 ) and other minerals made 

by bacteria, the mono disperse ferrthydrate (5Fe20 3 .9H20) collOids in the iron­

storage protein ferritine, and the beautiful silica structures sculped by diatoms5 ). 

Further study of the still poorly understood in Vivo preparation methods used by 

organisms may proVide new ideas for man-made colloids. 

2.3 Characterization 

After synthesizing a colloidal dispersion and performing the required purification or 

separation techniques, as described in the preVious section, we wish to characterize 

Il U. Schubert, N. Husing, Synthesis oj Inorganic Materials, Wiley-VCH (2000); C.J. Brinker. 
G.W. Scherer. loco cit. 
2) C.J. Brinker, G.W. Scherer, loco cit. 

3) For this intricate chemistry see J.P. Jolivet, Metal Oxide Chemistry and Synthesis; Jrom 

Solution to Solid State, Wiley (2000). 
4) S. Mann, J. Webb, and R. Williams, Biomineralization, VCH (1989). 
5) L. Addadi, S. Weiner, Angew. Chem. Int. Ed. Engl. 31 (1992) 153. 
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the colloidal particles. Nowadays, sophisticated techniques are available to investigate 

colloids in nanometric detail, in real as well as reciprocal space (vide infra). A discus­

sion of all measurable parameters, with techniques to match, requires an encyclop­

aedia, so we only present a selection, referring for a more extensive coverage to the 

provided literature entries. 

2.3a Visual observations and microscopy 

A great deal of information can already be obtained from visual inspection of a sol. 

aided by a torch or small laser. Some trends, to which no doubt exceptions may be 

found, are listed below, starting with optical properties. 

(i) Colours lJ 

For colloids, which do not absorb light at visible wavelengths, the turbidity is only 

due to light scattering. A bluish appearance in this case is due to Rayleigh scattering of 

particles with a typical diameter on the order of 100 nm or smaller. This bluish Tyn­

dall effect can be clearly observed for dilute dispersions of latex particles and several 

metal (hydr)oxide colloids, such as boehmite and silica. A milky white appearance 

may be due to anything that shortens the mean free path of photons in the dispersion: 

large particle size, high refractive index and high collOid concentration. Multiple scat­

tering is easy to demonstrate as it spreads an incoming narrow beam of laser light. A 

white appearance sometimes manifests aggregation; the blUish Tyndall effect for small 

aluminum hydrOxide or silica colloids changes to white turbidity when the particles co­

agulate. Inspection of a (either stirred or shaken) sol with a light beam between 

crossed polarizers reveals optical birefringence when the dispersed particles have an 

anisotropic (plate or rod-like) shape. This birefringence, a mosaic texture of dark and 

light patches of sol regions with different optical axes, is quite spectacular for concen­

trated sols of tungsten oxide platelets, and can also be observed for vanadium oxide or 

boehmite fibres (see sec. 2.4c). Optical birefringence is caused by particles, which align 

in a shear flow, and when stirring is stopped the mosaic pattern usually rapidly decays 

by rotational Brownian motion. For very concentrated, strongly interacting particles a 

permanent birefringence may result from the inability of the plates or fibres to re­

orient. 

Colour effects due to absorption are too numerous to discuss here. Identification of 

particle composition on the basis of absorption is not always straightforward; witness, 

for example, the variety in yellow, brown and red colours of the iron (hydr)oxide col­

IOidsZ1 • Another important issue is the particle size dependence of absorption spectra 

I) How informative colours and turbidity can be in assessing particle sizes is illustrated well for 
the case of polymer latex dispersions in E.!. Franses, L.E. Scriven. W.G. Miller and H.T. Davis. 
J. Am. Oil. Chem. Soc. 60 (1983) 1029. For particle sizes in surfactant systems the authors 
even present a diagnostic gUide based only on perceptions of transparency and colour. 
2) U. Schwertmann, R.M. Cornell. Iron Oxides in the Laboratory, VCH (1991) 
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and the quantum siZe effect extensively discussed elsewhere ll . A well-known observa­

tion here is the blue shift caused by coagulation of an initially red sol of stable gold 

particles. 

(it) Settling 

When particles settle significantly within a few days it is worthwhile to estimate the 

effective Stokes radius. which would produce the order of magnitude of the observed 

settling rate. If this radius is much larger than the expected colloid size. either this ex­

pectation is wrong or the colloids are aggregating (or both). A sharp interface between 

sedimenting suspension and supernatant does not necessarily imply monodispersity 

(see further 2.3d). The sediment on the bottom should also be observed when the 

vessel is tilted; stable colloids tend to flow like a liquid (be it very slowly when the 

particles are densely packed). whereas aggregated particles form sediments or gels 

with a yield stress. Stable collOids produce diffraction colours when they form ordered 

sediments with spacing on the order of optical wavelengths. Well-known examples are 

the collOidal crystals observed in sediments of repulSive spheres. but rod-like particles 

may also produce Bragg reflections. such as in the so-called Schiller layers of 

,6'-FeOOH rods. which may settle into a smectic structure2). In the latter case the visual 

appearance is a dark brown sediment. which exhibits specular reflection with irides­

cent colours depending on the angle of reflection. 

With a ruler one can already easily estimate an informative number. namely the 

particle volume fraction ¢cH¢/h in sediment with height h formed in a suspension 

with height H and initial volume fraction ¢. A density around ¢c ~ 0.63 is expected for 

randomly packed. hard spheres. A higher density of. say ¢c.?: 0.70. betrays crystalline 

ordering or polydispersity since miXtures generally pack more densely than 

mono disperse spheres. A Significantly lower sediment density manifests strongly 

attractive particles. particles with high aspect ratios. or both. Attractions obviously 

favour the formation of ramified sediments3 ). but it is in particular the combination of 

fractal structures and high aspect ratio particles. which accounts for the very low 

densities observed in settled. flocculated clay4) and fiber suspensions5 ). 

(iii) Stability 

Instability of colloidal dispersions with respect to aggregation or phase separation is 

often easy to detect. Shaking a dilute. unstable sol usually produces Visible specs of 

aggregated particles. which stick to the glass surface; a stable sol (delwets the surface 

as a homogeneous fluid. For concentrated. aggregated sols. one observes the mean-

1) H. Weller. loco cit. 

2) Y. Maeda. S. Hachisu. Colloids Surf 6 (1983) 1. 
3) H. Sonntag. K. Strenge. Coagulation Kinetics and Structure Formation. Plenum Press 
(1987). 
4) R. Buscall. Colloids Surf. 5 (1982) 269. 

5) A. Philipse. A. Wierenga. loco cit. 
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dering structures on the glass surface characteristic of buttermilk. It should be noted 

that stirring or shaking might considerably enhance the rate of coagulation due to an 

autocatalytic effect. The largest particle clusters are the most efficient in capturing 

particles in a shear flow and, therefore, grow fastest. This is orthokinetic coagulation, 

to which we return in sec. 4.5b. That is why stirring a sol is not without risk; it may 

cOagulate a sol, which has marginal stability. Exposing a sol sample to high shear rates 

in a rheometer is a severe test for stability because any small floc, which is 'harmless' 

in a quiescent dis peri on, will grow rapidly in the shear field in an autocatalytic fashion. 

For the influence of particle interaction on sol rheology, see sec. 6.13. 

The onset of coagulation or phase separation sometimes announces itself clearly by 

the so-called critical opalescence, i.e. a strong increase in the light scattering on 

approach of a critical point due to the occurrence of large fluctuations in denSity, and, 

hence, in refractive index. Whenever such fluctuations can be observed in a gently 

shaken sol (their texture is reminiscent of the flow-induced birefringence mentioned 

earlier), it is pretty sure that the sol will gel or phase-separate soon thereafter. 

Observing what happens when an acid or base is added to a charge-stabilized 

dispersion is always informative. The pH at which a sol coagulates will in general be at 

its isoelectric point (Le.p.), though there is the notorious counter example of silica, 

which is often quite stable at its Le.p. of about 2 but rather coagulates near pH - 8, see 

sec. 3.13b. The sediment volume of settled flocs is expected to reach its maximum at 

the pH where particles most strongly attract each other. The charge sign of colloids at 

various pH values can be checked simply by inserting the poles (or pt-Wires connected 

to them) of a battery and observing at which pole deposition takes place. 

(iv) Rheology 

The viscous and elastic properties of suspensions will be dealt with in chapter 6. 

Here we only mention some easy visual checks. Very concentrated stable dispersions, 

as in sediments of filter cakes, display shear thickening, which makes them hard to 

process. Squeezing such a filter cake, we notice that it falls dry due to dilatancy. When 

we observe shear thinning, Le. lowering in effective viscosity when stirring or shaking a 

dispersion, the collOids are attractive, a hypotheSiS that can be checked by observing 

the increasing viscosity when leaVing the disperSion quiescent for a while. The origin is 

the breakdown and reestablishment of coagulate networks. The latter process may 

take some time. Air bubbles are convenient markers for viscoelasticity. When quickly 

rotating a vessel, the bubbles are slightly out of phase with the oscillations of the fluid, 

an effect that can be clearly observed with a bottle of salad dreSSing. A gradual 

trapping of air bubbles accompanies the growth in yield stress in a gelling dispersion. 

When a concentrated dispersion gradually turns into a stiff gel with a high yield stress, 

as in the case of commercial silica sols on a time scale of months, a low-frequency res­

ponse 1s heard upon gently tapping the vessel containing a gel, known as a ringing gel. 
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(v) Microscopy 

Optical microscopy is, of course, a valuable extension of visual inspection. One can, 

for example, observe gel structures, groWing clusters in a phase separation or using 

polarized light, liquid crystals or tactoid formation of anisotropic colloids. To observe 

colloids in bulk, confocal microscopyll is a versatile method, which in the footsteps of 

Perrin (sec. 2.2a), is used to study Brownian motion in concentrated dispersions2J. 

This method, however, is not (yet) a routinely available characterization technique, but 

rather belongs to the category of research tools, which falls beyond the scope of this 

text. This category also comprises the rapidly expanding field of scanning probe 

microscopy of colloids in the manometer size range3 ). The microscopy, without which 

no characterization of colloids is complete, is, of course, electron microscopy4). 

Transmission electron microscopy (TEM) is employed to determine sizes, size dis­

tributions and particle shapes. The number-average particle size and the spread 

around this average can be used to predict averages found from other techniques, as 

explained in appendix 1. Particle sizes can be made absolute, in principle, by adding 

calibrated latex spheres to the dispersion. The average colloid-latex number ratio on 

the TEM grid provides a rough estimate of the initial colloid number density. TEM has 

the disadvantage that the samples have to be dried (which may produce aggregation) 

and subsequent exposure to a high vacuum may distort or shrink the particles. 

Therefore, one should be very careful about drawing too many conclusions about the 

colloid structure in the wet state from TEM images. Particle topography can be imaged 

with scanning electron microscopy (SEM). The additional advantage of SEM is 

elemental analysis by energy dispersive X-ray analysis4J. Also here, sample preparation 

and high vacuum exposure may give rise to artefacts. Two techniques that are 

presently in a state of development should be mentioned that circumvent this problem. 

Environmental scanning electron microscopy (ESEM) images colloids, which are 

kept in an environmental chamber in a water vapour atmosphere with adjustable 

pressure and temperature. There is no need to coat the particles with conducting film 

as in conventional SEM. In this way, hydrated colloids can be characterized in their 

native state, as has been shown for latex spheres as well as inorganiC particles5 ). 

Cryogenic TEM images a vitrified film prepared by a fast temperature quench 

(usually in liquid ethane) of a liquid dispersion film. In principle, vitrification preserves 

1) T. Wilson, ConJocal Microscopy, Academic Press (1990). 
2) W.K. Kegel, A. van Bladeren, Science 287 (2000) 290. 
3) See e.g. A. ten Wolde, Ed., Nanotechnology, The Netherlands Study Centre Jor Technology 

Trends (1998). and B. Bhushan, Ed., Springer Handbook oj Nanotechnology. Springer (2004). 
4) For a useful literature entrance, also for the various types of optical and scanning probe 
microscopies and their applications to collOidal dispersions see: E. Kissa, Dispersions; 

Characterization, Testing and Measurement, Surfactant Series 84. Marcel Dekker (1999). 
5) R.H. OtteWill, A.R. Rennie, Eds., Modern Aspects oj Colloidal Dispersions, Kluwer (1998). 
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the particle distribution and morphology of the structures in the liquid film 1.2J. 

Inorganic, iron colloids with radii as small as 2 run have been imaged in this way3J. 

Cryo-TEM characterization is without doubt an important complement to scattering 

techniques. The latter have the advantage of probing very large numbers of particles, in 

a 3-dimensional bulk, on a variety of length scales. Cryo-TEM studies fewer particles in 

a quasi 2-dimensional film, but directly visualizes any structure formation, shape and 

size details, which are usually difficult to obtain unambiguously from scattering data in 

reciprocal space. 

2.3b Light scattering 

To characterize collOids with scattering techniques, visible wavelengths as well as 

neutrons and X-rays are employed. The chOice of the wavelength is determined by the 

length of scales to be probed, but also by the (complex) refractive index of the collOids. 

For example, concentrated colloidal dispersions are usually too opaque for claSSical 

light scattering methods to apply4J. Light scattering, nevertheless, is a versatile charac­

terization method for many collOid and polymer solutions. Restriction of the treatment 

to light is further justified by the fact that scattering by other radiation is not 

fundamentally different5 ), so that the general form of the equations to be derived 

remain applicable. mutatis mutandis. 

Light scattering is extensively treated in several excellent reviews5 ,6.7J. The aim here 

is to give a brief description restricted to the characterization of homogeneous. non 

absorbing spherical particles in a dilute suspension. For a discussion on light- and 

other types of scattering in concentrated systems, see chapter 5. ElsewhereSJ , the 

prinCiples outlined here are generalized to spheres of variable composition, rods, 

polymers etc. The topic was introduced in chapter 1. 7. 

