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Chapter 1

Introduction

It is no longer possible to present perturbative
Field Theory pedagogically in one year — the days
of the standard one-year course based on QED are
gone forever.

Pierre Ramond
Field Theory: a modern primer.

The main recommended book

M. E. Peskin and D. V. Schroeder. “An Introduction to Quantum Field Theory”, Perseus Books,
The Advanced Book Program (Reading, MA).
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Chapter 2

Classical fields and symmetries

This chapter is dedicated to reviewing of some of the important prerequisites for study quantum field
theory. It includes the Lagrangian description of classical systems with an infinite number of degrees
of freedom and the first Noether theorem, which allows one to construct dynamical invariants, i.e.
the quantities remaining invariant under the time evolution. This material is assumed to be largely
known and, therefore, is delegated for self-activating.

2.1 Continuous systems in classical mechanics

To describe continuous systems, such as vibrating solid, a transition to an infinite number of degrees
of freedom is necessary. Indeed, one has to specify coordinates of all the points which are infinite
in number. In fact, the continuum case can be reached by taking an appropriate limit of a system
with a finite number of discrete coordinates. Our first example is an elastic rod of fixed length ¢
which undergoes small longitudinal vibrations. We approximate the rod by a system of equal mass
m particles spaced a distance Aa apart and connected by uniform massless springs having the force
constant k. The total length of the system is £ = (n+1)Aa. We describe the displacement of the ith
particle from its equilibrium position by the coordinate ¢;. Then the kinetic energy of the particles

is .
m .
i=1
The potential energy is stored into springs and it is given by the sum
1 n
U= Qk;(¢l+l ¢z) .

Here we associate ¢g = 0 = ¢, -1 with the end points of the interval which do not move. The force

acting on ith particle is F; = —§¢U

Fi = kE(¢is1 + dim1 — 2¢;) .

This formula shows that the force exerted by the spring on the right of the ith particle equals to
k(di+1 — &;), while the force exerted from the left is k(¢; — ¢;—1). The Lagrangian is
n -2 1 n 9

O — kY (i1 — 6i)%.

S — =
i=1 2 =0

SE



At this stage we can take a continuum limit by sending n — 00 and Aa — 0 so that £ = (n + 1)Aa
is kept fixed. Increasing the number of particles we will be increasing the total mass of a system.
To keep the total mass finite, we assume that the ratio m/Aa — p, where p is a finite mass density.
To keep the force between the particles finite, we assume that in the large particle limit kAa — Y,
where Y is a finite quantity. Thus, we have

- ¢)z+1 ¢z
L= ZAa( )¢ ZAakA ( o~ )
Taking the limit, we replace the discrete index i by a continuum variable x. As a result, ¢; — ¢(z).

Also
Git1 — ¢i Pz + Aa) — §(x)
Aa Aa
Thus, taking the limit we find

— 0z9(x) -

L= ;Lﬁ dz [ué)Q - Y(é’zéﬁ)z] .

Also equations of motion can be obtained by the limiting procedure. Starting from

mo Piv1 + ¢iz1 —2¢;
Ta¢l kAa AQQ = O,
and using
) S ) 2
lim ¢7.+1 + ¢171 2¢1 _ aj = aqus

Aa—0 Aa? ox?

we obtain the equation of motion .

Just as there is a generalized coordinate ¢; for each i, there is a generalized coordinate ¢(z) for
each . Thus, the finite number of coordinates ¢; has been replaced by a function of x. Since ¢
depends also on time, we are dealing with the function of two variables ¢(z,¢) which is called the
displacement field. The Lagrangian is an integral over x of the Lagrangian density

_ L1y 1 2
2 =5pd" = 5Y(0:9)° .

The action is a functional of ¢(z,t):
to 9 .
= f dtf dz Z(p(x,t), p(x, 1), Ozp(x,1)) .
t1 0

It is possible to obtain the equations of motion for the field ¢(x,t) directly from the continuum
Lagrangian. One has to understand how the action changes under an infinitesimal change of the
field

oz, t) = ¢z, t) + 0p(x,1) . (2.1)
The derivatives change accordingly,
0 0 0
at¢(x t) aﬁb(fﬁ, t) + &&ﬁ(ﬂc, t) ) (22)
0 0 0
%(b(x,t) - %qﬁ(%t) + %(SQS(CC,t) . (2.3)



This gives

5S[¢] = S[6 + 66] — f at f 5¢+a"jat5¢+ a(aa’i)axad)].

Integrating by parts, we find

to A
f dtf dx[g—étg 05 0L ]&;s
¢ t
0L 2
de———6¢[i2t2 + J, dtié o=t 2.4
L $6(6t¢) ¢|t t1 " a(am¢) ¢|w—0 ( )
The action principle requires that the action principle be stationary with respect to infinitezimal
variations of the fields that leave the field values at the initial and finite time unaffected, i.e.
5¢($,t1) = 6¢($,t2) =0.
On the other hand, since the rod is clamped, the displacement at the end points must be zero, i.e.
66(0,t) = d¢(¢,1) =
Under these circumstances we derive the Euler-Lagrange equations for our continuum system
7 ( 0L ) 0 ( 0L ) 0L
t\0(0e) 2 \0(029)

~ e "
Let us now discuss the solution of the field equation

¢— PO =0, c=

)

Y
m
where ¢ is the propagation velocity of vibrations through the rod. This equation is linear and, for
this reason, its solutions satisfy the superposition principle. Take an ansatz
oz, t) = e ap(t) + e R Thy(t) .
If we impose ¢(0,t) = 0, then by(t) = —a(t) and we can refine the ansatz as
o(x,t) = ag(t) sinkx .

Requiring that ¢(¢,t) = 0 we get sinkl = 0, i.e. k =k, = 7. Coefficients a(t) then obey

i+ k%ap(t) =0 —  ap(t) = e™rlay,
where wy = *ck is the dispersion relation. Thus, the general solution is

oz, t) = Z sin k,x (An cos wpt + By, sin wnt) , wp, = cky ,

and the constants A, B,, are fixed by the initial conditions, which is an initial profile ¢(x,0) and
an initial velocity ¢(z, 0).

Scalar and vector fields



The generalization to continuous systems in more space dimensions is now straightforward. In two-
dimensions one can start with two-dimensional lattice of springs. The displacement of a particle
at the site (4, 7) is measured by the quantity 51‘;‘7 which is a two-dimensional vector. In the limit
when we go to a continuum, this becomes a displacement field (5(3:, y,t) of a membrane subjected to
small vibrations in the (z,y)-plane. In three dimensions we get a vector é'ijk. The continuous limit
yields a three-dimensional displacement field Q_S'(x, Y, z,t) of a continuous solid vibrating in the z,y, z
directions with eoms of a partial differential equation type:

(g_ Claxw(g_ C2ayy$_ C3azz$_ 046563}5_ 056yz(5_ Cﬁaxzﬁg =0,

the coefficients ¢; encode the properties of the solid.

Tensors

In general, fields depending on the space-time variables are tensors, i.e. they transforms under

general coordinate transformations in a definite way. Namely, a tensor field ¢;11;’: of rank (p,q)

under general coordinate transformations of the coordinates z*: x* — 2’*(2?) transforms as followsﬂ

¢;k1.2.kp(x,) _ 0:10’%“1 6:10”? gzt Qala G ().

1 oxi Oxtr Ox't  QOx'la TI1da

Here tensor indices are acted with the matrices fiﬁ,; which form a group GL(d,R). This is a group
of all invertible real d x d matrices. A simplest example is a scalar field that does not carry any
indices. Its transformation law under coordinate transformations is ¢'(z') = ¢(z). We stress that a
point with coordinates  in the original frame and a point with coordinates ' in the transformed

frame is the one and the same geometric point.

2.2 Noether’s theorem

In order to fully describe a dynamical system, it is not enough to only know the equations of
motion. It is also important to be able to express the basic physical characteristics, in particular,
the dynamical invariants, via solutions of these equations. This goal is achieved by means of the
first Noether theorem, which we formulate and prove below.

Noether’s first theorem: To any finite-parametric, i.e. dependent on s constant parameters, contin-
uous transformation of the fields and the space-time coordinates which leaves the action invariant
corresponds s dynamical invariants, i.e. the conserved functions of the fields and their derivatives.

To prove the theorem, consider an infinitezimal transformation

xt = g =2t + 52t i=1,...,d,
¢1(x) = ¢7(2') = ¢1(x) + 0¢r(2).

As in the finite-dimensional case, the variations dz’ and d¢; are expressed via infinitezimal linearly
independent parameters dw,:

ozt = Z X! owy dor(z) = 2 D powy, . (2.5)

1<n<s 1€<n<s

IThere is a simple rule to remember the appearance of primed and unprimed indices in the tensor transformation
rule. Assuming that all indices on the left hand side of the tensor transformation formula are ‘primed’, then they
must label ‘primed’ coordinates in the right hand side of the formula.

10



Here all dw,, are independent of the coordinates x. Such transformations are called global. The
coefficients X}, and @, may depend on z and the fields, and they describe a response of coordinates
and fields on the infinitezimal transformation with a parameter dw,.

Obviously, particular cases of the transformations above arise, when X* = 0 or ® 1n = 0. In the
first case the coordinates z* do not change under symmetry transformations at all, while the fields
are transformed according to

¢1(x) = ¢1(x) = ¢1(x) + 661 ().

In the second case the symmetry acts on the space-time coordinates only and the condition ®;, =0
implies that ¢%(z') = ¢r(x), i.e. the fields under considerations are scalars. We point out that in
the case when ¢; is not a scalar but rather a tensor, ®;, is not zero even if the symmetry acts
on the space-time coordinates only! To illustrate this point, consider a vector field ¢*(z). Under
coordinate transformation x* — z’* = x + §z° one gets

o0xt .
oz (@),

S

) 1o Ly 5t
') = ) = AT

T O

¢ (x) = ¢'(x) +

which implies that the corresponding quantity ®; is non-trivial; the trivial case occurs only when
6z* does not depend on coordinates, i.e. it is a constant.

In the general case symmetry transformations act on both the space-time coordinates and the

fields, cf. eq.(2.5). Consider
o (x') = ¢ (x + 6x) = ¢y (x) + O (2)02” + ... = ¢ (x) + pr(x) Xﬁ&un +...

It is important to realize that the operations § and d/0z do not commute. This is because ¢ is the
variation of the fields due to both the change of their form and their arguments x*. We therefore
introduce the notion of the variation of the form of the field function

5p1(x) = ¢ (x) — dpr(x) = (@1 — Our X))o, .

Variation of the form does commute with the derivative d/0x. For the variation of the Lagrangian
density we, therefore, have

d< d<
L") =L (x) + —dzF = L(x) + L' (2) — L () +—-0z" .
dz* T T ek
5% (x)
The change of the action i&ﬂ
oot ot ’ = d¥ k
0S5 = | d' Z'(2)) — | de ZL(z) = | da’ [L(x) + 6L (x) + d—k&n |— | dzZ(x).
x
Transformation of the integration measure is
S & L+ o 2y
dz’ = J - dz =det dz = det dz.
oz’ oz’ 2ozt 28z
oxd T oz ozd SR oxd
Jac;Taian

2We consider a field theory in d-dimensions, so that the integration measure dz must be understood as dz =
dxidzs...dxg = diz.

11



Thus, at leading order in dw, we have
de’ = da(1 + opozk + ...

Plugging this into the variation of the action, we find

5S = de [S.Z(x) + %&:k + Opoak z] - f da [Sz(:c) + %(Xéxk)] .

We further note that

7 0L - 0L - 0L - 0L -

3L (2) = 50001 + 5o dor = O (m)&b, + S 000 =
0L -

= (3007

where we have used the Euler-Lagrange equations. Thus, we arrive at the following formula for the
variation of the action

~ae L[ 22 5 = (ae -2 [-Z (@, - m ;
5S_de dxk[a(ak¢j)5¢1+$5x ] —Jdm dxk[a(é’kd)[)((I)I’n am¢1Xn)+an]5wn.

Since the integration volume is arbitrary we conclude that

def .
Tk T 0 — divJ, =0,
where 0.
J’S = _a(ak¢1) ((pl,n - amd)IX:mn) _"%Xﬁ

and n = 1,...s. Thus, we have shown that the invariance of the action under the s-parametric
symmetry transformations implies the existence of s conserved currents.

An important remark is in order. The quantities J* are not uniquely defined. One can add

TE = JE + O™,

where 5™ =

orJE = 0.

Now we are ready to investigate concrete examples of symmetry transformations and derive the
corresponding conserved currents.

—x™k. Adding such anti-symmetric functions does not influence the conservation law

e Energy-momentum tensor. Consider the infinitezimal space-time translations
2 =2k 462k = 2k 4 %ow, =  XF=9oF
and @, = 0. Thus, the conserved current J* becomes in this case a second rank tensor T)¥

0.7
T = —— 0,01 — "2,
"= 3w

Here, as usual, the sum over the index I is assumed. The quantity T is the so-called stress-
energy or energy-momentum tensor. If all the fields vanish at spacial infinity then the integraEI

P, = fd”*le,?

3Here we explicitly distinguished a time direction ¢ and write the integration measure in the action as dz =
dtdn1z.

12



is a conserved quantity. Here O signifies the time direction and the integral is taken over the
whole (n — 1)-dimensional space. Indeed,

dp, dT? _, AT q
— = —r=—|d" e == Q(T, -7
dt de dt ,[d ¥l L%d (T - 7).

where  is a (n—2)-dimensional sphere which surrounds a n — 1-dimensional volume; its radius
tends to infinity. The vector 77 is a unit vector orthogonal to €.

Angular momentum. Consider infinitezimal rotations z'* — x™ + x,,0Q™™, where §Q"™ =
—6Q™™, Because of anti-symmetry, we can choose Q"™ = Jw™™ with n < m as linearly
independent transformation parameters. We find

ozt = Xféwj = Z Xk W™ = 20w = 2,68 sw™
n<m
= Z 208 L™+ Z 6% s = Z (216%, — 2,707 )5w™ . (2.6)
m<l m>1 m<l

From here we deduce that
Xk o —x0F — 0k, n<m.
If we consider a scalar field then ¢/(z’) = ¢(z) and d¢ = 0. As a result, ®;,, = 0. Using the

general formula

N 02

Jh=— Brp— Oms X)) — LXF
n a(ak¢1)( I, (bl )
we therefore find the following angular momentum tensor
0L
k — m— Om 5]() _ mé‘k .
i rak(b)((?lgbx Omd ) + L (2167, — md))
Notice that the last formula can be written in the form
0L 0L
R — 26 — o (6,6 — 26" ) = 4, TF — 2, T
ko= (a(am)‘%‘z’ 23t) xl(é(am)a 6 — L8, = enTf — T,

where le is the stress-energy tensor.

If we consider now a vector field ¢, then according to the discussion above, we will have

oozt . 0

56" = 3 @uow™ = ST @) = () by — i)

m<l m<l

so that ‘ ‘ o } }

P = (95105, = gim01)d" = 10, — dmd]
where g;; is a space-time metric. According to our general formula, the set of corresponding
Noether currents will have the form

0%

JE o =— (@ —a¢' XL, —2LXE
Substitution of all the quantities gives
0L , . ,
Jk . =— —[9n6L, — Pl — 010" (24,0L, — T 0L) | — L(2n0F, — 2,,,6F) .

13



We, therefore, see that for the vector field, the angular-momentum tensor takes the form

ko ko k _ ﬂ — ﬂ

The first piece here, which depends on the stress-energy tensor is called the orbital momentum
and the second piece characterizes polarization properties of the field and is related with a
notion of spin.

The final remark concern continuous s-parametric transformations which leave the action invari-
ant up to a total derivative term (in the original formulation of the Noether’s an exact invariance of
the action was assumed!)

0S = dw, fd:z: 6kF,ff.

These transformations also lead to conservation laws. It obtain them, it is enough to subtract from
the canonical current J* the term F*:

/kZJk—Fk.

One can verify that this new current is conserved dj,_#, as the consequence of the equations of
motion.

14



Chapter 3

Klein-Gordon field

The career of a young theoretical physicist consists
of treating the harmonic oscillator in
ever-increasing levels of abstraction.

Sidney Coleman

3.1 Classical Klein-Gordon field

Classical fields are functions on space-time parametrized by coordinates z# = (ct, Z), where ¢ is the
speed of light. In application to particle physics we will consider Lorentz invariant theories, the
simplest of them being a theory of a scalar field ¢(Z, ). In these lectures we assume the Minkowski
metric to have the signature (1,—1,...,—1). The action describing a free massive scalar field in
four-dimensional space-time has the form

Slo1 = £ [ata10,0010"6() - 3 (5)°6*(@)]. (3.1)

where A is the Planck constant and d*x = cdt d# is the Lorentz invariant integration measure. The
Euler-Lagrange equation which follows from this action is called the Klein-Gordon equatiorﬂ

(0u0 + (5)") 6(2) = 0. (3.2)

This is the equation of motion for the scalar field.

We can rewrite the action as
8161 = f atd7 | 2 d()? = (V@) - 5(%2) 6% ()| = j dt L, (3.3)

where L is identified with the corresponding Lagrangian and qb = 0.

1Very often in quantum field theory one adopts the natural units # = 1 = ¢. In the international system of units
SI the Klein-Gordon operator reads as
1 02 o2 m2c?
2 ot Qa2 h2

We point out that A = 2= is the (reduced) Compton wave length associated to the scalar field.

mce

15



The passage to the Hamiltonian formalism is performed by introducing the canonical momentum
m(x) conjugate to the “coordinate” ¢(x):

0L o(x)
T(r) = —— = —;
ép(z) ¢
The Hamiltonian has the form
H = J dZr¢— L,

where in the right hand side of the last formula one has to substitute the expression for cb(x) via
m(x). Making this substitution, one obtaines the Hamiltonian of the Klein-Gordon field

H = %de [027r2 + 00 0ip + (%)%2] . (3.4)

Denote by [¢] the physical dimension of the field ¢. Since H has the dimension of energy [H] = &,
we have & = 3 x 5% x [¢]?, where & and ¢ signify units of energy and length, respectively. This

shows that the physical dimensionsE| of a relativistic scalar field and of its momentum are

=5 =S =\E

Looking at the formula for the action, it is not difficult to deduce the physical dimension of the
latter; it is
1= luitxtupr=txe—ext=[n
c 12 c ’
Thus, the physical dimension of the action coincides with that of the Planck constant i. Concerning
the dimension of £, it is

[I] = energy x time = momentum X coordinate = angular momentum .
The definition of the Poisson brackets is also generalized to the field-theoretic case. For any two

local in time functionals F[w, ¢] and G[m, ¢] of fields and their momenta we define their Poisson
bracket as the following functional

{FG}_de[éF 5G  §G 6F]

om(z) 6p(z)  om(z) dp()

where F' and G are taken at the same moment of time. Let us show that just as in classical mechanics
with a finite number of degrees of freedom the physical dimension of the Poisson bracket, which we
denote by [{F,G}], is offset from the product of physical dimensions [F][G] by one power of A. To
this end, we need to find the dimensions of the variational derivatives entering the formula for the
Poisson bracket. Using the definition of the variational derivative, we find

o= de 5;(2) W) — 1= [&fﬁiﬁ)} . ﬁ - [52@)} - 65/2[5](51/2 ’
o= fdf%é’)éﬂ(x) — =0 [6?1-8)] % — [622)] - gagf]xngm :

2Physical dimension is often called ‘the engineering dimension’, see e.g. “Quantum Fields and Strings: A Course
for Mathematicians” AMS IAS 2000, by Perre Deligne et al., vol 1, page 446 (remark 1).



Then from the definition of the Poisson bracket we can read off its physical dimension

(I GEI G GE G R GG ) 53

The canonical Poisson brackets implied by the Lagrangian (3.3) are

{¢(t7 f)a ¢(tv g)} =0,
{ﬂ(ta f),ﬂ(t,gj’)} =0, (36)
{m(t,7),0(t,9)} = 6(F — 7).

Note that all the fields for which the brackets are computed are taken at the one and the same
moment of time. Then the Hamiltonian equations can be cast in the following form

q;:{Ha(ﬁ}v 7:(-:{}Lﬂ-}'

. 2
The first equation here gives ¢ = c¢?>r, while the second one results in 7 = 07¢ — (%) ¢. Differen-

tiating the first equation over time, we then get

b= =c2[oto - (%)2(;5] : (3.7)

which is equivalent to (3.2).

It appears that the most efficient way to look at the dynamical variables is to invoke a momentum
representation, which simply means a passage to the corresponding Fourier image

b(x) = W J Ak e (k) (3.8)

Here the integration measure is d*k = dk%dk" ... dk3 and the Lorentz invariant scalar product kz is
defined as . .
kr = kot = k2° — k@ = wt — kT,

where k is the wave vector, w is the frequency and

DL=ct, k=

o€

In what follows we call the Fourier transform (3.8) the wave type, as the basis functions over which

the expansion is made of are the standard plane-waves eik* = ¢i(wt=kT)

Quite often one uses another, the energetic-type representation. It is based on the de Broglie
formulae
E=h, p=nhk,

where FE and p are the energy and momentum of the wave, respectively. Making the corresponding
change of variables, we get the energetic-type Fourier transform

$(z) = | Gayrm e PP G(p). (3.9)
The Klein-Gordon equation for the Fourier image takes the form

[(£)" = 52 = m*c2|6(p) = 0. (3.10)
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Since p* = (%, 13’) is the four-momentum, the last equation written in the relativistic invariant form
reads (pup“ - m202)¢(p) = 0 and it is solved by

o(p) = 5(p* — m*c)p(p).

The multiplier §(p? —m?2c?) establishes a relation between energy variable E and momentum 7 and
the square of mass m?

p? —m?c? = (E)Q—ﬁQ—m202=O. (3.11)

c
This relation is known as the mass-shell condition. Therefore,
dEdp L(Bt—pi
P(z) = J (2,,)3% 5(p® — m202)€h(Et P o(p) .
Because of the J-function the integration goes over two three-dimensional hyperboloids

E = e/ p? + m2c2.