(i) Static light scattering (SLS) 

When the refractive index n1 of a colloid differs from the index n2 of the solvent, 

the electric field of an incident light beam induces an oscillating dipole in the colloid. 

which causes scattering of light in all directions. We assume that the electric vector of 

the incident light with wavelength ;t is polarized perpendicular to the scattering plane, 

and we detect the scattered photons with the same polarization at an angle (). A sphere 

lJ Y. Talmon, Ber. Bunsenges. Phys. Chem. 100 (1996) 364. 
2) P.M. Frederik, W.M. Busing, J. Microscopy 144 (1986) 215. 

3) K. Butter. P. Bomans, P. Frederik, G. Vroege. and A. Philipse, Nature Materials 2 (2003) 88. 

4) Multiple scattering, however, is exploited in diffusive wave scattering methods. see E. Pike, J. 

Abbiss. Light Scattering and Photon Correlation Spectroscopy, Kluwer (1997). 

5) M. Kerker. The Scattering of Light and other Electromagnetic Radiation. Academic Press 
(1969). 

6) C. Tanford. Physical Chemistry of Macromolecules. Wiley (1961). 

7) 8..J. Berne. R. Pecora, Dynamic Liyht Scattering, Wiley (1976). 

8) K.S. Schmitz. An Introduction to Dynamic Light Scattering by Macromolecules, Academic 
Press (1992). 
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of radius a behaves as a Rayleigh (point) scatterer when a / A « 1 , producing a scat­

tered intensity I at a distance r from the sample (see also [L7,7,SJ), 

[2,3,lJ 

This is Rayleigh's famous equation, I is independent of the scattering angle, and 

increases with a 6 , because the scattered field amplitude (the square root of the 

intensity I) is proportional to the pol ariz ability and, hence, to the volume of the 

sphere, Note also the well-known Rayleigh law I ~ A-4 , which accounts for the blue 

sky and also for the bluish appearance of sols of small particles, For a sphere With 

radius a comparable with A, the electric fields scattered from different regions of the 

sphere have different phases, The resulting interference decreases the intensity meas­

ured by the detector relative to the intensity I, according to [2,3.1 J. This reduction can 

be accounted for by a factor P(q) , 

IRGD =IxP(q) [2.3.2J 

Here, 'RGD' refers to the Rayleigh-Gans-Debye limit (sec. I.7.Sd) 

[2.3.3J 

where the incident light is hardly distorted by the sphere. Further, P(q) is the form 

factor, which for homogeneous spheres is given by 

[2.3.4J 

Note that the form factor is normalized such that pro) = 1, whereas P(q) < 1 for finite 

values of the scattering vector 

q = (4ff/ A)sin(e/2) [2.3.5J 

The zero values of the form factor occur when tan(qa) = qa with roots qa = 4.493, 

7.725. etc. So, the location of minima in the angular scattering profile directly provides 

the sphere radius. This determination is only accurate in the RGD limit for sufficiently 

monodisperse spheres because polydispersity washes out the details of the form factor. 

Conversely, one can conclude from sharp intensity minima that the spheres under 

study must be quite monodisperse. It should be noted that even for monodisperse 

spheres. the [om1 factor minima may fade due to multiple scattering if the sol is not 

sufficiently dilute. A well-known mcthod to determine a sphere radiUS at small 

scattering angles is to employ the so-called Guinier approximation I) 

I) A. Guinier, G. Fournet, Small-angle Scattering of X-Rays, Academic Press (1955). 
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P(q) = exp[ _qa2 15] [2.3.6J 

Equation [2.3.4J reduces to [2.3.6J for sufficiently small values of qa. Note that this 

method only requires relative intensities because the particle radius is obtained from 

the initial slope of a QUinier plot of InI(q) against q2. The Guinier radius, obtained 

from [2.3.6], is quite sensitive to deviations from monodispersity because of the strong 

a-dependence in [2.3.1 and 6]. The average scattered intensity for polydisperse non­

interacting spheres in the Quinier region is proportional to 

[2.3.7] 

where the angular brackets denote a number average as defined in 2.3f. We can rewrite 

[2.3.71 to 

[2.3.8] 

where the occurrence of the so-called Quinier radius a Q shows that large spheres 

contribute heavily to the averaged SLS particle size. The apparent radius can be 

converted to the number-averaged radius (a) 

for s; «1 [2.3.9] 

Here, sa is the relative polydispersity defined in app. 1, which is assumed to be small. 

This assumption also requires the absence of particle aggregates and contaminants, 

such as dust and air bubbles, which strongly contribute to the scattered intensity at 

small q. If these requirements are met, Quinier plots may be extrapolated to q = 0 to 

obtain the molar mass M of the colloids. For N identical scatterers in a total scattering 

volume V, we can rewrite [2.3.1] to 

[2.3.10] 

where c is the weight concentration of the particles with mass density p and N Av is 

Avogadro's number. This form shows that the forward scattering intensity indeed 

provides a molecular mass since the other parameters can, in principle, be measured. 

This method, of course, necessitates absolute scattering intenSities; Huglin explains 

calibration procedures U The effect of polydispersity on the absolute SLS intensity at 

q = 0 can be found from a generalization of [2.3.1 OJ. The molecular mass is a weight 

average and the corresponding apparent radius equals aipp = (a6 ) l(a 3 ), which can be 

simplified further using the moment expansion from appendix I. 

Inspection of [2.3.1 OJ makes clear that the scattering intenSity can be reduced by 

1) M. B. Huglin. Ught Scattering Jrom Polymer Solutions. Academic Press ( 1972) 
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lowering the optical contrast, Le. the difference between the refractive indices nj of the 

colloids and n 2 of the solvent. For perfectly homogeneous particles the scattered 

intenSity vanishes at zero contrast, whereas inhomogeneous colloids have a residual 

scattering intenSity even when the solvent matches their average refractive index. 

Measuring the intenSity as a function of the solvent refractive index, also referred to as 

contrast variation n, is useful to characterize the internal structure of colloidal 

particles. Contrast variation is, in particular, sensitive to refractive index changes at 

the surface of the collOids due to, for example, grafted or adsorbed polymers, as 

discussed in detail elsewhere2J . 

(li) Dynamic Light Scattering (DLS) 

Particle characterization by SLS relies on time-averaged scattering, so it is 

immaterial whether the suspended particles are stationary or not. To characterize the 

Brownian motion of the collOids by a determination of the diffusion coefficient in 

[2.2.101, one can employ the fluctuations of scattered light in time using dynamiC light 

scattering (DLS). The essence of a DLS experiment has been explained in secs. 

I. 7.6c,d, 7 and 8, see also fig. 1.7.10. Here we briefly summarize the method. The 

coherent light of a laser, illuminating a periodiC grid, produces a static diffraction 

pattern on a screen, but when the grid is replaced by a collOidal suspension the pattern 

changes continually. We observe flickering bright spots due to constructive interference 

of light scattered by individual collOids and dark patches manifesting destructive 

interference. The time-dependent intenSity fluctuations in this speckle pattern are, of 

course, caused by perpetual Brownian motion, and it is clear that somehow the 

dynamics of these fluctuations contain information on the translational diffusion 

coefficient D. One way to harvest this information is to determine the time correlation 

function Cf (t) of the scattered light field3 ). This function comprises a characteristic 

time tq needed for a significant change in the speckle pattern for a given value of the 

wave vector q. For times t« tq , the intensity pattern has not significantly decayed, 

whereas, for t» tq the speckles are uncorrelated. The characteristic time is defined as 

t = 1/ Dq2 q [2.3.111 

which can be interpreted as the typical fluctuation time of the speckle pattern at the 

detector, or roughly the time taken by a particle to freely diffuse a distance q-l, in 

accordance with Einstein's law for quadratic displacement by Brownian motion. For 

the simplest case of a sol of identical, non-interacting spheres a DLS experiment 

j) Contrast variation is also a versatile method for X-rays and neutrons. see eg. R Ottewill, in 
Colloidal DLspersions, ,l.W GoodWin. Ed .. Uoy. Soc. Chern. (1982) 

21 A. van Hclden, A. Vrij. J. Colloid Interface Sci. 76 (1980) c~18. 
31 Time correlation functions were introduced in l.app. 1 1. 
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yields lJ 

C[(t):::: exp[ -'-tltq ] [2.3.12J 

i.e. a single exponential function of the correlation time t, which provides tq and 

ultimately the hydrodynamic sphere radius a h via the Stokes-Einstein equation, 

D :::: kT I 6m]ah . This radius is usually larger than the actual particle radius due to 

factors that slow down diffusion, such as the presence of an electrical double layer or 

adsorbed (solvent, surfactant or polymer) molecules. The friction factor f determined 

via DLS measurements can also be used, in combination with ultracentrifugation, to 

determine the molar mass of the colloids. This classical procedure, further explained 

in sec. 2.3d, is quite general since the particle shape need not be specified. For 

polydisperse, non-interacting spheres, [2.3.121 is generalized t02) 

[2.3.13J 

where the brackets denote an average over the distribution of particle radii. It is seen 

that C[ (tl is now a sum of exponentials, each weighted by the intensity scattered by the 

pertinent species; for RGD spheres I is given by [2.3.21. When the distribution is so 

narrow that the delay times tq in [2.3.111 are close, one can expand the exponential 

about a mean value to find 

with an apparent diffusion coefficient 

D :::: kT 
app 6mJah 

[2.3.141 

[2.3.15] 

So, from a fit of the logarithm of the measured correlation time to [2.3.141, we obtain 

at small t a hydrodynamic radius a h , which can be converted to a number average 

using the moment expansion, discussed in appendix I. 

Our rudimentary sketch of DLS on dilute sphere suspensions neglects many 

complicated but important issues, such as particle interaction at finite concentration 

through long-range electric and hydrodynamic forces and scattering by non-spherical 

collOids or flexible polymers, which have extra terms in Cf (t) due to rotational and 

internal motions. When it is known a priori (from electron microscopy) that the 

collOids under study are spherical and that they are non-interacting RGD scatterers, 

one obtains a hydrodynamic radius with an accuracy of a few percent, if all works well. 

A significant wave vector-dependence of the apparent diffusion coefficient obtained 

J 1 K.S. Schmitz, loco cit.; P. Pusey. R. Tough, in Dynamic Light Scattering and Velocimetry, R. 

Pecora, Ed .. Plenum (1982). 
21 PG Cummins. E .• ). Staples. Langmuir 3 (1987) 1109. 
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from [2.3.14 J may harbour a variety of aggregation or interaction effects. which are 

studied in various monographs lJ . 

2.3c Surface area 

The specific surface area Ag of colloidal particles is an important characteristiC for 

many applications. for instance in catalYSiS and adsorption. It also determines the rate 

at which particles can be removed afterwards by filtration using [2.2.67J. For a particle 

with volume V and mass density p. the specific area is defined as: 

Ag:::: AI pV [2.3.16J 

For a given amount of mass the sphere has the minimum surface to volume ratio; any 

shape deformation at constant volume increases A g . For anisometric colloids, such as 

clay platelets or vanadiumpentoxide fibres. Ag is largely determined by the particle 

thickness (see fig. l.d). For sufficiently thin platelets or long fibres, the length (distribu­

tion) and detailed shape is irrelevant. Only when the relevant particle dimension in fig. 

2.10 is inhomogeneous. will dispersity affect the value of As' We generalize [2.3.16] to 

[2.3.17] 

where Ni is the ,number of particles with area ~; the brackets denote a number 

average. For polydisperse spheres, it follows that the specific surface area is given by 

[2.3.18] 

The apparent sphere radius as can be estimated from the sphere dispersity as will be 

explained in app. 1. Liquid permeability measurements have been widely applied to 

determine Ag for spheres2J and non-spherical particles up to the extreme aspect ratios 

encountered in paper and fibrous media3J . Carman introduced using [2.2.67J to obtain 

the surface area of powders. and found that the method is not affected in accuracy if 

the powder contains miXed sizes of particles and particles of irregular shape. A liquid 

permeability (or filtration rate) measurement. however. becomes impractical for 

colloids in the nanometer size range because this would require very high hydrostatic 

pressures, as discussed in 2.2h. One option here is to dry the sol and determine the 

surface area by the well-known BET method introduced in sec. IL1.Sf. For very small 

particles. it should be noted that techniques of gelling and drying a sol generally 

I) KS. Schmitz. loco cit.; R. Pecora, Dynamic Ught Scattering: Application of Photon Correl­

ation Spectroscopy. Plenum (1983). 

21 D. Thics-Weesie et al.. loco cit. 

31 G. Jackson. D. James, Call. J Chern. Eng. 64 (1986) 364. 
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produce some area loss by coalescence at particle-to-particle contacts and/or sintering. 

For aqueous silica sols the specific surface area can be determined, following 

Searsll, by measuring the amount of alkali adsorbed from solution as the pH is raised 

from 4 to 9. To increase the amount of adsorbed base and to eliminate any effect of 

unintentional small amounts of electrolytes in samples, the titration is carried out in a 

saturated sodium chloride solution (about 200 g NaCl/litre). Sears standardized this 

method using a number of silica powders with a specific surface area known from BET 

(N2 ) adsorption, which allows a direct conversion of titer volume to specific surface 

area. Of course, for this conversion any other base-consuming species must be 

removed or corrected for. Silica is remarkably stable at such high ionic strength, as 

long as the pH is low and only when suffiCient 0.1 N sodium hydroxide is added, such 

that pH ~ 8 sols start to slowly coagulate and become turbid (see sec. 3.13a). However, 

hydroxyl groups from the NaOH are still able to reach all surface silanol groups in the 

fresh particle aggregates, so coagulation does not affect the outcome of the Sears 

titration. The method, also used in fig. 2.8 to mOnitor the decrease of surface area in 

time due to Ostwald ripening, is routinely applied in industry as a rapid area check for 

freshly prepared sols2). It would be interesting to know whether sols of other inorganic 

colloids can also be rapidly characterized with a standardized acid-base titration. 

The Sears method is just one member of a family of adsorption techniques to 

determine surface areas, employing adsorption of ions, nitrogen, water vapour and 

organic dyes, such as methylene blue. Some illustrations can also be found in sec. 

rr.2.7c. Information on this family is easy to locate in the literature3 ). Mercury 

porosimetry for porous surfaces has been introduced in sec. II.l.6b; the method can 

also be used for particle size analysis4 ). 

Lastly, one often-overlooked aspect should be mentioned here and that is the effect 

of surface roughness, which is disregarded in the scaling Ag - a-I. For compact 

spheres with a surface fractal dimensionality d f ,the specific surface area scales as5 ) 

[2.3.19J 

where IL is the diameter of the probing molecule, which is used to measure the surface 

area. The particle size dependence of the specific surface area is only reciprocal for a 

smooth object (df == 2), whereas the dependence is weaker for fractal surfaces and 

even disappears for d f =:0 3. Soil particles form a well-documented example of the 

II G.W. Sears, Anal. Chem. 28 (1956) 12, 1981. This is one of the oldest illustrations of a 
colloid titration. 
21 K. Andersson. B. Larsson, and E. Lindgren, Silica Sols and Use oj the Sols. US Patent 5. 
603.805 (1997) 

31 S .. ]. Gregg, KS.W.Sing, Adsorption, Surface area and PoroSity, Academic Press (J 982). 

41 D.M. Smith, D.L. Sternmer, Powder Tech. 53 (J 987) 23. 

51 M. Borkovec, Q. Wu, G. Degovlcs, P. Laggner. and H. Sticher. Colloids Surfaces A73 (1993) 

65. 
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effect of surface roughness. Their surface dimension is close to d f = 2.4, as follows 

from several independent surface area studies 1) Clearly, for an accurate characteriza­

tion of surface area and data interpretation, information on the surface structure is 

needed. Here it is convenient to employ SAXS, where at high magnitudes of the 

scattering vector q the surface dimension follows from a log-log plot of scattering 

intensity versus q (Porod's law 21 ). 

2.3d Sedimentation 

The settling of colloids under gravity or in a centrifuge is a rich (but surprisingly 

little consulted) source of information on their size, shape, and interactions. The 

equipment varies from an analytical ultracentrifuge, which records a sedimentation­

diffusion equilibrium profile with a high resolution to a vessel for studying settling 

under gravity. In the latter case, the descent of the boundary between supernatant 

liquid and settling sol is measured. The observation of an initially sharp boundary, 

which gradually spreads in time, may manifest polydispersity, back-diffusion of the 

particles, or both. A boundary, which stays sharp, is consistent With the settling of 

monodisperse particles (With negligible diffusion), but certainly not proof of it. Even a 

polydisperse system may produce a sharp boundary due to a strong decrease of the 

settling rate With increasing concentration. Particles at the low concentration side of a 

boundary then catch up With the slower moving colloids in the high concentration 

region. The possibility of such a self-sharpening boundary necessitates additional tests 

before it can be concluded that a sample is monodisperse. 

It is often thought that the presence of several sedimenting boundaries ('layered 

sedimentation') manifests a mixture of particles, which is fractionated during the sed­

imentation process. Layered sedimentation, however, may occur in any system due to 

small temperature gradients that induce convective rolls 31. Convection is suppressed 

by letting the settling proceed in narrow tubes or capillaries, but in larger vessels 

convection must be expected to occur unless strict temperature control is applied. We 

also note that layered sedimentation may manifest a thermodynamic demixing (see 

chapter 5), in which gravity pulls different phases apart. If the descending boundary 

provides the sedimentation velocity v(t) of non-interacting colloids, we can obtain their 

mass m on the basis of Newton's second law 

d ( , m-v(t) =: m -mo)g+ ),v(t) 
dt 

[2.3.20J 

Here. mo is the mass of displaced solution or sol, 9 is the acceleration of gravity and)' 

is the hydrodynamic friction factor. The effective collOid mass can also be written as 

J) M. Borkovec et aL. lac. cit. 

21 For a review of small-angle scattering by fractal systems sec P,W, Schmidt, J App/, 
Crystal/ogr. 24 (199 J ) 414, 
31 D. Mueth .. J Crocker. E. Esipov. and D. Grier. Phys. Rev. Lett, 77 (1996) 578, 
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m - mo = m(l- Po Vp ) for colloids with partial specific volume Vp in a solution with 

mass density Po' For rigid (inorganic) colloids the inverse mass density usually is a 

good measure of the specific volume, but this is not so for drainable, porous particles 

or polymers. For a particle, which is initially at rest relative to the solvent, the solution 

of [2.3.20J is 

v(t) = v[l- exp(-t I r)] r=mlj [2.3.21J 

where 

[2.3.22J 

is the stationary sedimentation velocity reached when the particle weight and the 

frictional force jv(t) exactly balance. To find the effective colloid mass m - mo we 

need the friction factor, which can be obtained from the diffusion coefficient D == kT I j 

measured in a separate, dynamic, light-scattering experiment. Then, the colloid mass 

follows from the Svedberg equation: 

v (m-molD 
s=-=----"---

g kT 
[s] [2.3.23] 

in which we have also introduced the sedimentation coefficient s, a mobility defined 

as the sedimentation velocity per unit of the applied acceleration, either from gravity or 

a centrifuge. The quantity s is actually the viscous relaxation time of a particle with 

mass m - m o ' i.e. the time taken by the particle to dissipate its kinetic energy when the 

acceleration is switched off. This, of course, is very Similar to the time r in [2.3.21 J 

needed to reach a stationary state. A typical value is r - 5 x 10-9 s for a silica particle 

with radius a == 100 nm sedimenting in water. Hence, there is clearly no need to worry 

about inertia in a sedimentation experiment. The Svedberg equation [2.3.23J is valid 

for particles of arbitrary shape. Instead of a measured diffusion coefficient, one can 

also insert a theoretical friction factor in [2.3.22] when the shape of the colloids is 

known. Results are available for oblates ll , prolates, rods and a variety of other non­

spherical particles. We only quote here the well-known outcome for spheres, also 

known as the Stokes value of the sedimentation coefficient 

2 P-Po 2 s=----a [2.3.24] 
9 T7 

Here, TJ is the solvent viscosity and P - Po the mass density difference betwecn particle 

and solvcnt. When sedimentation coefficient and molecular mass are known, one 

directly obtains the friction coefficient of the colloidal particles. This prOvides only 

limited information about their shape. From the specific colloid volume Vp we 

calculate a particle volume mVp ' and if we assume that the colloid is a sphere with 

-----------.------

J) ,J. Happel. H. Brenner. Low Reynolds Number Hydrodynamics. Prentice-Hall (1965). 

- 246 -



2.52 PREPARATION AND CHARACTERIZATION 

radius a. Stokes law f = 6nrya predicts the minimum value of the friction coefficient 

of the colloid in question. A larger, experimental, friction factor may be due to a 

hydration layer or a deviation from the spherical shape. The effect of the shape is 

modest for nearly spherical collOids; when a sphere is deformed at constant volume to 

become oblate or prolate, an aspect ratio of nearly lOis needed Jl to increase the 

hydrodynamic friction by 50%. Since this increase is nearly the same for both shapes!), 

it is clear that additional information is needed to extract a particle dimension or 

shape from the hydrodynamic friction factor. 

(i) Sedimentation-diffusion equilibrium 

CollOidal particles settle under the influence of gravity until a sedimentation­

diffusion equilibrium is established. This equilibrium is the balance between the down­

ward particle flux due to gravity and a back flux due to diffusion, which opposes the 

concentration gradient created by gravity. The equilibrium concentration profile c(x) 

may also be seen as the isothermal balance between a gradient in osmotic pressure fl 

and the particle weight per volume of sol 

dfl 
-+c(xl(m-mo)g = 0 
dx 

[2.3.25] 

Here, x is the distance to the bottom of the vessel at x = O. For ideal particles, for 

which van 't Hoffs law fl = ckT applies, we find the exponential (or barometric) height 

distribution 

I = kT 
g (m-mo)g 

[2.3.26] 

where Co is the particle concentration at the bottom and 19 is the so-called gravita­

tional length, which is a measure of the thickness of the profile (lg is actually the 

average height of the colloids relative to x = 0 ). The equilibrium profile, in principle, 

provides the effective mass of the collOids. However, an accurate determination of the 

concentrations decay c(x) is far from straightforward. Vessels should be rigorously 

thermostatted because the concentration profile is very susceptible to liquid convec­

tion. Convective rolls may induce layering or completely homogenize the sol, even for 

minute temperature gradients. Nearly inevitably, concentration effects also come into 

play because approaching the bottom of the vessel the concentration rises and at some 

point van 't Hoffs law may have to be replaced by a Virial series. such as in [L7.S.10J. 

At sufficiently high altitude. of course, the concentration profile approaches the 

exponential in [2.3.26J. For particles of known mass. it is possible to quantitatively 

investigate the concentration effects just mentioned. If we succeed to determine C(x) , 

the equation of state follows from [2.325J by the integration 

I) See K.E:. vall Holde. loco cit. p. 81 

- 247 -



PREPARATION AND CHARACTERIZATION 

h 

fIp = fIh + (m -mO)g J c(x)cLx­

p 

2.53 

[2.3.27J 

Here, h is an altitude that is sufficiently high for the pressure to obey van 't Hoffs law. 

By changing the integral's lower boundary p, the pressure fIp as a function of colloid­

concentration cp is recovered. The main experimental challenge is to find a way to 

determine colloid number densities. For example, monitoring the optical turbidity as a 

function of height has the disadvantage that for higher concentrations the signal is non­

linear in the colloid concentration. Piazza and co-workers ll employed spheres with a 

crystalline anisotropy, of which the number can be counted by depolarized light 

scattering, alloWing them to retrieve the equation of state over a wide concentration 

range. Such a quantitative characterization of particle interactions is unfortunately 

unfeasible in many practical cases, and even though the sedimentation-diffusion profile 

is equivalent to the osmotic pressure, it often only provides qualitative information. For 

example, when for mono disperse spheres the (visually observed) profile is much more 

extended than the gravitational length 19' we can at least conclude that osmotic 

pressures are much larger than expected from van 't Hoff's law. This may be attributed 

to a charge on the collOids (see below) or to Significant repulsive interactions. 

Attractions between the particles should shrink the equilibrium profile, though 

attraction between the collOids may also lead to voluminous non-equilibrium gels (sec. 

6.14). 

The sedimentation-diffusion equilibrium is quite sensitive to the dispersity, prim­

arily because the particle mass enters into the Boltzmann exponent in [2.3.26]; small 

particles are pushed to high altitudes, whereas very large particles remain in the vicin­

ity of x =0. For spheres of species i the ideal equilibrium distribution is 

[2.3.28] 

We employed here the normalization that the total number of particles i in the height 

distribution in a vessel with cross-sectional surface area A is 

Ntot,i = A f c i (x) dx 
o 

[2.3.29] 

It is obvious from [2.3.28] that heavy particles (small 19) contribute mostly to the 

concentration at the bottom, whereas the lighter ones (large 19) dominate at high 

altitude. For non-interacting particles. the total number density decays exponentially, 

with a gravitational length that provides the number-averaged colloid mass 

[2.3.30J 

11 R. Piazza. T. Bellini, and V Degiorgio. Phys. Rev. Lett. 71 (l993) 4267. 
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a result that follows from summing the forces [2.3.25] for all species i. A profile of the 

total weight concentration yields the corresponding weight averaged mass 

mw = (m 2 ) I(m) , whereas application of the Schlieren optics ll produces the z-average, 

m z = (m 3 )/(m2 ). As always, the type of average depends on the experimental method 

used to investigate a sample. For polydisperse colloids, the various averages may differ 

considerably (see also appendix 1)' whereas their identity is a clear proof of 

monodispersity. 

(ii) Sedimentation of charged particles 

In comparison to uncharged colloids, fairly little is known about the SO-equilibrium 

of charged particles, although it is clear that charge effects may already be substantial 

for ideal colloids 2). A striking example is shown by charged colloids at low external 

salt concentration. The Donnan osmotic pressure for non-interacting colloids in this 

case has the limiting form 

n= (z+l)ckT [2.3.31] 

where z is the number of free counterions produced by each colloid3 ). It is assumed 

here that the counterions dominate the external salt; when sufficient salt is added, the 

pressure gradually decreases to n = c kT. On substitution of [2.3.31] in the force 

balance [2.3.25], we find 

[2.3.32] 

showing a gravitational length which, compared with the uncharged state, has been 

increased by a factor (1 + z), which is quite substantial since z may be of order 1000. 

The physical meaning of the (1 + z) term is that the practically weightless counterions 

tend to form a homogeneous distribution for entropic reasons, whereas the colloids are 

pulled down by gravity. Electroneutrality, however, couples colloids and counterions 

and the net result is an increase in the colloidal gravitational length. The 'entropic lift' 

due to counterions is actually eqUivalent to a homogeneous electriC field, which is 

inevitably present in an equilibrium density profile of charged particles, and reduces 

the effective collOid mass, as discussed elsewhere in detail2 .4J. Thus, to determine the 

mass (Le. the gravitational length) of charged colloids, sufficient salt should be added 

such that the Boltzmann profile reduces to [2.3.26J. 

[) K.E. van Holde. RL. BaldWin, J. Phys. Chern. 62 (1958) 734. 
21 R van ROij. J. Phys. Condensed Matter 15 (2003) S3569; A.P. Philipse . .J. Phys. Condensed 

Matter 16 (2004) S4051. 
31 Extensive discussions on the fraction of counterions that is free will follow in chapter III and 
V chapter 2. 
·11 M. Ra:;;a. A. Philipse. Nature 429 [2004) 860 Sec also R van ROij, loco cit. 
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air 

meniscus 

---- ---
r= 0 ---- bottom 

b 

Figure 2.11. Schematic of an ultracentrifugation experiment (not to scale). The colloids movc 
radially to the bottom of the sector-shaped cell With an apparent weight (m - mo)(l}2r at a 
distance r from the axis. which rotates at an angular velOCity OJ. 

(iii) Analytical ultracentrifugation 

Characterization of colloids via settling or sedimentation-diffusion equilibrium 

under gravity is only possible for a restricted class of particles, which have a suitable 

value of gravitational length in the range of mm to cm. Also, in view of the mentioned 

convection and detection problems, an analytical ultracentrifuge is an important, if not 

indispensable, characterization tool. There is an extensive, mainly biomolecular literat­

ure, on centrifugal analysis ll . We will briefly discuss the methods to determine a 

colloid mass. 