Using the property of the d-function

5(p2 —m202) _ cd(E- c\/m> n ¢ 8(E+en/D? +m2c?)

o 2\/1) +m?2 2\/ﬁ2+m202 ’

the solution naturally splits into two integrals

@) = Gy U §5 ex (P (B, p) + f §E o H(ELTD) so(—E,ﬁ)] ,

where now E = cy/p? + m2c? is assumed to be always positive! The second integrand is not written
in the relativistic-invariant from, so we change p — —p obtaining thereby

¢<f>=(2w>§/ah4[f§§eh<’“ ) (B m+jdpe #(Bt=pE) (—E,—m],

The first term in the brackets called the positive frequency part of ¢(x), while the second one the
negative frequency part, respectively. It is standard to introduce the following Fourier amplitudes

() = £58 . ap) = 25D

For a real scalar field o*(p) = ¢(—p), so that a(p) and a*(p) are in fact complex conjugate to each
other. The dimension of (p) is [¢(p)] = h*(*/2&1/2) so that the dimension of a(p) is [a(p)] =
RY2p=3/2. With the introduction of these amplitudes, the corresponding Fourier expansions will
finally read

dﬁ ]. i —_pT _ 4 5T
(;3(;6) = Chl/zj‘mh)w\/ﬁl:a*(m @r"(Et p )+a(]5)€ r"(Et p ):I, (312)

i dp P R
o) = s [ e R ]
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Let us now express the Hamiltonian in terms of the amplitudes a(p) and a*(p). Substitution
of ¢(z) and 7(x) would lead to a triple integral, but the z-integration is easily done yielding the
delta-function, which allows one to further perform one of the momentum integrals. We recall the
Fourier representation of the the Dirac delta-function

5(p) = JQWH eRPT (3.14)

In view of the importance of this calculation we will perform it here in full detail. We start with

oL far (et noion (3)'6).
We then get

! dz dpdp’ L (¥ (0¥ (5 ek (B+EDt— £ (5+5) %o I\ E(E—E')t—L(p5—p)i
= _ = i _ i i
= 2h j (2mh)3 [ 1 4EE (‘1 (P)a™ (P )e a*(p)a(p )eh

Bl

—a(ﬁ)a*(ﬁ’)eilﬁ(E*El)t"'%(i*ﬁl) +a(Pa ( e~ h(E+E Yt+ 4 L(p+p))T )

C2

’ i — A
+ (= GF)a* Pa* (7)) ek FHEVTRTOT 4 (5o (a( e ETENH T
VAEE'
(77 )a(Pa* (7 )e” hEEVHREIE_ (5 a(pra( e h D EH)
m2ct i (B4 B i (g_g! G Ty
+ (a*(ﬁ)a*(ﬁ)eﬁ< +EBt— L (5457 +a (p)a(ﬁl)eﬁ( —E)t— (p—p")Z
VAEE'

+a(ﬁ)a*(ﬁ’)ef%(E*E')tJr%(ﬁ*ﬁ')L +a(Pa ( e~ h(E+E')t+%(ﬁ+17')f)‘

Integrating over  produces either §(7— p’) or §(p +p’). Thus, we can further integrate over p’ obtaining the following result

o= g @] = pE(e @t e kP 20 @a(p) + a@a(-pe F )
+ B2 (a* @a* (=P F P + 20* @al@) + a@a(-pe F )
+ gt (a* (P a* (e P+ 2% (7)a(P) + alPa(—He B 7).

Thus, combining similar terms we arrive at
_ dp 2 | 22 2 4 * s, o 2Lt i —2ipy
H = ThE —E°+p°c+m c ) {a®(P)a® (—p)eh 7" + a(p)a(—ple” h +
2(E2 + 527+ m204)a*(ﬁ‘)a(ff)] .

The first line in the expression above vanishes due to the fact that E'(ﬁ) = 5262 +m3ct , the second line gives

— + [5E® * e,

Thus, written in terms of the amplitudes a(p) and a*(p) the Hamiltonian is
1(.-
H= ﬁfdpE(ﬁ) a*(p)a(p) . (3.15)

Here E(p) = v/p?c? + m2c*. In general, E(p) is called the dispersion relation — an expression which
renders how the energy of a single particle state depends on its momentum. The Hamiltonian is
real and manifestly positive. It might seem strange that the classical Hamiltonian contains the
inverse Planck constant in front, but the latter is there for dimensional reasons — we set up to write
the Hamiltonian as an integral over the three-momentum, and the Planck constant is needed to
compensate for the engineering dimensions of ¢ and a*, which are [a] = [a*] = hY?p~3/2. The
Hamiltonian has the dimension of energy and when being written in terms of the corresponding
frequency w(p) it takes a more familiar form

H= Jdﬁw(ﬁ)a*(ﬁ)a(ﬁ). (3.16)
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For completeness we give here the expression for ¢(z) in terms of frequencies
dp 1
x) = ¢
¢( ) J(Qﬂ.h)S/Q /Zw(p)
Further, we note that it naturally splits into a sum of two parts ¢ = ¢ + ¢~. Here ¢T, being

a positive-frequency solution, depends on the amplitude a*(p). Analogously, a negative-frequency
solution ¢~ involves a(p):

I:a*(@ ei(wt—lgi') + a(ﬁ) e—i(wt—Ef):I ) (317)

i(wt—kE) i(wt—kE)

o dp e . I dp e
ot (z) = CI @rh) 2 J2u(p) a*(p) , ¢ (2) = CJ (2rh) a(p) .

As we will see in the next section, in quantum theory a* (p) will become an operator which creates
a particle with momentum 7, while a(p) destroys it. This makes our identification of positive
frequency field with ‘creation’ and negative frequency field with ‘annihilation’ rather intuitive. We
point, however, that in the literature the terminology ‘positive and negative frequency’ is often
assigned in an opposite way: positive <> annihilates and negative < creates. Such a terminology
originates from intrpreting the exponential factor e¥™* = e¥#* from the point of view of the one-
particle Schrodinger equation. Indeed, e~™! has a positive frequency (energy), while e™®! has a
negative frequency (energy), because

We will not pursue this interpretation hereEI

So far we are in the framework of the classical theory and it is now the time to ask what is the
physical meaning of the amplitudes a*(p) and a(p). Looking for the expression for ¢(x), we see that
it is natural to define the time-dependent amplitudes as

a*(71) = ¢ P'a*(P),  a(pit) = 7P a(p)
These formulae represent the solutions of the Hamiltonian equations of motion

da(t)
dt

= {H,a(t)}, = {H,a* (1)},

where the Poisson brackets are

{a(p),a* ()} = id(p—7p),
{a*(p),a* (@)} = 0, (3.18)
{a(p),a(p)} = 0

It is easy to check that these Poisson brackets imply the Poisson brackets for ¢(Z) and 7(Z).
Thus, we are led to conclude that the free massive scalar field is nothing but an infinite set of
harmonic oscillators. Indeed, the Hamiltonian is essentially a sum of frequencies of an infinite
number of harmonic oscillators, each labeled by the three-dimensional momentum vector p. Often
representation and of canonical fields in terms of the complex amplitudes a and a* is
called holomorphic.

Since the action for the Klein-Gordon field is invariant under Poincaré group, we can use the
Noether theorem to construct the corresponding Noether currents and the conserved charges, among

30ur definition of positive and negative frequency solutions agrees with that of Bogoluibov & Shirkov but opposite
to Peskin & Schroeder.
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them, in addition to the Hamiltonian, the momentum P; and rotations .J;; and Lorentz boosts Jo;.
Explicitly, the time components of the stress-tensor are

0=, T)=cndip=cP,

where 7 and &; are the Hamiltonian and momentum density, respectively. The time component
of the generator of Lorentz transformations is

0 0 0
S =,y — 2T,
Thus, we find

e Shifts .
P = —P, = —fdf’ﬂ'@ﬁf) = ﬁfdﬁa*(ﬁ)pia(ﬁ)§

e Rotations
JU = J;; = fdfﬁ(ziaj¢ —x;0;p) = ifdﬁa*(ﬁ)(pjai — pid;)a(p);
e Lorentz boosts

. . . . 1 . .
Joi— _ g0 _ fdf (lx%f — xoyl) -z dex’jf — Pl =
C C

o [ ap@ (00 — 20" Patp) — etp

Normalization of generators is chosen in such a way that their engineering dimensions are of momen-
tum for P* and of angular momentum (of the action) for J*”. Note that Lorentz boosts J% have an
explicit time dependence. This is a manifestation of the fact that in the Hamiltonian formulation
the boost symmetries are ‘broken’, while the Hamiltonian is one of the generators of the Poincaré
algebra. The time derivative J% is

aJOi
ot

and it vanishes due to the Poincaré algebra relation {H, J%} = ¢ P?, as the reader can verify by
direct calculation.

dJOi
dt

={H,J"} + ={H,J%} —cP'

3.2 Canonical quantization and Fock space

Upon quantization the classical fields ¢(z) and w(z) become hermitian operator-valued functionsﬂ
on space-time and they constitute observables in quantum field theory. It is important to realize
that ¢(z) and ¢(2’), which is the same operator ¢ but evaluated at two different space-time points,
define two different observables. Canonical quantization consists in replacing the equal-time Poisson
brackets { , } with the quantum Poisson brackets { , };. Explicitly,

(80 2), 6D b = 1 [0(¢, ), 6(2, )] =0,

[7(t, Z),7(t, )] =0, (3.19)

{W(ta f)’ ¢(tv g)}h

4More precisely, operator-valued distributions.
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which is equivalent to the following commutation relations

[o(t, ), 6(t, )] = 0,
[7(t,Z), 7(t,5)] =0, (3.20)
[6(t, Z), (¢, )] = ih6(F — 7).

Upon quantization the classical amplitudes a*(p) and a(p) are replaced by operators a'(p) and a(p),

which are creation and annihilation operators for the harmonic oscillator labeled by the momentum
p. The commutation relations are

[a(@),a(@)] =0, [a'(@).a'@)] =0, [a(@),d" )] =réF~F). (3.21)
The commutation relations are obviously compatible with the engineering dimensions of the oscilla-
tors being [a] = [af] = B/2p~=3/2.

Commutation relations are the algebraic relations between the abstract operators a(p)
and a'(p). Now we would like to realize these operators through their action on states in a suitable
Hilbert space. To this end, consider a state |0) which we identify with a vacuum state, that is the
state without particles. Acting on this state with a(p) will create a one-particle state

15y = v/2w(p) a' (7)|0)
and so on
0>, |P1), [Pip2), .- |PLD2.. D),
The additional normalization factor 4/2w(p) is chosen here for later Convenienc The space of all
these states is called the Fock space and the representation of the field operators in the Fock space
is usually called the representation of second quantz’zationﬂ For the discussion of the formalism of
second quantization in the non-relativistic quantum mechanics we refer the reader to appendix[3.5.1]
In this space creation operator a'(p) simply adds up a new particle with momentum 7’
A PP P By = ——|F s P - P

2w(p)

The annihilation operator acts in this representation as

AP T 7> = 20) D 6T~ B T B, al)) =0,

In other words, the annihilation operator checks an existence in a state a particle with momentum
p and then removes it. It is easy to verify that the formulae above indeed provide a representation
of the commutation relations (3.21]). Indeed,

R R 1 R R
a(P)a' (@)1 .. Fu) = Ta(p)lﬁ P Pay =

. L WP) O sim o e A =
=hé(p—p)|Pr ... Py + 1 w((pp,))Zﬂp—pi)lﬁpl---pi---pn%
1=1

ol @)a@IPr - ) = IN2(p) 3 6= F)a Pl - i ) =

i=1

w = S . 2, .
=h (p)Zd(p—pi)m‘pl...pi...pn .

50ften in the literature (see e.g. Sterman 1993) the operators a,af are rescaled as a = +/2w(p)a(p), al =
v/ 2w(p) at(P) so that a and al are conjugate to each other and [a] = [al] = &1/2p~3/2. In this case |p) = af|0),
while the commutator changes to [a(p),al(7)] = 2hw(7)8(F — p’). This commutator is relativistic invariant, see the
discussion below.

6Schweber points out (see Schweber 1994, p. 28) that the idea and procedure of second quantization goes back to
Jordan, in a number of papers from 1927 (see references in Schweber 1994, pp. 695f), while the term itself was coined
by Dirac.
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Subtracting these two expressions leaves us with the desired result
[a(7), ' (D)]IBy - - By = RS~ D)1 - Fa) -

An arbitrary state in the Fock space is given by a linear superposition

|x>=2 JH\/den e BFL B (3.22)

where the coefficients x,, are symmetric functions of their arguments. The scalar product in the
Fock space is defined as follows. We assume that (0|0 = 1. From this assumption and commutation

relations (3.21)) one finds

(G- ol Py H V2w(pi) H V2w(Br) Ola(qr) - . algn)a’ (p1) . .. at () |0y =

= Omn ), H 2hw(p;) 6(Ds — dp(iy) - (3.23)

P i=1
Here sum is taken over all permutations P of the n indices 1,...,n. We recall that a permutation
is an operation which correlates a set of n ordered objects, e.g. the set ¢, @, ..., ., with the same

set of objects but taken in a different order. Usually such an operation, which maps ¢1 into ¢a,, ¢
into G, etc., is denoted by
1 2 ...
7~ ( )
a1 Qg ... Qp

so that Pg; = Go, = ¢p(;)- With the formula (3.23) we find a scalar product between two arbitrary
states

”
Ty =, J o (D1 D)X (D15 - -+ D) Hdpl. (3.24)
n= =1

Our choice of normalization of the Fock states was deliberately chosen to render the scalar
product relativistic invariant. It is enough to demonstrate this for the case of one-particle sates. On
the subspace of one-particle states the scalar product (3.23) boils down to

B = 2 ()5 D) = 2055 — ). (3.25)
This scalar product is indeed relativistic invariant, 4.e. it is invariant under Lorentz transformations
't = Allfo ) UWAZA% = Nap

where 7,,,, is Minkowski metric.