A spinning rotor exerts a centripetal force on the sedimentation cell. which is direct­

ed towards the rotation axis. The corresponding centripetal acceleration of the cell at a 

distance r from this axis is a = OJ2 r , where OJ is the angular rotor velocity in radians 

per second. The colloids move towards the bottom of the cell (fig. 2.11), experiencing 

an effective weight increase, which is completely eqUivalent to an enhancement of the 

gravitational acceleration from g to OJ2 r ; the colloids at some position r cannot judge 

whether their weight is due to a centrifugal field or to gravitational pull. The Svedberg 

equation [2.3.23] remains, therefore, exactly the same, with the sedimentation coeffi­

cient 5 = v / OJ2 r . The determination of 5 is as follows. Suppose the boundary between 

sol and the supernatant moves at a rate v =: drb / dt. Integration of OJ2 rs = drb / dt 

yields 

[2.3.33J 

J) Analytical Ultracentrifugation in Biochemistry and Polymer Science. S. Harding, A. Rowe. 
and .J Horton. Eels .. Roy. Soc. Chem. (1992). 
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where rb(t) is the position of the boundary at time t. The sedimentation coefficient, 

therefore, follows from a graph of the logarithmiC term in [2.3.33J versus (t-to)' The 

boundary, of course, does not remain infinitely sharp as it traverses the cell because of 

diffusional spreading. Then, the question is II which point should be used as rb in 

[2.3.33]. This pOint turns out to be the second moment of the curve for the concen­

tration gradient 

[2.3.34J 

where both integrations include the boundary, i.e. from a position in the homogeneous 

solvent to a position in the plateau region in the homogeneous soL To determine the 

colloid mass from a sedimentation equilibrium profile, one uses a rotor speed. which 

is smaller than that used for a velocity experiment; packing of all colloids near the 

bottom of the cell has to be avoided. Instead, it is desirable to achieve a profile. which 

is sufficiently extended for data fitting, in particular of the dilute tail of the profile 

where colloidal interactions are insignificant. The ideal profile follows from the 

centrifugal force F = (m - m o)Q)2r, corresponding to the potential energy of a colloid at 

position r 

r 

-f Fdr=(m-mo)Q)2~(a2 _r2 ), [2.3.35J 

a 

relative to the meniscus at a. The Boltzmann distribution for ideal particles is, 

therefore, 

[
r2 a21 c(r) == c(a)cxp 2;1,2 [2.3.36J 

Note the analogy with the barometric height distribution [2.3.26 J. The thickness of the 

profile. set by the length ;1" can be adjusted by changing the rotor speed Q). A graph of 

In c(r) versus r2 will yield the length ;1, and. therefore, the effective mass of the col­

loids. This mass determination, which is in principle quite accurate, has been fruitfully 

(and frequently) checked for monodisperse biomolecules (proteins, Viruses, DNA frag­

ments); molecular masses generally match the values known from elemcntal composi­

tions very well. The eXistence of extensive literature on data analYSiS and instrumental 

issues2J shows that, nevertheless, for most investigators the analytical ultracentrifuge is 

anything but a simple black box, just as the engine of a car is for most drivers. 

2.3e Other methods 

For practical dispersions such as paints or ceramic suspensions. their application 

will largely determine the choice of characterization techniques. in addition to those 

II Sec for a pOinted discussion: K.f~. van Holde. Physical Biochemistry. Prentice Hall. (1971). 
'J) 
~. S.£. Harding, A.,J. Rowe, and ,Le. Horton, loc. elL 
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mentioned in previous sections. For inorganic colloids processed to an eventually dried 

compact, as in ceramic shaping techniques, one can largely appeal to the usual 

methods of powder technology. These methods include X-ray analysiS to identifY 

crystalline components, mercury-intrusion to measure porosities of 'green' or sintered 

bodies, and thermal analysis to investigate temperature-dependent properties. The last 

mentioned analysis comprises, among other things, differential thermal analysis (DTA) 

and thermal gravimetry (TG). DTA exposes a material to a controlled temperature 

increase as a function of time and records release or uptake of heat due to phase 

tranSitions (including melting pOints or melting trajectories), chemical reactions, and 

any other endothermic or exothermic process. TG mOnitors the weight of the sample in 

the course of the temperature-time scan and detects, for example, the loss of water 

which was adsorbed on particles or generated by condensation of hydroxyl groups, as 

are often found on oxidic materials. 

A combination of DTA and TG is certainly also useful for inorganic model colloids, 

for example to determine the weight fraction of organiC material due to a leftover of a 

surface modification (see sec. 2.0. The latter will produce an endothermic peak and 

simultaneous weight loss roughly in the range 400-600oC, the temperature range over 

which organiC molecules are burnt off. In addition, physically adsorbed water will be 

detected as an endothermiC loss already below 100°C, and release of water or other 

low molecular solvents at higher temperatures is indicative of porous colloids with 

internal silanol or alkoxy groups, as occur in the silica spheres prepared by the Stober 

process. Exothermic peaks at temperatures around IOOO°C or higher may manifest 

any of the many phase transitions found in alumina and silica containing (clay) mater­

ials rl . Thus, DTA-TG, in combination with chemical analysis results for elemental per­

centages, contributes to a fairly complete material picture of collOidal particles. 

Spectroscopy (NMR, Infrared, etc. J. of course, provides even more chemical detail on 

colloids and their surface coverage. 

One important 'application' of model colloids is their use in critical test of theories. 

Then the primary concern is not so much knowledge of the chemical composition of 

colloids (useful as it may bel. but rather the surface parameters which appear explicitly 

in the theory under study. For charged colloids these are in any case the double layer 

parameters. Two of such parameters offer themselves, the surface charge density c;D 

and the electrokinetic potential (. The former follows from collOid titrations when the 

charge-determining mechanism is known, the latter from electrokinetics. Principles 

and elaborations can be found in various places of FICS, espeCially sec. 1.5e (titration), 

chapter 11.3 (compOSition of double layers), and chapter 11.4 (measurement and inter­

pretation of electrokinetic potentials). It is good to keep in mind that by titration and 

electrokinetics very different double layer parameters are measured. In fact. for a full 

characterization of the double layer composition both techniques should be simul-

I) V.H. Norton. Fine Ceramics, Kneger (1987). 
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taneously applied to the same system. Only in this way can the composition of the 

inner part of the double layer be established. We note that the difference between the 

point of zero charge (p.z.c.J and the isoelectric point (i.e.p.) is a measure of specific 

adsorption (sec. II.3.8). In many cases only t; -potentials are available. Experience has 

shown that for situations of not too strong double layer overlap these potentials are 

satisfactory characteristics to be substituted in equations for the Gibbs energy of 

interaction (chapter 3). 

For sterically stabilized particles, information about the amount and distribution of 

attached polymers is needed, see chapter V.I. Often one is interested in measuring a 

concentration dependence, which brings on a characterization problem that is often 

swept under the carpet, namely the issue of the specific particle volume, which here 

deserves some more discussion. 

A theoretical concentration dependence is usually expressed in terms of particle 

volume fractions, whereas one measures, say, a diffusion coefficient or low-shear 

viScosity, as a function of collOid weight concentrations. How should they be converted 

to volume fractions? Clearly, a measurement of the mass density or speCific volume of 

the collOids is needed. For rigid hard spheres, one option is to measure the intrinsic 

viscosity and to find the specific volume that produces agreement with Einstein's value 

of 2.5 for the coeffiCient of the volume fraction. (Viscosity is a better option here than 

sedimentation or diffusion, because the volume fraction enters on the level of single, 

non-interacting particles). Factors such as porosity, softness and surface charge of 

particles and deviations from the spherical shape, can be couched into an effective 

specific volume which matches the Einstein result. For further information on the 

viscosity of particulate matter. see secs. 6.9,10 and 13. However. this procedure yields 

an effective hydrodynamic volume fraction which may be inappropriate for equilibrium 

measurements such as the osmotic pressure or the static structure factors from light 

scattering. To find thermodynamic volume fractions one can also choose the specific 

volume such that the collOidal hard spheres start to freeze at the theoretically expected 

volume fraction. a procedure which. of course, is only feasible for the limited class of 

colloids which form collOidal crystals. We note here that such crystals in principle 

produce the particle mass from the location in reciprocal space of Bragg peaks, 

analogous to the counting of atoms in a unit cell in X-ray diffraction. 

Direct measurement of particle mass densities in solution by weighing dispersions 

as a function of concentration requires more material than is often available in the case 

of model colloids. Commercial eqUipment is available for this weighing on a small scale 

by measuring the resonance frequency of capillaries filled with dispersions. The latter 

method is very accurate for pure liqUids, but for dispersions prone to uncertainties 

due to. among other things, the sensitivity to details of cleaning procedures of measur­

ing cells. An alternative is using quartz crystal microbalances (geM's). Sedimentation 

profiles from ultracentrifugation (see sec. 2.3d) provide the buoyant mass and there­

fore still reqUire a separate specific volume measurement. For biomolecules centrifuga-
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tion in a salt gradient is employed: the molecules stay suspended at a height at which 

their buoyant density is exactly matched by the salt solution. This method, which 

provides an accurate and well-defined thermodynamic specific volume, is suitable for 

mass densities below about 1.8 glcm3 , the maximum density of the salt solution 

(usually CsCI2 ). This mass-density range includes polymer colloids, but excludes 

many inorganiC particles. The latter could be handled by measuring sedimentation 

velocities in solvent mixtures and extrapolation to zero velOCity, a method which appar­

ently has not been exploited yet. To conclude, the conversion of weight concentration to 

volume fraction (or particle number denSity) is usually not straightforward and needs 

to be made explicit in the characterization of colloids under study. 

2.3f Size distributions 

Characterization of collOidal particles is incomplete without speCification of their 

size distribution. For this, various options are available, including the ultracentrifuge, a 

method discussed by Harding et al. ll . Advantages of light scattering methods include 

measurement speed and the very large number of particles that are sampled. The 

procedure, however, is far from simple. The main problem is the inversion of the 

measured field autocorrelation function [2.3.13] to obtain the intenSity-weighted con­

tribution of each particle species. This inversion has no unique solution when the 

measurements are contaminated by noise21 . In addition, many subtleties in sample 

preparation and data analysis need to be addressed, as discussed extensively by 

Provder31 . 

The direct determination of a large number of diameters by electron microscopy is 

accurate and simple, in particular for inorganic colloids, which usually maintain their 

integrity during drying on a grid and exposure to vacuum. For easily deformable latices 

or emulsion droplets, other techniques such as confocal microscopy may be used (see 

chapter V.8). Another useful (but yet little employed) option is cryogenic electron 

microscopy, a technique discussed briefly in 2.3a. When collOids are sufficiently small, 

say with radii below 100 nm, quite a large number of them can be simultaneously 

imaged in the glassy cryo-TEM film. When the collOids are repulsive due to surface 

charge or a polymer coating, which has a low contrast for TEM, one may observe 

clearly separated particle cores4 ) (c.f. fig. 2.4), which form a convenient input for image 

analysis software; the S-distribution of fig. 2.11 has been obtained in this manner. 

Though extensive single-particle imaging is the best option to obtain a reliable size 

distribution without a priori assumptions about the colloids, it is not always possible 

in practice or convenient for routine analysis. Often one relies on fractionation methods 

1l S.E. Harding, A .. J. Rowe, and Jc. Horton. loc. cit. 

21 PG. Cummins. E.,.]. Staples. Langmuir 3 (1987) 1109. 

3) 1'. Provder. Ed .. Particle Size Distribution: Assessment and Characterization. ACS Sym­

posium Series 332 (1987); Particle Size DLstribution II. ACS SympOSium Series 472 (1991 J. 
41 A.P. Philipse. G.B Koenderink. Adv. Colloid Interface Sci. 100-102 (2003) 613. 
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in which the distribution is broken up into classes making use of some particle 

property. Sieving of powders is the classical method for separation based directly on 

particle size; most other methods rely on the response of particles to external fields or 

a change in particle interactions. An example of the latter is the fractionation of iron 

oxide particles by repeated phase separation induced by the addition of salt, which 

preferentially removes the larger particles 1). This fractional distillation is expected to 

work for any interparticle attraction, which is size-dependent. The procedure reminds 

one of fractionating a polymer solution by slow addition of a poor solvent upon which 

molecules with high molecular weights preCipitate first. We will now briefly explain 

some fractionation methods, which employ external fields. 

Magnetic particles can, in principle, be fractionated by an external, inhomogeneous 

magnetic field B . The magnetic force on the particles is2 ) 

[2.3.37J 

where m is the magnetic moment of the particle, which is proportional to the particle 

volume. To separate small, paramagnetic colloids, large gradients are needed. They 

can be produced by magnetizing a steel wool matrix; near curves and edges of the filter 

large gradients exist, which capture particles from the dispersion3
). By increasing the 

magnetization of the matrix, fractions with increasingly smaller particles can be cap­

tured. This high-gradient magnetiC separation has important applications in the 

removal of iron oxides from clay dispersions and wastewater. However, its potential for 

quantitative fractionation is much less developed than for techniques based on 

sedimentation. 

The disc centrifuge photosedimentometer (DCP) separates spheres, which sedi­

ment radially outward past a detector with a velocity determined by Stokes' law. The 

technique appears to be robust and suffiCiently accurate, for example, to resolve the 

variOUS components in mixtures of standard polystyrene spheres3 ). For non-spherical 

colloids, the analysiS (as always) is less straightforward than for spheres. We note here 

that for particles with high aspect ratios, the sedimentation rate is determined mainly 

by the smaller dimension (c.f. the surface areas in fig. 2.10). For example, for thin rods 

With diameter d and length L, the (orientationally averaged) friction factor is4 ) 

fo == 31l7JL / In{2L / d) + a [2.3.38J 

where a is a number of order unity. Consequently, the sedimentation coefficient of the 

thin rods is 

II V. Cabuil. R. Massart .. J. Baeri. R. Perzynski. and D. Salin. J Chem. Res. (S) (1987) 130 
21.J Svoboda, Magnetic MethodsJor the Treatment (~r MineraL<;. Elsevier (1987). 
31 T. Provder. 1987, lac. cit. 

41 S Broersma. J. Chem. Phys. 32 (1960) 1632. 
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m( ) d2 (2L) s=-1-pV ",,-(p-po)ln-
f p 1277 d 

[2.3.39J 

So here only the distribution in diameters is of importance, which could simplity the 

DCP analysis. Equation [2.3.39], inCidentally, warns us that fractional sedimentation is 

not useful to decrease the polydispersity in length of rods or width of platelets. 

Sedimentation field-flow fractionation (sedimentation FFF) fractionates particles 

in a flow channel with a field acting perpendicular to the stream direction lJ. The (cen­

trifugal) field forces particles to accumulate at one wall of the channel where the 

viscous drag is large so that downstream displacement of particles is retarded. The 

distance to the wall depends on the particle size, which leads to size fractionation in 

the flow direction. The method is quite sensitive and mixtures of well-defined spheres 

can be analyzed with good resolution. For information on still another fractionation 

method, hydrodynamic chromatography, we also refer to Provder2J , whose analyses 

include a comparison of the various particle characterization methods applied to one 

and the same series of monodisperse PMMA latices. 

Once a suffiCiently large number of particles have been sampled in each fraction, it 

may be useful to compare the result with one of the standard mathematical distrib­

ution functions, some of which are given below. For a continuous distribution the nth 

moment is defined as 

(an) == f anP(a)da 

o 
f P(a)da = 1 

o 
[2.3.40] 

Here, Pta) is the normalized probability distribution for the radius a and P(a)da is 

the probability for a radiUS to be in the interval a, a + da . Note that Pta) has the 

dimensions of reCiprocal distance, which is why it is also called the probability 

density. The normal (or Gauss) probability density has the familiar, bell-shaped 

function and obeys 

[2.3.41 J 

in which (a) is the number-averaged radius and (Ja is the (absolute) standard devia­

tion defined by 

[2.3.42J 

which should not be confused with the relative polydispersity sa defined through 

s~ =: (J~ /<a? in appendLx 1. Fairly narrow distributions, as for silica and latex 

spheres, are often fitted reasonably well with a Gauss model as illustrated for silica in 

II ,]. C. Giddings, 1",) .1". Yang. and M. N. Myers. Ana/. Chern. 46 ( 1974) 19 J 7. 
21 T. Provder J 987 loco cU. 
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fig. AI.I. For many other colloidal systems. however. the size distribution is 

asymmetric. This may be due to various factors. such as a milling process. secondary 

particle nucleation. the growth mechanism or the tendency of the larger particles to 

aggregate. For the r-Fe203 colloids in a ferrofluid (fig. AI.I). the asymmetric distrib­

ution often fits a log-normal probability distribution reasonably well 

1 
Pta) =.J exp 

a 2Jrlnz 

(ln~JZ)2 (a) 
2lnz 

[2.3.43J 

where 

[2.3.44J 

in which. as before. s~ is the relative polydispersity. The normalized radius moments 

of the log-normal distribution are given byll 

(all) ( 2 )ll(ll-lJ/2 n(n -1) 2 
--= l+s "'1+ s 
(a)ll Q 2 Q 

[2.3.45] 

for s~ « 1 . So, from a measured or estimated polydispersity. one can compute the 

higher radiUS moments and predict the apparent radius obtained by a particular 

characterization method. As an example of a discrete probability distribution we 

mention the Poisson distribution 

(a)Q 
Pta) = --exp[-(a)J 

a! 
a = 0,1 .... [2.3.46] 

This probability function is skewed. but rapidly becomes more symmetrical upon 

increasing the average (a). The Poisson distribution is especially useful when the 

number of events (here. particle radii) is small. For a large number of random 

variables. the Poisson distribution is fairly well approximated by normal distribution2J
. 

In many cases. a fit of experimental counts to a theoretical probability distribution 

Will be poorer than in fig. AI.I. The data may simply disobey the chosen distribution, 

for instance, because the distribution is bimodal or the number of counts may be 

insufficient to draw a clear conclusion anyhow. Luckily it is possible to approximate 

the moments in [2.3.40J only on the baSis of a measurement (or choice) of the relative 

polydispersity without presupposing any particular size distribution. The approXim­

ation is actually the truncated expansion [2.3.45], which is valid for any not too broad 

size distribution as shown in appendix I. 

Ii PN. Pusey. H.M. Fijnaut. and A. Vrij, J. Chern. Phys. 77 (1982) 4270. 
2i A. Papoulis, loco cit. 
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2.4 Examples of sol preparation 

This section provides a few commented preparation methods for various inorganic 

sols. There are several reasons for such a presentation. Firstly, there is no substitute 

for learning about practical colloid chemistry than going into the lab to make your own 

colloids. Secondly, the examples illustrate that quite well-defined colloidal dispersions. 

used in state-of-the-art colloid research. can be obtained with simple methods. No 

chemical equipment is needed beyond what is used in a freshman chemistry course -

possibly with the exception of the autoclave for the boehmite synthesis. Thirdly, the 

examples also illustrate that this simplicity in method may be misleading. The outcome 

of a colloid synthesis is often difficult to explain or to adjust in a predictable manner. 

Elements of art and surprise remain. The selection below is biased by the author's 

hands-on experience; many more synthesis examples useful for teaching or research 

can be found in the general references of sec. 2.5. 

2.4a Silica sols 

Silica sols are usually prepared in aqueous solutions from waterglass or in ethanol 

from the precursor tetraethoxysilane (TES). The formation of colloidal silica by aCidif­

ication of waterglass is exiensively documented elsewhere 1.2J . Here we only describe an 

instructive experiment in which silica supersaturation is generated by a change of 

solvent, instead of a change of pH3J. A stock sodium-silica solution (Na20. Si02 • 27 

wtOJo Si02 ) is diluted with double distilled water to 0.22 wt% Si02 . Under vigorous 

stirring. 0.2 ml of this dilute waterglass solution is rapidly pipetted into 10 ml absolute 

ethanol. A sudden turbidity increase manifests the formation of small, smooth silica 

spheres with a diameter around 30 nm and a typical dispersity of 20-30%. The sol­

ubility of silica in ethanol is much lower than in water, and it is estimated that in this 

experiment the supersaturation ratiO due to the alcohol addition is on the order of 

s"" 0(10). which, in view of section 2.2b, should indeed produce very rapid 

homogeneous nucleation. 

The preparation of so-called Stober silica spheres from the precursor TES in an 

ethanol-ammonia mixture is well documented4J
. To obtain spheres with a radiUS of 

about 60 nm and a typical dispersity of (5 ~ 10-15%. the procedure is as follows. TES 

(60 ml, freshly distilled to remove any polymeric species) is injected under the liqUid 

level of a thoroughly stirred mixture of 200 ml ammonia (25%) and 3 litres (preferably 

distilled) absolute ethanol in a vessel, previously thoroughly cleaned by multiple 

rinsing with. subsequently, distilled water and absolute ethanol. The TES solution is 

I) R.K. Iler foc.cit. 

2! K. Andersson, B. Larsson, and E. Lindgren, Silica SoLs and the Use of Sols, us patent 
5603805 (1997). 

3, PA. Buining, L.M. Liz-Marzan, and AP Pbilipse, J. Colloid Interface Sci. 179 (1996) 318. 

41 W. Stober. A. Fink, and E. Bohn, J. Colloid Interface Sci. 26 (1968) 62. 
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gently stirred in the closed vessel: after about 15-30 min., an increase in turbidity 

manifests the formation of silica spheres in the alcosol, which grow to their final size 

over a time scale of hours. Silica growth can be continued by adding small portions of 

TES to control the final radiusIl. This seeded growth method has the risk of introdu­

cing secondary silica nucleation. so samples should be checked with TEM. Secondary 

particles are usually small enough to be separated from primary spheres by repeated 

sedimentation. They generally do not disappear by Ostwald ripening because of the 

very low silica solubility in ethanol. 

Stober silica spheres can be easily silanized by surface modification with 3-meth­

acryloxypropyl-trimethoxysilane (TPM) as follows. TPM (about 1-3 ml per gram of sili­

ca) is added to the alcosol. after which the solvent is distilled to reduce the alcosol 

volume by about 30%. Unreacted TPM is removed afterwards by repeated sedimenta­

tion-redispersion cycles. The non-desorbing TPM layer, with a hydrodynamic thickness 

of a few nm, improves the stability in various organiC solvents. Silanes are also very 

useful to modifY silica with fluorescent or phosphorescent dyes, as discussed in 

refs. 2 ,31. 

With respect to storage of silica sols, the folloWing pOints should be noted. Aqueous 

silica sols generally show aging effects; the specific surface area decreases (fig. 2.S) and 

the pH tends to increase, probably due to sodium hydroxide leaching. CommerCial 

silica sols are usually quite stable. as manifested by a constant (Newton) viscosity. 

However, over longer periods of time (say one year) the viscosity gradually increases 

and space-filling gels are often formed. Stober alcosols may aggregate in the course of 

time, especially for larger particles with a relatively high ammonia concentration. 

Removal of ammonia by bubbling nitrogen through the alcosol is one remedy. Another 

option is distillation together With silanization of the particle surface (see above), 

leading to TPM-coated silica spheres, which in absolute ethanol have practically un­

limited stability. 

HydrophobiC silica spheres have been used extenSively for the study of hard-sphere 

collOids in apolar solvents41 . A suitable surface modification in this respect is the 

esterification of surface silanol groups of silica spheres under vacuum distillation in a 

pure octadecyl alcohol melt at about IS0°C. A more convenient procedure is to add a 

Stober alcosol directly to an excess solution of octadecyl alcohol in tricthyl 

phosphateS). After distilling all ethanol and ammonia, the solution is stirred for several 

days at 140- 160°C under a flow of dry nitrogen. The resulting octadccyl-coated 

J I A. Philipse. A. Vrij, ,]. Chem. Phys. 87 (1987) 5634. 
21 A. van Blaaderen, A. Vrij, loco cit. 

31 M.P. Lettinga. M. van Zandvoort, C.M. van Kats. and A.P. Philipse. Langmuir 16 (2000) 
6156. 
·11 Some illustrations follow in chapter 5. 
51 A.M. Nechjfor. A.P. Philipse. F. de ,Jong. ,JP.M. van Duynhoven. R.,J.M Egberink. and D.N. 
Reinhoudt, Langmuir 12 (1996) 3844. 
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particles can be transferred to a stable dispersion in cyclohexane using sedimentation­

redispersion cycles 1). 

2.4b Sulphur sols 

An often quoted example of the formation of a monodisperse sol. is La Mer's 

method2 .3 for preparing sulphur colloids, in which S is gradually formed by the reac­

tion of thiosulfate With acid 

[2.4.1J 

This is a slow reaction, such that growth of sulphur particles occurs on a time scale of 

hours. La Mer's method is as follows. One (1.00) ml of 1.50 N H2 S04 is added to 995 

ml of double distilled water in a one-liter volumetric flask that is thermostatted at 

25°C. One (1.00) ml of 1.5 N Na2S 20 3 is added rapidly, after which the flask is 

quickly made up to 1 liter, mixed thoroughly and returned to the thermostat. Within 1-

2 h a weak scattering can be observed from a hand laser (a Tyndall beam), manifesting 

groWing sulphur particles. They continue to grow over a period of about 24 hours after 

which they settle, presumably because the sulfur collOids become quite large though 

collOidal instability may also playa role (the Van der Waals attractions must be sub­

stantial in this case). Sulphur growth can be stopped by titrating unreacted thiosulfate 

With an iodine solution in potassium iodide, according t04 ) 

(2.4.2J 

Because iodine solutions have an intense yellow to brown colour, even at high dilution, 

iodine can serve as its own end point indicator. Titration is continued until a barely 

perceptibly pale yellow sol remains. By applying iodometry after various time intervals 

on a number of acidified thiosulfate solutions, sols With various particle sizes are 

obtained. 

The sulphur sols are very suitable for a demonstration of the angular dependence of 

light scattering. When a beam of plane-polarized white light is viewed With the eye in a 

plane perpendicular to the polarization, spectral colours may be observed at angles, 

which depend on particle size5 ). This is a clear indication for a narrow size distribution 

of the sulphur collOids or, to be more precise, of the colloids, which dominate the light­

scattering intensity; the presence of small, weakly scattering sub-particles cannot be 

excluded. Electron microscopy or atomic force microscopy of dried samples of sulphur 

II A.M. Nechifor et al., loco cit. 

21 V.K. La Mer, M.D. Barnes, J. Colloid Sci 1 (1946) 71 

3) A.B. Levit, RL. Rowell. J. Colloid Interface Sci. 50 (1975); for a preparation based on H,S. 

see: G. Chiu, E.'!. Meehan, J Colloid Interface Sci. 62 (1977) 1. 

41 LA. Vogel. Textbook oj Quantitative Ch~mical AnalysLs, Longman (1989) 

51 V.K. La Mer. M.D. Barnes, loco cil. 
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sols does not yield images of well-defined spheres (the attempt failed in the author's 

laboratory), but a variety of morphologies (indeed, containing elemental sulphur), in­

cluding raspberry-like sub micron particles composed of much smaller units. The 

imaging is hampered by the fact that sulphur colloids easily melt or deform; moreover, 

crystallizing salts in the drying TEM specimen complicate the picture. So far in the 

literature, making direct images of them has not supported the presumption that La 

Mer's method produces monodisperse spheres. 