To show this, we need to understand how to evaluate

s -7 Ef[ (" —d") f[ ( (" —q“))- (3.26)

Let ¢ be a function from the space of test functions and consider

(&)
oyd

3

Je@ TT (a0 = a)av' = [ @@ jaet

i=1

3

[T 8(")dy" = o(#(0))

i=1

op'
det( p‘)
oyJ

7=0
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where we have performed the change of variables p* — y* = A}, (p" — ¢"). We compute the arising Jacobian as follows. Since

Y =AM — Ty + A0 — )

we have
A 7 0
i o’ i Op _ i
A 2 0 = 8y, - (3.27)
Because of the mass-shell condition p° = y/m2¢2 + p2,
op® _plep!  p; op
oyt~ pOlyx PO fuk
so that eq.(4.23) takes the form
i i Pj\ OP i
AL A 7) -
( J 0 p0 ) ayk ko

which is nothing else but the matrix form of the product of two matrices which equals to the unit matrix. Thus, computing
the determinant, we obtain

i i Dj ﬁpj _
det (A} — Aop—0> det(ay—k) -1
Note that § = 0 implies p(0) = ¢ and thus

3 N
o ] 6(AL" — ey’ = — 2D (appm 2P =D
J i ( " ) )‘ J |det(

- i i 95 i i Pi|
o1 det (Ad — A} %% A - 2i %)

Since ¢(p) is arbitrary, we conclude from the last formula that under Lorentz transformations the the delta-function of
three-momentum transforms as

5(5 —
55— ) = @_quj_ (3.28)
|act (A — 2§ 2% )
Denote A = HAzH and introduce two three-vectors @ and ¥ with components A§ and 7%, respectively. Then det (A; —

Aé%) = det(A + u®v?). This determinant can be computed by using the matrix determinant lemm
det(A + u®vt) =(1+ UtAflu) detA .

Therefore, we get

det (A} — Ag%) -(1- %(A‘l);Ag) detA

where the matrix elements of A are identified with AZ The relation 77‘”'AZ‘A,€3 = n°? implies
0Aj 0,j
AgAY — AN =0,

which gives in its turn

(A~1)iad = LAO(A—I)'iAj _ AY
J T OA0TR Jk T A0
0 0
Thus,
0 o’
i aiPi\ _ (, _ Pid /.0 0 o iydet(4)  p° detA
det (A Aopo) -(1 o Ag)dctAf (89 9° + A%p") oA~ AT

where pol is the Lorentz transformed p® component pol = Ag p° + A?pi. Further, from nOOAéAg + nkk/\};/\f; = nij we infer
(AAt)z = 53 + AgAg and using the matrix determinant lemma once again, we obtain (detA)? = 1 + AJAY. Finally, from
Moo ASAS +nis AL AL = 100, we get AJAJ — ALAL = 1 and, therefore, (detA)? = 1+ ALAL = (AJ)?, which implies detA = +AJ.
In this way we have shown that
’
P’ (0 =) =08 -

As a result (APIAG) = PP

"In this relation, see also the Sherman-Morrison formula, which computes (A+u®ot)~t

24



Hamiltonian and symmetries

In the quantum theory of the free Klein-Gordon field we define the Hamiltonian as the following
operator

1 = [ 4@’ Pa(p).

Here we deliberately put the creation operator on the left from the annihilation one. Such ordering
of creation and annihilation operators, called the normal ordering, makes the energy of any Fock
state well-defined. Application of H to an arbitrary state containing n particles with momenta
D1, ---,Pn, Shows that this state is an eigenstate of H with the eigenvalue being simply the sum of
individual energies of the corresponding particles

H|py .oy = Y, ho(@)|Fr - - ) -
i=1
In general, for a set of fields ¢1(x1), ¢2(x2),. .., ¢r(xk) the normal-ordered product
¢1(T1)pa(w2) - .. Pr(zk) :

is defined as the usual product but with all creation operators being on the left from all annihilation
operators.

Let us again return to the energetic-type expansion of ¢(x)

o) = CJ T . [a*(ﬁ? e FL=T) 4 o () e—%(Et—ﬁf>] .

(2mh)3/2 /2w (p)
The field operators which are positive and negative frequency parts of ¢(x) read

i o

a7 1
i al (§) e #7% (3.29)

2h)3/2 /2w (p)
ap 1

@0 = o] i

o (5,0) = cj(

a(p) e T

We have

. c dq _igw
ot (Z,0)[0) = (%h)s/zf%@e |7

If we take the inner product of this state with the momentum eigenstate |py, we get

(Z,0) dq e~ #PE

A ED gy = b [T b D = e = )
he T @rh)2 ) 2hw(d) L, T nnyr ’

—
2haw(p)é(F—q)

where in the last relation we recall the scalar product between momentum and position eigenstatesﬁ
Thus, we see that we can interpret ¢ (7, 0) as an operator which creates out of the vacuum a particle
at position Z.

3.3 Commutation and Green’s functions

In the theory of interacting fields solutions of inhomogeneous field equations with point-like sources
play a prenominal role. They are known as Green’s functions and they include, in particular, the

8Normalization of the wave function of a free particle is { d®z {(g|Z){p|Z) = 6(F — §), which is standard in quantum
mechanics.
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retarded and advanced Green functions, and also the so-called causal Green’s function, the latter
is also known as the Feynmann propagator. Below we discuss these functions in the context of the
Klein-Gordon field. We start, however, from solutions of the Klein-Gordon equation without sources,
which are related to commutators of quantum fields at different space-time points and, therefore,
are known as commutation functions.

Pauli-Jordan function

Given the commutation relations between creation and annihilation operators, we are now in a
position to compute the commutator of quantum fields at different space and time points. We

defind’]
[6(Z, 1), (T, )] = ihcP(x—2a).

Obviously, Z(x) is a function rather than an operator; it is known as the Pauli-Jordan function. By
construction, the Paui-Jordan a solution of the Klein-Gordon equation with respect to either x or
z'. It has the following explicit expression

2 1 mev/z?
ot = =2 o) -2 o 25D -

Here (z — 2')? = 2(t — t')? — (¥ — &)? is the Lorentz-invariant four-interval, §(z) is the Heaviside
theta function and Ji(x) is the Bessel function of the first kind. Also €(¢) denotes the sign function

+1 t>0
e(t) = 0 t=0
-1 t<0

Thus, for ¢t = ¢’ the equal-time commutator [¢(Z,t), ¢(Z,t)] vanishes.

Importantly, from the explicit form of the Pauli-Jordan functiorm we see that the commutator
of two local fields vanishes if their space-time points are separated by the space-like interval. Local
quantum operators taken at points that are not causally connected do commute. This is one of the
important implementations of causality in quantum field theory.

Expanding the Pauli-Jordan function around the light-cone, we find

D) = —@[5@2) - %(%)29(:52) v (3.31)
where terms which vanish when 22 — 0 have been omitted. Thus, the Pauli-Jordan function has a
delta-function singularity as well as a finite-discontinuity (jump) on the light-cone.

Below we give a detailed derivation of the Pauli-Jordan function.

hc? dpdp’

i By i (pE—ii & . _ i By i (57— &
[¢(i’,t),¢(f/,tl)] _ W m[[ar(ﬁ),a(ﬁl)]eh(lﬂ B't")—§ (PE—ip )+[a(p),aT(ﬁl)]€ £ (Et—E"t")+ 4 (PT—ip )]
2 2 S ) ) .
_ _(;‘ S [ e e e L] (3.32)
™
—2hc (AP igz_z! E(t—t)
= ihe—2C | SE i p@E=E) .
i C(Qﬂ_h)3 f 5 e sin 5
The Pauli-Jordan function is then
2h dp i gz_z E(t—t
D(x—2') = —(2 ;)3 j%eﬁp(m*ﬂ) sin ( - ) . (3.33)
T

9We use the notation 2 for solutions of the homogenious Klein-Gordon equation and A for Green’s functions.
107t is of the opposite sign to the notation of Bogolubov and Shirkov but agrees with Schweber.
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Now we perform integration passing to the spherical coordinates

D(z) =

2he J”” p3dp . Et [27

™ ip 0
- — d in 0dg e B P77
(2mh)® o], smoase

sin —
. 2F nJo

Here r = V#2, p = 4/p2. Integrating over angles gives

2k [* E
D) = — he j pdp . pr . E(p)t

@rher e Elp) o n h SN TR

which can be represented in the form

1 1¢ [(* de er . +e2 +m?2ctt
D(xr) = — —— ———————cos —sin ———
472 r or —0 52 “+ m2c4 ch h

where we changed the variable e = ¢p and used the fact that the integrand is an even function of p. This motivates to
introduce the function

1 (> de er . veZ+ m2ctt
F(r,t)y = — ——————cos —sin —— .
T Jeop Ve2 + m2ct ch h

Now to evaluate this integral we make a change of variables e = mc? sinh @, where —x < ¢ < 0. Then ve2 + m2c% =
mc? cosh ¢ > 0, so that

1 > mer ) mc?t
F(r,t)y = b dy cos ( sinh Lp) sin ( cosh cp) =
.
1 (* mer me?t mer ne?t
— dga[sin ( sinh ¢ + cosh ga) — sin ( sinh ¢ — ! cosh go)] .
27 J_ h h

Then we need to consider three different cases depending on the inequalities between ct and r. For definiteness, we choose
ct > r > 0 and then make the change of variables

ct T

—————— = cosh s ———— = sinh N
(ct)? —r2 vo A/ (ct)2 —r2 wo
so that
F(r,t) = L dgo[sin (qu(ct)2 — r2cosh(p + cpo)) + sin (E (ct)? — r2 cosh{p — gpg))] =
’ 27 J_ o h h

= %J;LD dep sin (% (ct)?2 —r2 Cosh(go)) = JO(%\/(ct)Q — r2> ,

where Jo(z) is the Bessel function. Doing the other cases one finds the complete result

+Jo(% (ct)? — r2) for ct > r
F(r,t) = 0 for —r<ct<r
7J0(% (ct)? — 'r2) for ct < —r

This result can be written as a single formula

F(r,t) = e())0((ct)” - TQ)JO(% (ct)2 —r2).

Thus,

D(x) = ﬂi [9((01&)2 - 7“2)]0(%\/(015)27—7"2)} ,

A7r or

which leads to the formula (3.30)).

Retarded Green’s function

Above we have introduced the important Pauli-Jordan function which equals to the commutator of
two field operators at two arbitrary space-time points. Now define the following functiorE

Aot (x—2') = 0(t —t)[p(Z,1), p(Z',t')] = ihcO(t —t')D(x — 2'). (3.34)

"' The function Z(x) is real, while Aye(z) is purely imaginary.
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One comment is in order. We hope that the reader already acquinted enough experience with
accounting in the formulae the fundamental constants ¢ and %. To proceed, it is advantageous to
adopt the natural system of units ¢ = 1 = k. Since [h] = p-¥, and [p] = m ¢, in this system the main
remaining parameter is the mass m, while the length £ ~ 1/m. The actual constants ¢ and & can
aways be restored on dimensional grounds. In any equation the physical (engineering) dimension
of the left hand side must be equal to that of the right hand side, otherwise an equation makes no
sence.