2.4c Boehmite and gibbsite sols 

One method to syntheSize rod-like colloids employs aqueous aluminium alkoxide 

solutions to form elongated, crystalline AlOOH (boehmite) particles. The alkoxide is 

first hydrolyzed Il at room temperature in an aqueous HCI-solution, followed by a 

hydrothermal treatment at about 150°C in an autoclave. By varying the pH and the type 

and concentration of alkoxide, the length of the boehmite needles can be adjusted in 

the range of 100-400 nm; the needle thickness is 10-20 nm. The starting aluminium­

alkoxides are Al(OBuS }3 (aluminium tri-sec-butoxide, ASB), a volatile, colourless 

liquid, which hydrolyzes easily due to air moisture and Al(OPri )3 (aluminium triiso­

propoxide, AlP), a white powder, which is less reactive towards moisture. An aqueous 

HCI solution is made by pouring a concentrated HCI stock into water (never the other 

way around). The HCI solution must be titrated if its molarity is not precisely known. 

To a stirred mixture of 2900 ml of double distilled water and 22 ml of HCl (37%), 

59.8 ml ASB is added after which a white preCipitate, presumably aluminum hydrox­

ide, is formed. (If the stock ASB is not clear but yellowish, it should be purified by 

distillation from hydrolysis products). Next, 46.0 g AlP is added, which dissolves 

within a few hours. The solution is gently stirred at room temperature in a closed 

vessel for a week. Then the now clear solution is autoclaved for 22 h at 150°C. One 

option is to heat the solution in partly filled metal pressure vessels with a Teflon inner 

core, which are slowly rotating inside an oven, as described by Buining et al. 1). 

Commercial equipment for hydrothermal treatment is available. After this treatment, 

the vessels are allowed to cool to room temperature. Note that hydrolysis of the 

alkoxides produces alcohols, which increases the pressure in the autoclaved vessels. 

The Teflon inner cores, see ref. lJ, should not be removed unless they are completely 

cooled to room temperature, otherwise they will no longer fit in the pressure vessels. 

The somewhat turbid. eaSily flowing boehmite dispersion is dialyzed in cellophane 

tubes for 1-2 weeks against demineralized water to remove alcohols and salts. The 

dialyzed dispersion is highly viscous due to the strong, double-layer repulSion in the 

now nearly salt-free dispersion. Inspection of the dispersion between crossed polar­

izers reveals permanent birefringence. After dilution, the dispersion exhibits streaming 

11 P.A. Buining, C. Pathmamanoharan, ,J.B.H. ,Jansen. and H.N.W. Lekkerked<:er. JAm. Ccram 
Soc. 74 (1991) 1303 
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birefringence, which confirms the presence of non-aggregated needles oriented by a 

flow field. The birefringence is destroyed by addition of some ammonia, which 

coagulates the boehmite particles. The boehmite dispersion, stored in a plastiC bottle, 

may be stable over a time scale of months to even several years. Storage in glass 

vessels is not recommended because of possible deposition of soluble silica on the 

positively charged boehmite. TEM micrographs reveal somewhat irregular rods with an 

average length probably around 180 nm and a width close to IO nm; the relative size 

dispersity is typically 30-40%. Shorter rods with a length of about 100 nm can be 

prepared by starting with 2850 ml water, 9.7 ml HCl (37%) and 156 ml of ASB. The 

reproducibility of the dimensions of the boehmite crystals is modest and details of, for 

example, the hydrothermal treatment may significantly affect the sizes and shapes of 

the final particles. 

The temperature of the hydrothermal treatment greatly influences the particle 

morphology. At lower temperatures (T ~ I35°C), mainly hexagonal gibbsite platelets 

are observed after 22 h, which apparently recrystallize to boehmite needles at higher 

temperatures or longer times. These platelets also form when the alkoxide solution 

(see above), instead of being autoclaved, is stored for several months at room temper­

ature. The fairly monodisperse gibbsite hexagons (typical diameter 150 nm, thickness 

13-15 nm) are useful model collOids, in particular, because they can be grafted with 

polymers to produce organosols of uncharged platelets 1.2 ). Boehmite rods have also 

been coated by silica3 ), see also fig. 2.1c. 

2.4d Ferrojluids 

Ferrofluids are stable collOidal dispersions of single-domain magnetic particles4J
, 

which behave as liqUid ferromagnets; the fluid moves towards a magnet and may adopt 

exotic equilibrium shapes5J . Most ferrofluids are based on magnetite (Fe3 0 4 ) part­

icles, which oxidize to maghemite (y-Fe2 0 3 ), without losing their magnetic properties. 

The colloids are usually sterically stabilized by a grafted layer of oleiC acid and dis­

persed in non-polar solvents, such as cyclohexane; aqueous sols of magnetite particles 

are more prone to aggregation when stored over longer periods of time. The traditional 

method for synthesizing non-aqueous ferrofluids consists of extensive milling of 

magnetite minerals in an organiC solvent in the presence of adsorbing surfactants. 

Instead of this comminution technique, which may take weeks, a fast condensation 

route may be used on a laboratory scale. Here, magnetite particles preCipitate upon 

alkalization of a FeCI2 / FeC13 solution in what must be an instance of rapid, homo­

genous nucleation. Particle formation already starts before pH gradients have 

11 A.M. Wierenga. T.A.J. Lcnstra. and A. Philipse, Colloids SUrf. A134 (1998) 359. 

21 F. van der Kooij, E. Kassapidou. and H. Lekkerkerker, Nature 406 (2000) 868. 

31 A.P. Philipsc. A.M Nechifor. and C. Patbmamanoharan, LangmUir 10 (1994) 4451 

41 Magnetic pair particle interactions will be discussed in sec. 3.1 Oc. 

5! R. Rosensweig, Ferrohydrodynamics. Cambridge University Press ( 1985 J. 
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disappeared by stirring; there is considerable overlap of nucleation and growth, which 

partly explains the poor control of the particle size distribution in this otherwise 

convenient synthesis. The following procedure is based on i ,2). 

In 380 ml demineralized water, FeCI2 · 4H20 (3.29 g, 16.5 mmol) and FeC13 ·6H20 

(8.68 g, 32.1 mmol) are simultaneously dissolved. (The hygroscopic properties of 

anhydrous salts make it more difficult to achieve the correct Fe2+! Fe3+ ratio). Under 

vigorous stirring at room temperature, 25 ml ammonia (25%) is added; a dark precip­

itate immediately forms. This magnetic precipitate is collected with a permanent 

magnet and, after decantation of the supernatant, is mixed with 40 ml 2M HN03 , 

which brings the pH below the isoelectric point of iron oxide, and repeptizes the 

precipitate. After 5 min. of stirring, the oxidation to maghemite is completed by adding 

60 ml of an aqueous 0.35 M Fe(N03 l3 solution and subsequent refluxing of the stirred 

solution at its boiling point for 1 h. On a permanent magnet, the maghemite settles as a 

reddish sediment. After decanting the supernatant and washing the precipitate twice 

with 100 ml 2 M HN03 (decant the acid as much as possible), the precipitate is redis­

persed in 50 ml demineralized water to a stable, black maghemite sol with a typical 

solid weight concentration of 5-6 gil. The maghemite particles can now be grafted with 

oleic acid on a small scale at room temperature. To that end, 2 ml of the aqueous sol is 

diluted with 50 ml demineralized water, coagulated by adding a few drops of ammonia 

(25%) and sedimented on a magnet. After decanting the supernatant and washing with 

50 ml water, 100 ml water is added to the gently stirred precipitate, followed by the 

addition of 6-8 ml oleic acid. Within a few minutes, all maghemite colloids migrate into 

the oil phase where, after separation from the colourless aqueous phase, they are 

washed three times with 10 ml ethanol to remove water and any excess surfactant. 

After drying in a nitrogen flow, the oleic acid-coated maghemite particles are easily 

redispersed in a few milliliters of cyclohexane to form a stable dispersion, which can 

be manipulated quite effectively with a magnet. At this point, a liqUid ferromagnet has 

been obtained. 

TEM micrographs show somewhat irregular maghemite crystallites with an average 

diameter of typically 10 nm and a relative dispersity around s - 30% (see also figs. 

2.2 and AI.l l. Thermogravimetry and infrared measurements21 indicate the presence 

of covalently bound oleiC acid molecules occupying an average surface area of 

0.28 nm2 . 

2.5 General references 

2.5a Preparation 

Polymer colloids have not been addressed in this chapter. For a suitable entry to the 

literature on their preparation and characterization, see A. Elaissari, Colloidal Poly-

I) A Bee, R. Massart, J Maqn. Magn. Mater. 149 (1995) 6. 

2) G.A. van EWijk, G.J. Vroege, and A.P. Phllipse, J iHaqn.1Haqn. Mater. 201 (1999) 31. 
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mers. Synthesis and Characterization. Marcel Dekker (2003). 

The literature on inorganic colloid synthesis dates back to the beginnings of colloid 

science. A very useful entrance. in particular. to the older literature is H.R. Kruyt (Ed.), 

Colloid Science I: Irreversible Systems. Elsevier. (1952). Also see: J.Th.G. Overbeek. 

Monodisperse Colloidal Systems. Fascinating and Useful. Adv. Colloid Interface Sci. 

15 (1982) 251-277. (A pOinted review on monodisperse colloids and growth 

mechanisms.) 

UseJul texts on nucleation and growth: 

F.F. Abrahanl. Homogeneous Nucleation Theory. Academic Press (1974). 

M. Baraton, Synthesis. Functionalization and Surface Treatment of Nano­

particles. Americal SCientific Publishers (2003). (Deals With many aspects of particle 

functionalization and its applications.) 

The Colloid Chemistry of Silica. H.E. Bergna, Ed., American Chemical Society 

(1994). (Reviews developments in the study of silica sols and gels since the appearance 

of Her's book in 1979.) 

M.A. Brook. Silicon in Organic. Organometallic. and Polymer Chemistry. Wiley 

(2000). (Overview of silicon chemistry, including many aspects of silica and functional 

silanes.) 

R.M. Cornell. U. Schwertmann. Iron Oxides in the Laboratory. VCH (1991); The 

Iron Oxides. VCH (1996). (The essential text on the topiC.) 

C.L. De Castro, B.S. Mitchell, in Synthesis, Functionalization and Surface 

Treatment oj Nanoparticles, M.L Baraton, Ed., American Science Publishers (2003). 

P.G. Debenedett!, Metastable liqUids: Concepts and Principles, Princeton 

University Press ( 1996). (A good review of nucleation theory.) 

J. Delplancke, in Synthesis, Functionalization and Surface Treatment oj 

Nanoparticles, M.l. Baraton, Ed., American Science Publishers (2003). 

Colloid Gold: Principles, Methods and Applications (three volumes), M. Hayat, Ed., 

Academic Press (1989). 

J.P. Jolivet, Metaloxide Chemistry and Synthesis, Wiley (2000). (Discusses con­

densation mechanisms for aqueous cations, and surface chemistry of collOidal oxides.) 

J. Livage, M. Henry, and C. Sanchez, Sol-Gel Chemistry of Transition Metal Oxides 

in Progr. Solid State Chem. 18 (1988) 259. (Reviews many molecular precursors and 

their polymerization to inorganic oxides. ) 
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E. Matijevic, Preparation and Properties of Uniform Size Colloids, in Chem. Mater. 

5 (1993) 412. (Reviews monodisperse colloids with a broad spectrum of morphology 

and composition.) 

Technological Applications of Dispersions, R.B. McKay, Ed., Marcel Dekker (1994). 

(Reviews, preparation and properties of colloids used in a variety of applications 

including paints, paper, ceramics, and plastics.) 

A.E. Nielsen, Kinetics of Precipitation, Pergamon Press (1964). 

S. Oden, Der Kolloide Schwefel, Thesis Upsala University (1913). (This still seems 

to be the latest monograph on sulphur colloids; see also S. Oden, Kolloid-Z. 8 (1911) 

186.) 

M. Ozak, Preparation and Properties of Well-defined MagnetiC Particles, MRS 

Bulletin (December 1989) 35. 

Fine Particles SCience and Technology, E. Pelizzetti, Ed., Kluwer (1996). (Provides 

numerous references to many aspects of colloid syntheSiS.) 

Particle Growth in Suspensions, A.L. Smith, Ed., AcademiC Press (1978). 

(Proceedings of a Symposirun.) 

Fine Particles; Synthesis, Characterization and Mechnisms of Growth, T. Sugi­

moto, Ed., Marcel Dekker (2000). (A comprehensive text on the formation routes and 

mechanisms of inorganic as well as polymeric colloids.) 

T. Svedberg, Die Methoden zur Herstellung Kolloider L6sungen Anorganische 

Stoffe, Theodor Steinkopff Verlag (1909). (Probably the first monograph on inorganic 

colloid synthesis.) 

A.G. Walton, The Formation and Properties of Precipitates, Interscience Publishers 

(1967). 

H. Weiser, Inorganic Colloid Chemistry (two volumes), Wiley (1933). (A rich and 

still relevant source of detailed preparation methods.) 

Nucleation, A.C. Zettlemoyer, Ed., Marcel Dekker (1969). 

Separation techniques 

Standard texts on flow in porous media are: 

R.E. Collins. Flow of Fluids through Porous Materials, Reinhold (1961 ). 

For a treatment of collOidal filtration see also W.B. Russel. The Dynamics of 

CollOidal Systems. University of Wisconsin ( 1987). 

- 265 -



PREPARATION AND CHARACTERIZATION 2.71 

AE. Scheidegger, The Physics oj Flow through Porous Media, University of Toronto 

Press (1974). 

2.5b Characterization 

An instructive overview of various averages is: J.T. Bailey, W.H. Beattie, and C. 

Booth, Average Quantities in Colloid Science, J. Chem. Educ. 39 (1962) 196-202. 

S.E. Harding, AJ. Rowe, and J.C. Horton, Analytical Ultracentrifugation in Bio­

chemistry and Polymer SCience, Roy. Soc. of Chern. (1992). (Comprehensive coverage 

of analytical ultracentrifugation of (bio)polymers; no reference is made to inorganic 

particles.) 

M.B. Huglin, Light Scattering Jrom Polymer Solutions, Academic Press (1972). 

(Includes many practical aspects.) 

For a recent overview of characterization methods see: E. Kissa, Dispersions; Char­

acterization, Testing and Measurement. Surfactant Series Vol. 84, Marcel Dekker 

(1999). 

R. Pecora. Dynamic Light Scattering; Applications of Photon Correlation 

Spectroscopy, Plenum (1983). (Still a basic text.) 