With the natural system of units at hand, we now demonstrate that At (x) is nothing else but
the retarded Green’s function for the Klein-Gordon equation. This can be done at least in two
different ways. The simplest one is to act on A with the Klein-Gordon operator and use the fact
that ¢(Z,t) solves the Klein-Gordon equation. IndeedE

(3 = a2+ m?) (60t = 1)@, 1), 6@ 1)]) =
= a:(3(t —t)[9(F,1), p(&, )] +0(t — ) [7(&, 1), (&, 1)])

+(t — ) [(=0; +m*)$(Z,1), o, 1)]
= 6(t —1)[n(Z,1), (&, ¢)] + 6(t — )[(0F = &} +m*)p(Z, 1), (T, t')] =

=0

=—id(t—t)o@F—7)=—i6PD(x—2).

Further, in accord with the definition, A,q(x) vanishes for ¢ < ', which is the characteristic property
of the retarded Green’s function.

The second way to show that A,et(z) is the Green’s function is to analyze an integral represen-
tation

0) (k[ 00 a00] yike
Avet (.CE) = - (27‘1’)3 f ﬁ [6 —¢€ :|€+ s

which follows from the formula 1) upon taking into account that, in the natural units, p' = k and

E = k°, where k° = V/k2 + m? . Further, we consider the following integral (k° is an integration
variable)

Jfﬁ e—ikotdko
—oo (KO + i€)? — k2 —m?

Jrf dko —ikOt —ikOt
—o0 VK2 +m? [ k0 — VE2+m2 +ie kO + K2 +m? + e

To compute this integral, we note that for ¢ > 0 the integration contour can be closed in the lower
half £%-plane, in which case the contour encloses two poles at

k0=\/EQ+m2—ie and k0=—\/E2+m2—ie.

Applying Cauchy’s theorem, we therefore find

€ —ik%t 37.0 . = =
J € dk _ 2mi [ei\/k2+m2 t_ gmiNk24m? t]

—o (KO +i€)2 — k2 —m? - 2V k2 + m?

12With ¢ and h restored the equation below will read 8,0"(8(t — t')[$(Z, ), p(F, t)]) = —ihcd*) (z — z').
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Figure 3.1: The integration contour and position of poles of the integrand for the retarded Green
function. Poles lie in the lower k%-half-plane.

For ¢t < 0 the integration contour can be closed in the upper half-plane where there are no poles and,
therefore, the corresponding integral is zero. Thus, we ontain the following integral representation

d*k )
@m)F (k0 + de)? — B2 —m?

—ikx

Arct (1') = J
Now we act on this expression with the Klein-Gordon operator

= —i6®W (z) .

i [(AE G0 —R—m?
" 5 A - ikx
(%5 +m ) ret () 50" ] @MY (R0 4 i) — R —m?

Thus, we conclude again that Ae(x) is the Green’s function for the Klein-Gordon equation and
it is non-zero only in the forward light-cone, i.e. by definition it is the retarded Green’s function.
Analogously, one can introduce the advanced Green’s function and study its properties.

Feynman propagator

In quantum field theory a special role is played by the causal Green’s function A(z — z’), which
we also called the Feynman propagator. This function describes a causal relationship between the
processes of creation and annihilation of particles in different space-time points x and z’.

The following interpretation of the field amplitudes is natural. The process of creating first a
particle at a point z’ with its subsequent annihilation at x is described by the amplitude

Olp(x)g(a")|0) = 0l¢~ (x)¢™ (2')]0) = (Ol[¢~ (2)¢™ (2")]|0) = ihe P (x — a') (3.35)

where it is then natural to consider ¢ > #. Analogously, the same amplitude can be looked as
corresponding to first destroying a particle at x and creating a new one at z’, in which case it is
natural to have t < t'. Here 2~ (z — ') is a negative frequency part of the Pauli-Jordan function.
In general, the positive and negative frequency parts of the Pauli-Jordan function are defined as

[0F(Z,1), ¢ (&, )] = ihe DT (x—2).

Then the Feynman propagator is defined as follows

0t — t')<0lp(x) () [0y + O — )0l (2") p()]0) =
= 0(t—t)ihcD (x —2')+ 0t —t)ihc 2~ (2’ — ). (3.36)

A (z—a)

In fact, A(xz — x') can be concisely written by using the notion of the time-ordered product

A(x—a') =<0 | T((x)d(a")) | 0). (3.37)
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Figure 3.2: The integration contour and position of poles of the integrand for the Feynman propa-
gator. The left figure is for ¢ > 0 and the right one for ¢ < 0.

Time ordering means putting operators in the order of increasing time argument from the right to
the left. Colloquially speaking, the younger operator is righter it standsE

For the auxiliary function 2~ (z) it is straightforward to obtain (in the natural units)

- i dk —ikOt+ikz
9 ((E) = —(271_)3 J‘T]{;Oe + .

Taking into account this integral representation for 2~ (z), we arrive at
1 2 kg [0@) _ikor | O(=t) ixoy 0 _ /1
£ = (2w)3Jdkezx[@e T ] K= VR 4 m2

Consider now the following integral (here k° is an integration variable!)

J‘ dkOefikot B J dkoefilcot (3 38)
k2 —m? +ie ) (k0)2 — (K2 + m2) + ie '

As the function of k° the integrand has poles in the complex plane at

kozi\/E2+m2—ie:i\/l_ﬂ'2+m2$i€~

Expanding the integrant into simple fractions, we get

dk0e—ikt dkO L e—ik%t
sz—m2+z‘e _JQ E2+m2[14;0—\/k2+m2+i§_1€0+\/k2+m2—ig] B
>0 £<0
Comi [ —Q()em VM g pyeiV ’5"‘+m2t] ,
2V k2 + m?2
where in the last step Cauchy’s residue theorem was appliedE Thus, we find for A the following
quite compact integral representation in the form of the four-fold integral

d4k i —ikx
Az) = f e Pl (3.39)

Obviously, A(z) is also a Green’s function for the Klein-Gordon equation.

It is interesting to know how A(z) behaves as a function of z. Below we provide an answer to
this question.

13 This rule is easy to remember by envoking a slogan “The youth is always right!”.
4Pay attention to the orientation of the integration path!
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First, we note that A(z) is symmetric under the change t — —t, so we can assume without loss of generality that ¢ > 0. In
this case the expression for A boils down to

EZ —in/k24+m?2t
x i +m , t>0.

1 f dk iR
—— | ———¢"""e
3 =
(27) 24/ k2 + m?

Switching to the spherical coordinates and integrating over angles, precisely in the same way as it was done for the Pauli-
Jordan function, we obtain

A (z) =

A (z) = 1 * kdk sin(kr) i fiZymZe _ L ¢ (* dk cos(kr) i /k2+m2t'

T o@em2r o VEZ +m? 8721 or J_oy EZ - m?2

As above, here the notations k = V k2 and r = V2 are used. The last formula can be rewritten as

1 0

= dk
Az)= —— & __ar
() 16m2r or J,m VEZ ¥ m?

(ei(kr—\/kQ +m2t) 4 e—i(kr+\/k2 +m?2 t))

Finally, introducing k = m sinh ¢, we arrive at

1 o (» ) . _ . .
Az) = — o de (ezm,(r sinh ¢ —t cosh ¢) te im(rsinh @+t cosh w)) )
1672r &r J_

Now we have to distinguish two cases.

2

1) r > t, that is the space-time interval is space-like 2 < 0. In this case we introduce the variable ¢¢ as

T t A
Wt = cosh ¢q , T = sinh g .
A ($) — _ 1 i fm de (ei7n\/7‘27t2 sinh(p—¢q) + e*im r2—t2 sinh(go+<,90)) —
1672r or J_,
1 ¢ (> im/72 —2 sinh 1 @ 2
— o ﬁj dpe'™VT sinhve oy 5[0(71 YKo(m 7272)] .
4 —»
Thus, we get
A(z) = L (mn/ —x2) z? <0
i a7 1 , )

where we keep for the moment a regular term only. There is also a singular term arising from differentiating 0(7m2)
over . We consider it later.

2) r < t, that is the space-time interval is time-like 22 > 0. In this case we introduce the variable @o as follows

T ) t
N = sinh ¢ , = cosh pg
—r T r

and get

A (m) — 1 ¢ » de (6—7L771\/t2—r2 cosh(p—pq) + e—im,\/ t2—p2 cosh(¢+np0))

— e
1672r or J_o

1o T ;o
- < J dpe™"™ t?—rZcoshe _ _* — [0(:1:2)H[52)(m\/m)] .
8m2r or J_ 8mwr or

Performing differentiation, we find the following regular term

m 2
A(z) = ﬁHi )(WL\/:EQ)7 2 >0.

There is also a singular term, but we treat it together with the one coming from the first case.

3) Now we treat singular terms. We can combine them as follows

i 20(z?) (o 1 06(—2?)
Aging (z) = @?Hé ) (mV/2?) — 471'27"7[(0(7”\/_12) =
_ 2y 1 i@, 1 N 2
= o )51_15:0[— —HP (ms) - ﬁKo(ms)] = - 6%,
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Combining these results and restoring the physical units, we obtain the following space-time expres-
sion for the Feynman propagator

. . (2) f me 2 mc 2
N B A oy @ (meN2H (V) o1 rmey2 Ko (Y —a?)
A(z) = ke 47T6(J;)+0(x)87r<h) Ev +0( a:)47r2<h) |

In fact, the term corresponding to 22 > 0 _can be obtained from the term with 22 < 0 by analytic
continuation. If we take z2 > 0 and defind'® v/—22 = iv/22, then

K (ev/=a?) _ K (eiNa?) _im HYY (5Na?)

ey —a? a Beinx? 2 me/a?
This allows one to write the following compact expression
Alz) = he (mC)2K1(%\/—x2 + ie)
472\ h men/—x? + i€

valid for all z. As is clear from the definition (3.37)) or from the expression above, the physical
dimension of the Feynman propagator is &/¢.

3.4 Wick’s theorem — operatorial approach

Here we demonstrate how to compute the correlation functions

O[T (p(z1)o(22) - .. p(n)) | 0 (3.40)

by using the field commutation relations. We start from <0 | T(¢(z1)¢(z2) | 0). We know how to
compute this quantity. We have

¢(z) = ¢™(2) + ¢~ (2),

where ¢T(2) and ¢~ (x) are positive and negative frequency parts of the Klein-Gordon field.

dk = ikOt—ikE - dk ™ —ikOtyikx
¢+(£L') — (271—1)3/2 m I:aT(k)e k k ]’ ¢) (213) = 7(271_1)3/2 77]@0 [a(k)e kYt+ik :| .

Here k° = \/k2 + m2 > 0. We recall that the notion of positive and negative frequency parts has
been introduced in section 3.1 As a general rule, a positive-frequency solution has as its coefficient
the creation operator that creates a particle, while a negative-frequency solution has as its coefficient
the annihilation operator that destroyes a particle. Thus,

¢~ (2)|0y =0,  (0l¢"(2) = 0.
Consider, for instance, ° > y°. Then
T(¢(2)p(y)) = o7 (2)¢" () + o (@) (y) + ¢ (2)o" (y) + ¢ (2)¢ (y) =
= oM (@) (y) + o (2)¢ (¥) + ¢ (Yo (2) + ¢ (2)d (y) +[o (2),¢" ()]

The right hand side of the last expression is brought to the normal order — all annihilation operators
are on the right of all creation operators. We can rewrite the last expression as

T(o(x)o(y)) 19T (2)0T (y) + 0T ()07 (y) + ¢ ()97 (2) + 07 (2)™ (y) : +[7(2), 0" (y)] =
o(2)d(y) : +[o (2), 67 ()]

15This corresponds picking up the branch corresponding to v/—z2 + ie for z2 > 0.
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Now, consider y° > z°. We get

T(p(x)o(y) = ¢T ()T (x) + T (y)o~ (v)
o*(y)oT (z) + oF (y)o~ ()
= 1 o(x)oy) : +[o (), 9" (2)].