AP. Philipse, CollOidal Sedimentation and Filtration, Current Opinion Colloid 

Interface Sci. 2 (1997) 200. (Literature entrance for collOidal spheres and non­

spheres.) 

E.R. Pike, J.B. Abbiss, Light Scattering and Photon Correlation Spectroscopy. 

Kluwer (1997). (Overview of both experimental and theoretical developments. For 

more reviews of light scattering see footnotes of sec. 2.3b.) 

For extensive information on characterization and fractionation of polydisperse 

colloids see: Particle Size Distributions; Assessment and Characterization, T. 

Provder, Ed .. Am. Chem. Soc. Symp. Ser. (1987); Particle Size Distributions II, T. 

Provder, Ed., Am. Chem. Soc. Symp. Ser. (1991). 

For further types of characterization (electro kinetics , surface charge, steric 

stabilization, etc.). see the relevant chapters in FICS. 
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APPENDIX 1 

The moment expansion and some applications 

Assuming that (electron) microscopy can be employed to the colloids under study, 

typically 1,000-2,000 counts are needed to obtain a representative size distribution. 

which no longer changes shape when more particle sizes are sampled. A variety of 

theoretical distributions for data fitting are available Which, together with extensive 

nomenclature, are treated in detail in the literature1,2.3J, see also 2.3f. Here we focus on 

some general features of distributions, which do not depend on the applicability of any 

theoretical fit. We do this on the basis of two data sets in fig. AI.I, namely a size 

distribution of magnetite particles (from now on called the 'M-distribution,' 1.h.s. of this 

figure) and one of silica spheres (the 'S-distribution,' r.h.s.). The M-distribution is a 

typical example of an asymmetriC distribution with a significant tail of relatively large 

particles, whereas the symmetric S-distribution agrees very well with a Gaussian. A 

variety of averages may be defined for these distributions, the type obtained depending 

on the technique by which the sol is investigated. These averages can be estimated 

fairly accurately from the relative dispersity sa' Below we will explain this estimate 

and test it for the distributions in fig. AI.I. We start with the nth moment of a discrete 

distribution, which is generally defined as 

[A. I. I J 

For a continuous distribution this equation may be replaced by [2.3.39J. In [ALI J the 

brackets denote a number average over a total of N particles with radii a j • The first 

moment is obviously the number-averaged radius (a) and the second moment 

determines the relative dispersity sa defined as 

[A1.2J 

where O'~ == (a2 ) - (a)2 is the standard deviation, or absolute dispersity, see sec. 1.3. 7a. 

Here. O'j == a j - (a) are the fluctuations around the average sphere radius. which by 

definition cancel each other such that (0') == 0 . From [A.I.l J we obtain 

[A 1.3 J 

To make an expansion in the fluctuations. we make use of the binominal theorem, 

II A. Papoulis. Probability. Random Variables and Stochastic Processes. McGraw-HilI. 11965). 
21 M. Alderliesten. Mean Particle Diameters Parr I. Parr. Part. Syst. Charaet. 7 11990] 233-

:N 1 . Part II. Part. Part. Syst. Charaer. 8 ( 1991 ) 237. 

31 P W;)lstra. Physical Chemistry of Foods. Marcel Dekker 120(2) 
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which states that for any positive integer n 

n n" n! k 
(l+y) =:: L. (n-k)!k!y 

k"'O 

[A.lA] 

From [A. 1.3 ] and [A. 1.4] we find the following expansion, which contains a leading 

term of order s;, but no linear sa -term because (J"a =:: 0 

[A. 1.5] 

The shape of the size distribution is, at this stage, still arbitrary. If the distribution is 

symmetrical around the average (a) , positive and negative fluctuations in [A.I.2] occur 

with equal probability, so «(J"~> =:: 0 for odd values of k. Consequently, the third 

moment for any symmetric distribution exactly equals 

[A. 1.5] 

whatever the width of the distribution. For distributions, which are sufficiently narrow 

such that s;« 1, we can truncate the expansion [A. 1.5] to obtain a result already 

reported in [2.3A4] for the special case of a log-normal distribution: 

s; «1 [A.I.7]. 

This useful approximation (already reported in a light scattering studyl)) relates higher 

moments of a distribution to the average particle size and dispersity. We have already 

seen one application in the expression for the apparent Guinier radiUS in [2.3.81, which 

is obtained by the application of [A.I.7J to [2.3.7J. In a Similar fashion, we find the 

apparent hydrodynamic radius from dynamic light scattering in [2.3.14J 

s; «1 [A.I.8] 

whereas the specific surface area yields 

s~ «I [A.l.g] 

In the context of sedimentation (sec. 2.3dJ, we encountered the z-averaged particle 

mass 

[A. 1. 10] 

which for spheres with identical mass density corresponds to an apparent radius 

I; P.N. Pusey. H.M. Fijn3ut. and A. Vnj. J. Chem. Phljs. 77 (1982) ·t270 
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[A. I. I 1 J 

again after expanding up to terms of order s~ . 

Table A.I. Test of [A. I. 7J for the data in fig. Al.l. 

M Mf 
1) S 

Distribution 
data2 ) calc.3 ) I data2

) calc. 3 ) data2
) calc. 3 ) 

(a) /nm 4.3 - 3.6 - 117.7 -
sa!'10 36.87 - 26.04 - 9.23 -

P 2.320 2.213 1.466 l.610 1.074 1.077 

ah/nm 6.9 7.3 4.4 4.8 122.5 122.8 

aG/nm 7.4 8.1 4.5 5.2 124.0 124.2 

az/nm 7.8 8.4 4.6 5.3 124.4 124.7 

a/nm 3.7 116.6 
'.~-~~---.. -~.-~-

1) Mf is the M distribution in fig. A 1.1 after removal of particles with radius a > 5 nm. 

2) Directly from particle counts. 3) Calculated using [A. 1. 7J and the relative dispersity sa from 

this table. 
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Figure A1.1. Size distribution of 1.081 magnetite (M) particles obtained from conventional 
TEM images (courtesy M. RaSia) and 2.892 silica (S) spheres imaged by cryogenic-TEM 
(courtesy P Homan). The M-distribution is a fairly broad log-normal one, the S-distribution is a 
Gaussian. Indicated are the number-average radius the z-average radius az . the harmoniC 
mean a and apparent radii. which would be found from static aG and dynamic light 
scattering ah . See also table 2.1. 
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We now put [A. I. 7J to the test for the distributions in fig. ALI with results 

summarized in table A.I. It turns out that [A. I. 7J quantitatively applies for the S 

distribution even though the silica spheres have a dispersity of 9 percent. For the 

magnetite particles. with a significant dispersity of 37 percent, approximation [A.I.7J 

still provides a reasonable estimate. Table Al also shows the results of a hypothetical 

(but practically not unfeaSible) fractionation by which large magnetite particles with a 

radius a > 5 nm (286 out of a total of 1.081 particles) are removed from the M 

distribution, to illustrate the effect of the tail of large particles. Removal of this tail 

substantially reduces the discrepancy between the static (aa) and dynamic (ah ) light 

scattering radius, and the number averaged radius (a). Note in table Al that [A 1.2J 

correctly predicts the trend in radii gOing from the M to the M f distribution. Some 

further remarks on the basis of this table are the following. A frequently used. 

dimensionless dispersity measure (also for polymers) is the ratio p between the weight­

averaged molecular mass and the number-averaged molecular mass. For spheres with 

identical mass density, this ratio equals 

[Al.I2J 

where the a 6 tenn stems from the square of the particle mass. Substitution of the 

approximation [AI. 7 J shows that to leading order in s~, p equals 

s~ «1 [A.l.I3] 

Clearly. the ratio p is not a very sensitive measure in comparison with the relative 

dispersity sa itself, as also becomes clear from the numbers in table A 1.1. Another 

observation from this table is the marked increase relative to (a) due to polydispersity 

of the Guinier radius a G and the hydrodynamic radius a h obtained from static and 

dynamic light scattering. respectively. An increase by a factor of two is to be expected 

for a polydispersity near sa "" 40% . 

In table A.I, the harmonic mean 

[A.I.14] 

is also included as an example of an average, which emphasizes the small-particle tail 

of a distribution. This tail will be relevant for Ostwald ripening and the amount of 

dissolved material due to the Gibbs-Kelvin effect, which depends on the reciprocal 

particle radiUS. see [2.2.51 J. 
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Soft Condensed Matter 2005 Problems Chapter 1 
 
 
1) In order to get a feeling of where the formula for the Brownian time (Eq. 1.5 ) comes 
from, we can derive it for a simpler case already encountered in the field of the 
mechanics of point objects. We want to calculate how long it takes if drops a ball with 
radius R and buoyant mass m in a liquid. Assume that the friction factor f is proportional 
to the speed v and is given by 6πηR.  

a) What is the terminal velocity of the ball if it is give that the η = 1 * 10-2 Pa.s and 
that the buoyant mass of the ball is 1 kg and its radius 1 m (g = 10 m/s2). 

b) Derive an equation for the relaxation time mentioned by solving the second 
order differential equation that describes this situation.  

c) What is the relaxation time for the situation mentioned in a)? 
d) What is the terminal velocity and the relaxation time for a colloidal sphere with a 

radius of 1 µm, assume a particle density difference of 1 g/cm3 with the solvent? 
e) What distance does the particle travel if it is assumed to diffuse Brownian during 

this time? 
f) What is the gravitational height of the same colloidal sphere? 
 
 

2) Let us assume the human lifetime is extended to 10.000 year, what size of particle 
would one still consider colloidal? What will ultimately limit the size of a colloid? 
 
 
3) The rotational diffusion constant of a spherical particle with radius ‘a’ in a medium 
with viscosity η is given by: 

0 38
r Bk T

D
aπη

=

 
 
What particle size would you choose if you wish to study their rotational diffusion 
experimentally, for instance in an aqueous (η = 1 * 10-2 Pa.s [Pa·s]) system? 
 
 
4) a) Show that for colloidal particles dispersed in a liquid, the equilibrium number of 

particles, N, at a height h above a reference level, h0, is given by: 
 

 
 
where N0 is the number of particles at height h0 and m’ is the mass of fluid 
displaced by a particle of mass m. 

]/)()'(exp[ 00 TkhhgmmNN B−−−=

b) Svedberg (1928) gives the following Table for the sedimentation equilibrium of a 
gold sol under gravity: 

 
Height (µm) Number of particles Height (µm) Number of particles 
0 889 600 217 
100 692 700 185 
200 572 800 152 
300 426 900 125 
400 357 1000 108 
500 253 1100 78 
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Assume the particles have radius 21 nm and density 19.3 g·cm-3 and the 
temperature is 20 ˚C. Estimate the Boltzmann constant, k, from the equation derived 
in (a) and then calculate Avogadro’s number, NA, assuming R=8.31 J·K-1·mol-1. 

 
c) Repeat the calculation with a radius of 22 nm and note how sensitive the 
answer is to this variable. 
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2. Problems 
 

1) The van der Waals gas. 
a) Calculate the critical density, temperature, and pressure. 
b) Show that 3 8c c cp kT   independent of a and b. This is called the law of 

corresponding states.  
 
2) Verify Eq. (2.24). 
 
3) Second virial coefficient for charged colloids. 
a) Calculate B2 for the hard-core Yukawa interaction, assuming kT  . 
b) Examine the limiting cases 1d   and 1d  . 
 
4) The virial route to thermodynamics. Derive Eq. (2.48) starting from the canonical 

partition sum. Hint: transform to the dimensionless variables 1 3
i i Vs r . 

 
5) Potential of mean force. 
a) Sketch the mean force and the potential of mean force for a pair of hard spheres at a 

volume fraction of 0.49. 
b) Explain how hard particles could feel mean forces that are repulsive and attractive. 
 
6) Radial distribution function up to first order in density 
a) Sketch the radial distribution functions of low-density fluids of particles interacting 

with the Lennard-Jones, hard-core Yukawa, and hard-sphere potentials. 
b) For the hard-sphere fluid show that the structure factor up to first order in volume 

fraction  is given by 

  
 

 3

24
1 cos sinS qd qd qd

qd


  q . 

Also sketch this function. 
 
7) The square well fluid. 

Consider a fluid of spheres interacting with the so-called ‘square well potential’: 

  
 
 
 0

r d

r d r d

r d

  



 


    
  

, 

Here, d is the diameter of the spheres and  > 0 is the well depth. 
a. Calculate the second virial coefficient of the square well fluid. 
b. Do you think the square well fluid has a liquid-gas phase separation? Give 

arguments for your answer. 
c. For sufficiently dilute fluids the radial distribution function can be approximated 

as     expg r r kT  . Use this to show that the internal energy per unit 

volume can be approximated as 

  32 33 2

2 3
kTU

kT e d d
V

       . 

d. In one graph sketch the radial distribution functions of the square well fluid and 
the hard sphere fluid at volume fractions of 0.01 and 0.40. 
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3. Problems 
 
1) How does equation (3.11) change if the incident light has perpendicular polarization? 

And parallel?  
 
2) Calculate the scattering cross section of a Rayleigh scatterer. 
 
3) Derive (3.14). 
 
4) The form factor of a clay particle 

Clay particles have the shape of a uniform, but very small, thin disk. Propose a method 
to measure the radius R of the disks with light scattering. Derive a formula with which to 
extract R from the measured data. 