Let us define the contraction of two fields as follows
| [(b_ (3?), ¢+ (y)]v mO > yo ’
d(x)p(y) =
(67 (y), 0" (x)], 3° >aP.

One can easily recognize that the contraction is nothing else but the Feynman propagator

“W)eT (@) + o7 (y)¢ () =

+¢
+ T (2)0™(y) + 0~ ()0~ (z) + [0 (y), 07 ()] =

P(x)o(y) = Az —y). (3.41)
Thus, the relation between time-ordering and normal-ordering is given by

T(p(x)¢(y)) = o(x)e(y) + ¢(x)d(y) « -

With the new notation the result above is easy to generalize to an arbitrary number of fields

T(Pp(x1)p(x2) ... p(zn)) =: d(x1)P(x2) ... Pp(xy,) + all possible contractions : .

This identity is known as Wick’s theorem. For instance, for the case of four fields Wick’s theorem
gives

m 1 1
T(p1p2p3¢3) = : 1020304 + 1020304 + P1P20304 + P1P2P3ds +

M 1 [

+  P1P20304 + P1020304 + 1020304 +
— — | [+ ]

+ 01020304 + GP1020304 + P1P20304 ¢ .

Any contraction can be replaced by the corresponding Feynman propagator which can be taken out
of the sign of the normal product, for instance,

[ —
D1P2P3ds = A(T2 —T4) : P13 : .

In the vacuum expectation value (3.40), any term in which there remain uncontructed operators
gives zero. Only fully contracted terms survive, which for our example means that

<O | T(¢1¢2¢’3¢3) | 0> = A($1 - $2)A($3 - $4) + A(xl - x3)A(x2 - $4) + A(xl — x4)A(x2 — x3) .

Thus, we found the same formula as by using the path integral approach.

The simplest way to prove Wick’s theorem is to use the mathematical induction. Assume that
the theorem is true for m — 1 fields and try to prove it for m fields. Without loss of generality, we
can restrict ourselves to the case 29 > 29 > 29%... > 29, Then we have

T(pr2 ... Om) = G102 .. O = 01T (P2 ... ) -

Now we apply Wick’s theorem to m — 1 fields

not involving ¢ (3.42)

T(¢1¢2¢m) = ((bir +¢I) {: ¢2---¢m +

all possible contractions }
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Here ¢ can be moved in inside the normal product as it depends on the creation operator only. As
to ¢ we have

¢L b2 O = o O] F [P t] =
L P2 Pt D1, D3 P3Pt P2 [P, O8] =

M 1
= :¢1_¢2"'¢m+¢1¢2¢3”~¢m+¢1¢2¢3...¢m+...Z

Similarly, a term in (3.42)) involving one contraction will produce all possible terms involving a single
contraction of ¢ with one of the other fields. Doing this with all the terms we eventually get all
possible contractions of all the fields, including ¢;. This completes the induction.

3.5 Appendices

3.5.1 Fock space formalism in quantum mechanics

The importance of the formalism of second quantization derives from the fact that it permits per-
forming calculations which automatically take into account the combinatorial aspects arising from
the particle statistics (Bose-Einstein or Fermi-Dirac). In this appendix we recall the Fock space
formalism in the non-relativistic quantum mechanics.

Suppose we have a quantum-mechanical system of n identical bosonic particles described by the
Schrodinger operator

h2 " —‘2 - -

H = —%Zvi +24V(xi,xj), (3.43)
=1 1<g

where we assumed for definiteness that particles interact by means of a pairwise potential V (Z;, Z;).

The system is described by the wave function ¢ (Z1, ..., Z,) whose time development is governed by
the Schrédinger equation

B & = I . R 0 . ~
[— %;VZ + Z V(l’i,l‘j)]l/](x1,...7xmt) = Z?‘L&@[J(xl,...7xmt). (3.44)

i<j

This gives a particular realization of our quantum-mechanical system, as we have chosen to realize
it in a particular Hilbert space being the space of square-integrable functions totally symmetric in
n coordinate variables Z;. Another realization would be, for instance, to take a multi-particle wave
function in the momentum representation. Yet, we introduce here a novel Hilbert space, called the
Fock space, and provide the corresponding realization of our system in this space.

Introduce abstract operators ®(#) and ®(#) which satisfy the commutation relations
(3.45)

These algebraic relations are the same as those of creation and annihilation operators. We therefore
choose the vacuum state |0) such that it is annihilated by ®(Z): ®(Z)|0) = 0. States in this space,
known as the Fock space, are obtained by applying to the vacuum any number of creation operators
®t. For instance, a state which contains n particles is given by a superposition

On = ﬁ f [A2] X (T .. ) BT (F0) BT (F2) . BT(£,)[0).
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Here x,,(Z1,...&,,t) is the coefficient function, [dz] = []!_, dZ; and we assume that the time-
dependence of |x), enters through this function. Since all ®7(&;) entering the definition of the state
commute with each other, the function x(#1,...Z,) is automatically symmetric under interchange
of coordinates. The scalar product in this Hilbert space is defined as follows. First we define the
conjugate vacuum (0| = |0)" which satisfies the relations

O@T(@) =0, <00y=1.

Then for any two vectors corresponding to particle numbers n and m we have

wllhOn = \/ﬁf[dy][dm]c:';(ya,...,y*m>xn<fl,...,fn>x

X (0|®(Fm) ... ®(71)®T(Z1) ... ®T(£,)]0) = Sn J[dz] CE@r,y .. En)xn (T, ).

In particular, for the square of the norm of a state with an arbitrary number of particles we have

o= f 2] (@1, . T2
n=0

Consider the following operator acting in the Fock space

2
H= —2% dz o' (7)V20(T) + % f dzdy 1 ()T () V (&, 7)®(2) D (7)) . (3.46)

Note that the commutation relations (3.45]) imply that the physical dimension [®] of the operator ®
is [®] = ¢7%/2, where { is a unit of length. The operator H is called the second quantized Hamiltonian.
Integrating by parts in the first term we can also write it in the form

2
H= ;— 4z 0,97 ()00 (%) + % f dzdy ¥ (2)eN(§)V (Z, ) ()P (7)) - (3.47)
m

Now we will show that the equation

HIx())n = i0x(t))n (3.48)
is equivalent to upon identifying x,(Z1,...,Z,) with ¥ (&1, ..., %,). We apply
H|xX), = L J[dx] Xn (T, - T, t) HOT(3) 0T (2) ... @7(F,)]0).
\/n!
Further computation of how the second quantized Hamiltonian H acts on the state
of(#)0!(22) ... ©(Z,)[0)
will be split in two parts. First, we compute the action of the kinetic part of on the n-particle

state and, second, we compute the action of the potential part. The whole computation is a bit
tedious but it is worth doing it in detail. We have
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ﬁ 2m

- 7m [d:c]dfg (= Yyl 2 ) ' @00 P[00, 0 E]. @ () 0) =
- \/% [da1d 3, (- %)xn(:&, T, ) Q1PN (@1) .. VIO(F = 7). 1 (@n)10) =

= 7 Jfastaz x(- @, Ea ) O @ 7). T 0 7). @ ED) =

_ % [de]dF il (- %ﬁilxn(fl, Fn,1)) 1@ (@)@~ ) .. @ (@)]0) =

_ ﬁﬁd ];nl(_ TG @ T 1)) B ()R () BT (E)]0)

Here we have integrated 6%@ by parts with the subsequent integration over x and also used the
fact that the operators ®f(Z;) commute between themselves, which allowed us to bring them to the
original order. Then, for the potential part we get

i! f[dm]dfdgjxn(fl, B3 )N @)V (E D@ (F) T (7)) ... T (@,)|0) =

N | =
S

11 J o v . - Tronat/nt, = -
5 7= |[dz]dZdy Xn(Z1, ... Tn, 1) (Z)D'(H))V(Z,9) ¥

x @ (@)...[2(5), @' (@)] ... [0@), @' (@)]... ®"(#.)|0) =

Thus, we have shown that

1 R’ A a2 = oo R -
HpOn = — J'[dm] (— o Z Vi, + Z V(xi,xj))xn(l'17...$n,t) X
i=1

v
x T (7))@ (T)...... 1 (Z,)]0).
Hence, if x,(Z1,...%,,t) coincides with the wave function (&1, ..., %,,t) evolving according to

(3.44)), we find that
0
H|X>n = Zh§|x>n.

In this way we have shown that the standard wave function description of a quantum mechanical
model governed by the Schrodinger equation (3.44]) is equivalent to evolution of the Fock space
vector |x)n under the second quantized Hamiltonian H.

Introduce the so-called number operator

N = f dz o7 (7)®(7) (3.49)
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which is indeed a dimensionless quantity. The characteristic feature of the Hamiltonian H is that it
commutes with the number operator

[H,N]=0. (3.50)

This means that the quantum-mechanical Hamiltonian preserves a number of particles and this is a
reason why we are able to restrict our consideration to the n-particle sector of the Fock space.

Further, we can consider the Heisenberg picture where the operators are assumed to be time-
dependent with the time evolution described by the Heisenberg equations of motion

0D i

5 = el

0PT i

= = ﬁ[H,qﬂ].

Explicitly, they are

_0D(F) R =y T N Bt & x
i = =5 VPR(@) + | AV (Z,9) () 2(7) (),
L 00T (z n? - L A | avviz i ot (i (i
D~ L@ - '@ [ v o e,

Now we would like to show that the second quantized Hamiltonian can be viewed as a coming
from quantization of an underlying classical field theory. We can rescale ® — /A ®. The rescaled
operators have the commutation relation

[©(Z1), ®T(Z2)] = ho(T1 — 7o) (3.51)
and their dimension is [®] = 4'/2¢=3/2. In terms of rescaled operators the Hamiltonian reads
h 1
H= o de 0;07(2)0;®(Z) + 57z | 47y o (@)t ()V (2, 7)P(Z)D(7) . (3.52)

The advantage of this rescaling is that we can think of (3.51)) as been result of quantization of the
Poisson bracket for the complex scalar field ®(x)

{®(2), 2*(9)} = i6(F — 7). (3.53)

The Hamiltonian and the Poisson bracket above define a classical field theory with the action
S[®, d*] = fdfdt (— z’@*atcb) - J’dtH, (3.54)

where the Hamiltonian is

1
2h2
Note that this action is of the first order in time derivative (this reflects its non-relativistic nature)
and it has the proper physical dimension of the Planck constant [S] = A. One can check that

the classical equations of motion derived from the action S[®, ®*] coincide with the Hamiltonian
equations of motion

H= % deaiq)*(f)aiq)(f) + dedg O (2)D* () V (Z, 7)®(Z)®(¥) - (3.55)

0P 0d*

L T {H’ (I)} ’

ot ot
One should not be confused by appearance of % in the classical action, the Planck constant is there
for dimensional reasons, i.e. to provide the correct engineering dimension for the Hamiltonian and

the action.

= (H, 3*}.

The Hamiltonian of the type (3.52)) arises in the non-relativistic limit of the corresponding Hamil-
tonian for a complex Klein-Gordon field.
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3.5.2 Relevan formulae involving Bessel functions

The Mehler-Sonine representation

e—%i-rru e )
H]El) (Z) _ . dt ezzcoshtfut ,
v —
eiimj o’e] )
Hl(/2)(2) = —— dte % cosh t—uvt )
i J_y,

Analytic continuation
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+% o 2]
,[ dt et=sinht — f dt cos(zsinht).
0

To  be
tended
(3.56)
(3.57)
(3.58)

ex-



Chapter 4

Dirac field

I remember that when someone had started to
teach me about creation and annihilation
operators, that this operator creates an electron. I
said ‘How do you create an electron? It disagrees
with the conservation of charge’ .

Richard Feynman
Nobel Prize Lecture

Until now, everyone thought that the Dirac
equation referred directly to physical particles.
Now, in field theory, we recognize that the
equations refer to a sublevel. Experimentally we
are concerned with particles, yet the old equations
describe fields.... When you begin with field
equations, you operate on a level where the
particles are not there from the start. It is when
you solve the field equations that you see the
emergence of particles.

Julian Schwinger

4.1 Introducing the Dirac equation

In 1928 Dirac discovered the relativistic equation which now bears his name trying to overcome
the difficulties of negative probability densities of the Klein-Gordon equation. This equation has a
special importance because it describes particles with spin % The reasoning which led Dirac to his
equation was as follows: If we wish to prevent the occurrence of negative probability densities, we
must avoid time derivatives in the expression for p. The wave equation must therefore not contain
time derivatives higher than the first order. Relativistic covariance, furthermore, requires that that
there be essentially complete symmetry in the treatment of the spatial and time components. Thus
the Dirac wave function must satisfy the first-order linear differential equation in all four coordinates.
The linearity is required by the superposition principle of quantum mechanics. Finally, we also want
that the wave function obeys the Klein-Gordon equation

1 02 02 m2c?
(zaz =5+ )p@) =0,
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because in this case it describes a free relativistic particle with the dispersion relation

E? = p*c® + m2ct.

Thus, the equation we are looking for could have the form

?f-%( jler %Jragjf)wmw AP, (4.1)
i.e. look similar to the standard Schrodinder equation containing the first time derivative of the
wave function. What is quite striking is that the coefficients «; entering this equation cannot be just
numbers, as the equation would not be then even invariant under usual three-dimensional rotations.
Also the wave function 1 cannot be just a scalar, because the probability density p = ¥*y must be
a time component of the four vector.

This arguing led Dirac to consider equation (4.1) as a matrix equation. In analogy with a non-
relativistic quantum mechanics of electron, the wave function is considered as a column with n
components

(a1
Pn
while constant coefficients a; and 8 are understood as n x n matrices. To proceed, we rewrite the

equation (4.1]) in the form

7 0 2\,
(zha +zhcala—mi — Bmc )w =0

and act on this equation with the operator

oY 0
Zhﬁ —ihcoy; — 2 + Bmc” .

As a result, we get

0% a0 + oy 0% . 0?
2 2 20 T Qj _ 30 4
—h ¥ + h*c 5 Gwi01,; iime’ (o + Bay)

Goiar ~ M) =0,

We further multiply this equality with —1/(c2h?) getting thereby

Qw
x,»(?t

l@ - Rk : 4% a2w .m ( 15 + 6047,)

c? 0t? 2 (%Uié‘x h B V=

Thus, we see that ¥ would satisfy the Klein-Gordon equation, provided the following relations are
satisfied

;o + oy = 25@' s aiﬁ + ﬁai =0, 52 =1.

In addition to these conditions on the matrices «; and 8 we require that they are hermitian, in
which case the Dirac Hamiltonian J# in equation will be a hermitian operator. Further, from
the commutation relations we see that a? = 3% = 1, so eigenvalues of all the matrices are just +1
or —1. From a; = —fa;8 we conclude that Tr«; = 0. Analogously,

Tr3 = Tr(a?f) = Tr (a;foy) = —Tr 3,
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so that Tr 8 = 0. This implies that the number of eigenvalues equal to +1 must coincide with the
number of eigenvalues equal to —1, that is the number n defining the size of the matrices «;, 8 must
be even. In the minimal dimension n = 2, we find the three Pauli matrices

01=<(1)é>, 02=<? _OZ> 03:<(1) _01> (4.2)

which are hermitian, traceless and obey the desired relation {o%, 07} = 2§%. However, for n = 2
the fourth independent matrix is just an identity matri)ﬂ which cannot be identified with 3. It
appears that the minimal dimension where one can construct the four matrices «;, 8 with the desired
properties is equal to four. In one concrete representation, which matrices look as follows

al-:(fi ‘6) ﬁ:(%_oﬂ). (4.3)

4.2 The Dirac equation and Lorentz transformations

To discuss covariant properties of the Dirac equation it is desirable to rewrite the Dirac equation in
the covariant four-component form which takes into account the symmetry between time and space.
To do this, we multiply (4.2]) by 8/c and introduce the notation

70:B7 'YZ:BO%, 7’:15273 (44)

-
o

and taking into account that 20 = ct and =5 = we obtain

or, more elegantly,

(mﬂ@u - %)w ~0. (4.5)

In natural units A = ¢ = 1 this equation reads
(m”au - m)w ~0. (4.6)
The newly introduced matrices v* satisfy the following commutation relationsﬂ
YA+ Ayt = 2¢""1. (4.7)

The free algebra generated by the symbols v* modulo the relation (4.7)) is called the Clifford algebra.
From the definition (4.4)) it is clear that 7° is hermitian and all 4% are anti-hermitian. In our
representation the v-matrices look like

(1 n) (5.

This representation of y-matrices in which 4" is diagonal is called the Dirac representation.

Now we investigate properties of the «-matrices a bit further. From four v* one can construct
16 linearly independent matrices

ITogether with the identity matrix the Pauli matrices form a complete set of linearly independent matrices over
which any hermitian matrix can be decomposed.

2Indeed, one can easily verify, for instance, that vyi~J + 9% = BaiBay + BajBa; = —ajo; — ooy = —26;5, and
Y90 + 709" = BaiB + BBa; = —a; + a; = 0.
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e identity matrix 1 = g**yH+H (no summation in pu);

e four matrices yv*, u=0,...,3;

e six matrices oY = ’LW =iy, p<v; pv=0,...,3;
e one matrix y° = —iy%yty243;

o four matrices 7% = y*~°, u=0,...,3.

It is not difficult to see that all other possible products of y-matrices and their liner combinations are
expressible via the sixteen matrices introduced above by means of lineal relations. To show that these
sixteen matrix are linear independent, we first prove that they all have vanishing traces. Consider
for instance «*. From we see that v,7” = 1, where v is fixed and there is no summation in v.
Then
Try" = Tr(1y"7") lorn= 3 Ton (V9" +979") = 0.

Analogously, one can show that the traces of all other matrices are zero. Exercise for the reader —
show this! In particular Try® = 0. The fact that traces of all sixteen matrices, except the identity
matrix, is zero can be used to show that they are linearly independent. Assume the opposite. Let

F = al + b'y* + ol 4+ dirH + end

where a, b, ¢, d, e are arbitrary complex coefficients. If all matrices are linearly independent then F'
must be equal to zero. Taking trace of F' we find @ = 0. Let us now consider 4” F and take the trace
of this expression, this will give b = 0. Proceeding in this way, one can show that all coefficients in
F are zero, i.e. all the sixteen matrices are linearly independent.

Note that the Clifford algebra relations, as well as all the relations derived from them above, are
invariant with respect to the unitary transformations

W= OyrOt.
Now we are ready to show the covariance of the Dirac equation with respect to the Lorentz
transformations. Assume that under the Lorentz transformation
= Aig? N NEAG = Nag

the object ¥(z) transforms as follows ¢(x) — ¥'(z') = S(A)Y(x), where S(A) is a matrix which
depends of course on the transformation matrix A. We recall that the general form of A is

t

1 _ 1 -
2 2 c
10 -3 -3
A= ,
t
0 R _ 123 1+( 1 2_1>v2v
1—22 ¢ 1—22 v
C2 Cz

where R is a three-dimensional rotation and v is a velocity of the boost.

The relativity principle asserts that in the new Lorentz frame the Dirac equation must look the
same, that is

0 mc
N 7 ' —
(W ox'" h )w () =0.
Note that 2 o 5 5 5
x
—_— — = AV AU - .
Oxh ozt ox'” B oxrv or Boxr ozt
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Substituting ¢’(z’) and multiplying the Dirac equation from the left with S=!(A), we get

0__me

or'*  h

0 _me

Jo@) = (557 WP S WAL — 55 )ela) = 0.

(is—l(AWS(A)
Thus, the covariance of the equation requires
SIS AL =,
which is the same as
STIyrS = Akqv (4.9)

To solve this equation for S, we first attempt an infinitezimal analysis, that is we assume that S is
of the form

S=1+Mw, +...,
where A, = guy +wpy +. .. and wy, = —w,,. Thus, at leading order we find the following eqiuation
7/t)\pA _ )\pk,yu — g/t[p,yA] — gu[p,yA] — %(g“%k _ g“wf’) ) (4.10)

This is solved by

1 1
NV = Zlear]l = Zapar 4.11
g7 R (4.11)

The finite transformation would have the form

3
1 1
S =exp (Z Z W’WVWW) = exp (5 Z 'y“'y”wm,) . (4.12)

p,r=0 p<v

Let ¢ denotes a usual rotation in the plane ij, then one can show that the corresponding 4 x 4
matrix S has the form

SY(¢) = exp(37'47¢) =1 cosg + Ay sing : (4.13)

For the Lorentz boosts we obtain

¢

5'(¢) = exp(37°7'¢) = 1 cosh 5+ 70 sinhg ) (4.14)

It is clear from formula (4.13]) after the rotation by the angle 27 the coordinate system turns into
itself, while S (27) = —1, that is the spinor ¢ will change its overall sign. Thus, the spinor itself
cannot be an observable quantity, but its quadratic combinations are.

Notice that the rotations in ij-plane we can write in the 2 x 2 block-diagonal fornﬂ
i 1cos 2 — iciikghk gin 2 0
SU — 2 2 o . 4].5
(9) ( 0 1 cos % — i€k ok sin % (4.15)
Hence, we we split the spinor into two two-component spinors as

¢=<¢), (4.16)

X

3We use that o?c? = 16" + ie*7*o* and the fact that S% is defined for i # j.
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then under rotations ¢ and v transform completely independently, each of them realize in fact an
irreducible spinor representation of the rotation group SO(3).

For space rotations
S' = exp(3 Z Y1y wi;) = exp(3 Z Yy'wi) = exp(—3 Z Yy wij) =571,
i<j i<j i<j

because 4* are anti-hermitian. Thus, for space rotations S is unitary: STS = 1. However, for boosts

we find
it 0%

ST = exp(37""woi) = exp(—577 woi) = exp(37°7'woi) = S,
as 70 is hermitian. Both formulae can be combined in one
ST — ’}/OS_l’}/O .

This motivates to introduce a Dirac conjugate spinor

P =p*y. (4.17)
Under Lorentz transformations it will transform as follows
P(a) = (5) 7" = ¥ 810 = §p*iq 090810 = 5t (4.18)

This allows us to deduce that the bilinear combination like 11 is a Lorentz scalar.

We have not yet found the transformation of the spinor field with respect to the parity transfor-
mation &#: ¥ - —F,t — t. The Dirac equation will remain invariant under this transformation if
we requite that the parity operation & is realized as a multiplication of a spinor by a matrix P

Y (@) = Piy(z),
where P should obey the relations
PP =4 PlyP=—v, (4.19)

which are satisfied by taking P = 1,7". Since P is required to be a unitary operator PP =1, Mp
must be a phase |,| = 1. The eigenvalues of P are determined in the usual way, that is from the
condition that a parity transformation applied twice is equivalent to the identity: P2 = 1. However,
for a spinor the double parity transformation can be considered as a rotation on the angle 27, where
the spinor change the sign. Thus, two alternative definitions of parity operation are possible

P’=1 or P?*=-1.
Thus, the eigenvalues can be
np,==x1 or mn,==i.

The number 7, is called an internal parity. Note also that P anti-commutes with the matrix ~°:
[P,7°] = 0. If we act on v written in the form (4.16)) with P we get

Py = % = ( _Z;’fz ) ,

which shows that ¢ and x form in fact two spinor representations of the rotation group O(3) but of
opposite internal parity.