 
5) Scattering by a Gaussian polymer coil 

Debye pointed out in 1947 that when calculating the scattering by a polymer molecule it 
is convenient to consider the basic scattering particle to be the statistical chain segment. 
Interference between waves scattered from different chain segments is then incorporated 
into the structure factor. The chain segment is usually so small compared to the 
wavelength of light that it can be considered a point scatterer (i.e. its form factor equals 
unity.) If the polymer solution is dilute then only interference between segments in the 
same polymer molecule is important. The structure factor (3.27) depends only on the 
difference vector rjk between two such segments. For a Gaussian polymer coil the 
probability density function for this vector is given by (see the Chapter on polymers) 

 

3/ 2 2

2 2

33
( ) exp

2 2
jk

jk

r
p

b j k b j k
  

          
r , (P1) 

where b is the segment length. 
a. Show that the form factor for a Gaussian coil with N segments can be written as 

  
2 21

6

2

1 q b j k

j k

P e
N

  q . (P2) 

Hint: Contrary to most problems involving spherical symmetry the integral is best done 
in normal Cartesian coordinates. The integrals can be performed by completing the 
squares in the exponent and making use of the integral 

  
2axe dx a






 . 

b. Next, evaluate (P2) by approximating the sums with integrals. Show that 

    2

2
1yP e y

y
  q , (P3) 

where  
 2 21

6y Nq b . (P4) 

c. Now derive a lowest order in q approximation for the form factor and confirm that the 
radius of gyration of a Gaussian chain is given by 
 2 21

6gR Nb . (P5) 
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6) Determine the systematic vanishings for a body-centered cubic lattice (bcc). How would 
you distinguish bcc from fcc? 

 
7) The graph shows small-angle X-ray scattering 

data on two suspensions of colloidal silica 
spheres in the solvent cyclohexane. The upper 
curve is a sample with a concentration of 0.714 
g/cm3, the lower curve 0.01 g/cm3. The vertical 
axis shows the scattered intensity I and the 
horizontal axis shows the scattering vector K 
(multiplied by 100).  
 

a. Estimate the size of the spheres used in this 
experiment. 

b. Explain why the upper curve has a peak in the 
low-K range, while the lower curve does not. 

c. Why do the curves look almost the same in the 
high-K range? 

d. Estimate the average distance between the 
particles in the suspension. 

e. How would the measured data change if a silica 
concentration of 1.0 g/cm3 is used? 
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8) The graph below shows measurements 
by Peter Debye of the amount of light 
(546 nm) scattered by solutions of the 
cationic surfactant dodecylamine 
hydrochloride in water. T is a number 
proportional to the scattered intensity 
at low scattering angle, and c is the 
surfactant concentration (in grams per 
cubic centimeter). The measurements 
were repeated with salts added at the 
concentrations shown on the right of 
the graph. 

 
 

(a) Explain why the scattering goes 
to zero at a concentration c0 that 
differs from zero. Also explain 
why c0 decreases as more NaCl 
is added. 

 
In the syllabus equation (4.26) was derived for the scattered intensity. If we ignore all 
the constants in this equation it can be written as 
      2

s pI q V P q S q . (I) 

Here  is the number of scattering particles per cubic centimeter and pV  the volume of 

one particle. P(q) is the form factor, S(q) the structure factor, and q the scattering vector. 
For the experiment shown here we are allowed to make two approximations: 
I. The particles are much smaller than the wavelength of light, so we can take the 

limit 0q  . 
II. In the low concentration range shown in the graph, particle interactions can be 

approximated up to the second virial coefficient B2. 
 

(b) Show that these approximations lead to a scattered intensity given by 

 
2

21 2
p

s

V
I

B







. (II) 

Argue that this equation qualitatively describes the form of the measured data. 
(c) Use the data and equation II to estimate by what factor Vp increases when 0.04598 

M NaCl is added to a surfactant solution in water. 
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9) The figure below shows small angle neutron scattering data on suspensions of sterically 
stabilized polystyrene colloids dispersed in water [Zackrisson et al., Langmuir 21, 10835 
(2005)]. The quantity plotted is the scattered intensity I(q) at scattering vector q divided 
by the weight concentration c of colloids. The seven sets of data correspond to colloid 
concentrations of 0.40, 0.35, 0.33, 0.30, 0.21, 0.048, and 0.0042 g/mL. 

 

 
 

a. Which set of data corresponds to which colloid concentration? Explain your answer. 
 
b. Estimate the average distance between particles at the highest concentration. 
 
c. From the low-q scattering data, prepare a plot of the inverse of the osmotic 

compressibility
1

kT 
 
  

 versus the concentration c. Interpret the result. 

 
d. Estimate the second virial coefficient B2/V0 of this colloidal system, given that the 

particle density is d=1.076 g/mL. Interpret the result. 
 Hint: The number density  and weight concentration c are simply related 

through 0c V d  . V0 is the volume of a particle. 
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10) Brownian motion 
a. Find an expression for the probability density function P(r,t) describing the 

displacement of a Brownian particle in a time t. 

b. Show that the mean square displacement is given by 2 6r Dt  . 

 
11) The Random Walk 

Consider the following idealization of a random walk in one dimension. A particle starts 
in the origin and makes a step of size lx randomly in the positive or negative x direction, 
so that: 

 
1

1 2

1
1 2

    probability 

    probability 
i i x

i i x

x x l

x x l




 

 
 

 
It is clear that, after a large number N of steps, the expectation value of the x coordinate 
of the particle is zero. 

a. Now show that 

 2 2
N xx Nl . 

b. Assuming that the particle travels ballistically with a speed v, show that 

 2
xx vl t .  

c. Next, consider a random walk in three dimensions. Furthermore, allow the random walk 
step size l to be selected from a probability distribution P(l). Show that  

 
2

2
l

r vt
l

 . (0.1) 

d. For diffusion of molecules in a dilute gas the pdf for the step size P(l) can be found by 
considering the collision probability between molecules. Consider an ensemble of 
molecules that have just undergone a collision. After traveling a distance l there are N(l) 
molecules left that have gone without colliding a second time. The number of these 
molecules undergoing another collision in the next dl meters is then proportional to dl 
and N(l). Verify that this leads to 

  
mfl l

mf

e
P l

l



 , 

 where mfl l  is called the mean-free path of the molecules. 

e. Finally, show that the diffusion coefficient of these molecules is given by the following 
formula, which is well known in the kinetic theory of gases: 
 1

3 mfD vl . (0.2) 

 
12) Suppose that a dilute colloidal dispersion contains equal numbers of two types of 

spherical particles. One population has a radius of 20 nm, the other 40 nm. Describe the 
form of the intensity autocorrelation function that one would measure with DLS.  
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9. DLVO Potential & Techniques to Measure Interaction Forces  
 
 
1)  Show that if the interaction potential between molecules are of the form C/rn for all distances, 

the energy of that molecule will depend on the shape of the container if n≤3. (Why does the 
same argument not hold for the free energy?) 

 
 
2)  Show that for two weakly interacting dipoles the Boltzmann averaged first order 

approximation to the energy is of the form 1/r6. 
 
 
3a) Show that the interaction energy of an atom A with a permanent dipole with moment m1 with 

an atom B with a polarizability α2 is given by: 
 

 
2

21 2
2 6

0

1( , ) 1 3cos
2 (4 )

m
w r

r

αθ θ
πεε

⎡ ⎤= − +⎣ ⎦  

 
Where θ is the angle between the dipole and the distance vector r between the atoms.  

3b) Average this energy rotationally to arrive at the 1/r6 term for the induction or Debye forces. 
 
 
4)  Calculate the interaction energy between two infinite half-spaces using Hamaker’s approach 

of pair-wise summation of 1/r6 interactions (note that this energy needs to be given per unit 
surface area).  

 
 
5a) Calculate the Van der Waals interaction energy between two identical spheres with radius a a 

distance h apart using pair-wise summation. Note that in this equation the interaction depends 
only on h/a (as it should for scale invariant 1/r6 potentials).  

5b) What is the limiting formula for distances h/a << 1? 
5c) Show that this limiting form is compatible with the Derjaguin approximation between two 

spheres.  
5d) Check how good this limiting formula is by calculating the interaction at a distance h=0.01a.  
 
 
6a) Colloidal particles often aggregate in non-polar liquids (hydrocarbons, oils) because of the 

attractive Van der Waals forces between them. This is often a nuisance but can be prevented 
by coating the particles with a surfactant or polymer layer whose refractive index matches that 
of the liquids. Explain this phenomenon.  

6b) At an ACS conference Dr. X from Colloids Corp. describes a colloidal dispersion of silica 
spheres (diameter 0.5 µm, smooth surface) in oil, where by coating the spheres with a 
‘matching layer’ of surfactant, the depth of the potential well was reduced by a factor 10 as 
ascertained by light scattering measurements. When asked about the thickness of the layer, Dr. 
X replied that this is proprietary information. What was the thickness of the layer? 

 
7a) Show that the non-linear PB equation for a flat plate and 1-1 electrolyte can be written in 

dimensionless units (X=xκ, and Φ=eψ/kT) as: 
 

  
21 c

2
d d d

dX dX dX

oshΦ Φ⎛ ⎞ =⎜ ⎟
⎝ ⎠
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7b) Solve this equation and show that its solution is: 
 

  0 0
0

0

12ln    with  tanh
1 4

X

X

t e
t

t e

−

−

⎛ ⎞+ Φ⎛ ⎞Φ = =⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠
 

 
7c) Show that for Φ <<1 this equation reduces to the DH limiting case (Eq. 32). 
7d) Another interesting limiting case is obtained for large X. Show that in this case the potential 

can be approximated with: 
 

04 Xt e−Φ =  
 
7e) Interpret the physical meaning of the (limit of) the prefactor. 
 
 
8) Use the equation derived at 7d) in combination with the superposition approximation (using the 

force method) and the Derjaguin approximation for spheres to obtain the following free 
energy of interaction between two identical spheres (for distances κ-1 << x << a) at a constant 
surface potential (note the different functional form as compared with Eq. 39): 

 

  2
0( ) 4 h

dlo
Bj

a
V h kT t e

l
κ−=  

 
with the Bjerrum length as defined in Chapter 1 and h the distance between the spheres. 
 
 
9) If we combine the Van der Waals forces for short distances between spheres (means also in the 

Derjaguin approximation) with the Equation derived in problem 8 we get for this limit of the 
DLVO potential:  

 

  2
0( ) 4

12
effh

Bj

A aa
V h kT t e

l h
κ−= −  

 
We can now analyze this equation for conditions of stability between the spheres. 
 9a) First show for what conditions this equation has a maximum. 

Let’s now analyze a few concrete examples. Example 1: Aeff = 20 x 10-20 J (~50 kT) and κ-1 = 
10 nm (10-3

 M 1-1 electrolyte in water, ε~80). 
9b) For what surface potentials will there be a maximum in the stability curve? 

Example 2: Aeff = 20 x 10-20 J (~50 kT) and Φ0=1. 
9b) For what range of 1-1 salt concentration will there be a maximum in the DLVO potential? 
9c) Are the values given for 9b still within the approximations made in deriving the DLVO 

potential used? 
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1. a) A spherical droplet with radius R is divided in N droplets of radius r. Derive a 
formula for the total, and the specific surface area of the N droplets. Calculate the 
increase in specific surface area by dividing a micron-size water droplet into 
droplets of lO nm. 
b) A colloidal sphere of radius R is composed of molecules with specific volume 
Vm. A fraction F of the molecules is exposed at the sphere surface. Find F as a 
function of R, and apply your result to colloids with radius R = 1 mm, 1,lllll, 10 
nm and 1 run. 

2. a) Show that f1G* = A *yl3 [2.2.19] is valid for spheres as well as cubes. Make an 
educated guess how f1G * looks like, if the faces i of the cube have different 
surface tensions )1. 

b) Derive the formation Gibbs energy f1G of a sphero cylinder (radius a, length 
L+2a) in a solution with supersaturation S. 
Explain why the cylinder only grows spontaneously in length above a critical 
diameter. . 

3. a) A sphere with radius R is suspended in a solution with molecule concentration 
c(r) at a distance r from the sphere center. Derive the diffusion-controlled 
frequency J of collisions between molecules and sphere. Clearly explain the 
various steps and assumptions. 
b) We now wish to model the diffusion controlled growth of a disc with radius R 
on a flat surface on which molecules diffuse around; now c(r) is a surface 
concentration. Try to derive the equivalent of J in 3a) for this two-dimensional 
case, and discuss your findings. 

4. a) Use your result from 3a) to calculate the homogeneous nucleation rate of 
spherical particles in a supersaturated solution. 
b) Estimate the homogeneous nucleation rate for silica spheres in an aqueous 
solution (PH = 7) for a 'soluble silica' concentration of Cm = 200 ppm, 500 ppm 
and 103 ppm (see also pages 2.23 and 2.24). 

5. a) Derive eq. [2.2.58] for the heterogeneous nucleation of a spherical cap on a flat 
substrate. Plot the function f{ 8) as a function of the contact angle e. 
b) Suppose the spherical cap in Fig. 2.9 is a silica nucleus on a surface in contact 
with water. Estimate the required contact angle e such that the nucleation flux of 
silica is enhanced by a factor of 103

, in comparison to the homogeneous flux in 
4b) for the case of Cm = 200 ppm. 

6. a) A bimodal distribution of colloidal silica spheres is growing at neutral pH by 
diffusion controlled silica precipitation. Show that the relative width of the 
distribution decreases in time. 
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b) We now suddenly increase the pH to pH ~ 12, such that silica spheres 
gradually dissolve. Discuss the fate of the relative width in time. 

7. a) Consider a solution containing a small silica sphere with radius as and a much 
larger sphere with radius at» as. Describe what will happen according to the 
Gibbs-Kelvin equation. 
b) Formulate the diffusion flux for molecules diffusing from the small to the large 
sphere. Derive an expression for the derivative da/dt; explain any assumptions. 
c) Estimate the dissolution rate of silica sphere in water at neutral pH near a flat 
glass surface. 

8. a) For a continuous size distribution the moments are defined by: 

0) 

< an >= J an P(a)da 
o 

The Gauss (or normal) probability density haS the form: 

where 

222 
(Ya =< a > - < a > . 

Determine the constant A. 

b) Start from the above definition of the nth moment and show how to obtain the 
approximation: 

<a"> 1 n(n-l) 2 ---:::: + S . 
< a >" 2 a ' 

2 
? (Y 

S - = a «1 
a ? <a >-

c) We determine <a> using transmission electron microscopy (TEM). How would 
you check whether you have sufficient 'counts' for a reliable <a>? 
d) For a suspension of silica spheres it turns out that <a> = 100 nm with Sa = 6%. 
Predict what would· be the radius obtained from a) the specific surface area and b) 
static light scattering. Do the same for spheres with <a> = 100 nm and Sa = 40%. 
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