Analogously, one can show that the following bilinear combinations transform under Lorentz
transformations as
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e 1) — a scalar;
e 7% — a pseudo-scalar;
e y"1) — a vector;

o )7°yH1) — a pseudo-vector vector.

4.3 On various representations of the Dirac equation

If we transform the spinor as
Y- =0y
and simultaneously transform y* — 4" = Oy*O~! then the Dirac equation remains invariant and
the Clifford algebra does not change its form
,ylp,,yll/ + ,ylu,ylp, — 29/1,11]1 . (420)

Thus, using this freedom one can choose various representations for gamma-matrices. One of them,
the Dirac representation, we have already introduced

1 0 ; 0 o
0 _ T )
’Y - ( O _]1 )a Y= ( _O.z 0 ) (421)

Another convenient representation is the so-called Weyl or chiral representation

0 _ 0 1 i 0 O'i

In this representation all gamma-matrices are off-diagonal. The transformation is given by

1 —
0707" = e, O=\/§<i %) ofo=1,

where v4 and 7. are the gamma-matrices in the Dirac and chiral representation, respectively. In the
chiral basis the equations for the two-component spinors take the form

1d¢ ;09 | mc

cot T om '
10y ;Ox | .mc

x=0. (4.23)

Since the matrices 4% for i = 1,2, 3 are the same in both the Dirac and the chiral representations, ¢
and x continue to transform independently and irreducibly under the action of the rotation group
SO(3). However, a new remarkable fact is now that ¢ and x transform independently under proper
Lorentz transformations! Indeed, the matrix S(¢4) takes in the chiral basis the following form

b _ siginh &
]lcosh2 o smh2 0 ) (4.25)

51(@) = ( 0 ]lcosh%—i—a’ﬁinh%

In reality one should not be surprised that the representation of the proper Lorentz group on four-
dimensional spinors appear to be reducible. Since v° anti-commutes with all gamma-matrices, it
commutes with a matrix of Lorentz transformations



which precisely means that the representation is reducible. It is just that in the Weyl basis this
fact becomes obvious. We see however that on two-dimensional spinors we have two different rep-
resentations of the Lorentz group. These two-dimensional representations are inequivalent. Indeed,
equivalence would mean an existence of an invertible operator V', such that

¢ ¢ ¢

¢ i ) -1 _
V(]l cosh > o'sinh = )V™" = 1 cosh > 5

+ ¢ sinh
3 o

which implies that ' 4
Vo'Vl = —¢, forall i=1,2,3.
It is easy to see that a matrix which must anti-commute with all three Pauli matrices does not exist.

If mass vanishes then eqs. split into two independent (uncoupled) equations for ¢ and
v, which are known as the Weyl equations. Thus, when particle of spin 1/2 is massless it can
be consistently described by one two-component spinor, satisfying the Weyl equation. The Weyl
equation is covariant with respect to the proper Lorentz group but it is not invariant under parity.

4.4 Solution of the Dirac equation

We start with the Dirac equation

(iwaﬂ - %)zp ~0. (4.26)
The general solution can be represented as the Fourier integral
= dp — L Et++p%
t) = Z nPT 4.27
VD) = [ o e (a.27)
Substitution gives
<E70 —crlp — mc2]l>w(p) =0. (4.28)

Multiplying this equation from the left by 79, we see that it is equivalent to the eigenvalue problem
for the Dirac Hamiltonian 57

IO = (caipi + chB)z/J = FEy.
In terms of two-component spinors equation splits into two
(E—mc*)p—cdapx =0
—cFpo+ (E+mc*)x =0.
This system can be solved provided the following determinant vanishes
2

E —mc —cap

_ g2 _ 22 _ 22 _
—cdp  E+mc? = B = (mc)" = cp" = 0.

Thus, we again rediscover the dispersion relation of the relativistic particle which has two solutions
P2c? + m2ct.

That is for a fixed momentum p the Dirac Hamiltonian has solutions with positive and negative
energy. If the sign of the energy is chosen, then one of the two-component spinors can be expressed
via the other, for instance,

= ( 2 > . (4.29)

E+mc?
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Right-handed: Left-handed:

= N

Figure 4.1: Helicity. In the first picture the spin and velocity of a particle are parallel (helicity +1).
In the second picture the spin and velocity are anti-parallel (helicity -1). Neutrino is left-handed
while anti-neutrino is right-handed.

We therefore consider now the positive and negative energy solutions

Uy = C;Z ) U_ = CE(ZI; s (430)
E(p)+mc? —E(p)+mc?

where in both formulas E(p) = 1/p?c? + m2c? is a positive expression. Since ¢ remains an arbitrary
two-component spinor, we have two independent solutions with positive energy and two independent
solutions with negative energy.

Existence of two independent solutions for each sign of energy can be explained by the fact that
there exist an operator which commutes with the Dirac Hamiltonian. It is a helicity operator given

by
1 - 1 op 0
S = =i = < %) :
|1 S\ 0 ap
Since [#7, ] = 0, these two operators can be simultaneously diagonalized. Further, due to the fact
that .72 = 1, eigenvalues of .# are +1. Thus, a state with positive energy can be also an eigenstate
of the helicity operator with either positive or negative helicity, and the same holds for states with

negative energy. We first present the corresponding positive energy solutions (with for the moment
undetermined overall normalization N')

p3 + [Pl —(p1 —ip2)
p1 + ip2 p3 + |P]
1 2
= = . 4.31
=N e | =N i (4.31)
mc2+E(p) mc?+E(p)
c|pl(p1+ip2) _c|pl(ps+Ip)
me2+ E(p) mc2+E(p)

Here u} has the helicity +1 and u? has the helicity —1, respectively. Analogously, solutions with
negative energy are

_ clpl(ps+1B]) _ c|pl(p1—ip2)
mc?+E(p) mc?®+E(p)
_ C\ﬂ(fl-gipz) C\ﬁlgpsglﬁ\)
ul =N mettER) , ur =N met+E(e) (4.32)
p3 + [P —(p1 — ip2)
p1 +ip2 p3 + ||

47



Here u! has the helicity +1 and u2 has the helicity —1, respectively. Having these explicit solutions,
one can see that it is possible to chose a normalization, namely,

J\f—l mc? + E(p)
2\ me2(p? + ps3|p))

such that
a’ (p)us(p) = (uf (p)* Y ul(p) = 6™,  aZ(p)ul(p) = (ul(p))*7 ul(p) = =6", rs=1,2.

The fact that spinors of different helicity are orthogonal follows from the fact they belong to different
eigenvalues of the helicity operator . and also from the fact that [#,7°] = 0. However, since
[7,74°] # 0, in general w',u® # 0. However, if we also change the sign of momentum in one of the
spinors, then the orthogonality holds

ﬂ:—(p)us—(_p) = Oa S, = 172

The proof of this relation is based on the identity

We have
H(pyusr(p) = E(pus(p) =  ul(0)A#(p) = E(p)ul(p),
giving
iy (p) 7' (p)7° = E(p)us(p) .
[ —
H(—p)

Multiplying the last formula by u( — p) from the right, we get
. (p) H#(—p)u—(—p) = E(p) 4 (p)u—-(—p).
—_————
—E(p)u—(—p)

Thus, we get a contradiction unless @4 (p)u—_(—p) = 0. Similarly, one shows that a_(p)us(—p) = 0.
We denote two linearly independent orthogonal negative energy solutions for momentum —p’ by
v® (p). For reader’s convenience, we give here a complete set of orthonormality relations

ul (p)ui(p) =6,  vZ(p)vi(p) = =6,

o (p)us(p) =0, @i (p)vi(p) =0. (4.33)

There is also another important issue related to the solutions of the Dirac equations we found.

Introduce the following operatorsﬁ

_ g mc*l  AOE(p) — ey'p + mc21

A (D)

2mc? 2mc? ’ (4.34)
A2 MEL= _ m1 = E(@) +ey'p’
) = 2mez 2mc? '

It is not difficult to see that Ay (p) are projectors and they provide an orthogonal decomposition of
the unity

A2=Ay, A2=A, AA =0, A,+A =1.

“4Here we introduced the standard notation p which means p = y#p, = 70p° — 5" = %WOE — Pt
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Projectors Ay and A_ project on the solutions with positive and negative energy, that is

Av () uy®(p) = ui’(p)

A ()0 (p) = v (). )
It can be further found that the following relations are true
2 2
As(@)ij = Y, (uf = > (uh)i((w}) s,
= = (4.36)
A_(P)i = Z = D @)i((0D) )5
r=1 r=1

One remark is in order. For massive particle the helicity operator does not commute with
Lorentz transformations, i.e. the notion of helicity (that is being right-handed or left-handed) does
depend on a choice of the Lorentz frame. By changing the Lorentz frame right-handed particle
might become a left-handed one. At first it might seem surprizing because we solved the Dirac
equation and associated to each solution a definite helicity. However, one has to realize that the
Dirac Hamiltonian itself does not commute with Lorentz transformations — it represents energy
which changes under the Lorentz transformations. Thus, fixing # we are not allowed anymore to
perform Lorentz transformations, and, therefore, the helicity can be associated to the eigenstates of
the Hamiltonian ]

Thus, an expansion of a Dirac field ¢(z) over a complete set of orthogonal solutions is given by

dﬁ me \ /2 2 r —ip,xH * r Lpzh
P(x) = J W (E(p)) ; (br(p)qu (p)e™#Pr™ + di(p)v”(p)en ) . (4.37)
To check the correctness of this expression, we act on 1(x) with the Dirac operator iy*0,, — %< and
taking into account that
0 o me\ _ip—pm _ _ i (Bt—p7)
(" ' g ) = H(E@-xw)e ’
0 0 me\ yimepn _ 7 _ 1 (Bt—p7)
(7 cot +i or? h )e ' - ch (E(p) + A p))e "
obtain (w Oy — —)w = 0. The normalization prefactor in the Fourier transform is chosen for the

later convenience.

We finish the section with the following comment. The helicity operator is not the only one
which commutes with the Dirac Hamiltonian. Another important operator is the total momentum
(that is the orbital angular momentum plus spin)

. h ag; 0
Si = €ikTiPk + 5 ( 0 ) :

oi
Here x; and p; are the usual operators of coordinate and momentum. One verifies that [, 7;] = 0

4.5 Charge conjugation and anti-particles

So far our discussion of the Dirac equation, which was originally designed to described electrons, did
not involve the electric charge. The point is that the properties of electron concerning its electric

51t is a general statement that passing to the Hamiltonian formalism one breaks the Lorentz invariance, since one
fixes the preferred time direction.
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charge show up when we put an electron in an external electromagnetic field. The Dirac equation
which describes electrons coupled to an external electromagnetic field has the form

[7“ (zh 0y — ZA“) — mc]w =0. (4.38)

This equation has a new fundamental symmetry which is the symmetry of the theory with respect
to the change of the sign of the electric charge, also considered as replacement of a particle by its
anti-particle. This symmetry is known under the name the charge conjugation. This symmetry
states that there is a one-to-one correspondence between solutions of the Dirac equation with
a negative energy and the wave function of a positron (that is a particle which have the same mass
as electron but opposite sign electric charge). According to physical requirements, we regard a wave
function of a positron ¥°¢ as a positive energy solution of an equation

[7“ (ih 0, + ZA”) — mc]wc =0. (4.39)

Since sing of e played no role so far we can ask a general question about the existence of a transfor-
mation which transforms (4.38)) into (4.39)) and vice versa. We see that to change the relative sign
between ih d,, and €A, it is enough to apply the complex conjugation to (4.38)). This gives

[(7“)* (ih 0, + SA“) + mc]¢* =0. (4.40)

Assuming an existence of a matrix C' which provides the relation ¥* = (Cy°)~1¢¢, we bring the
equation above to the form

[(€90)y () (i 0 + EA“> + melye = 0. (4.41)
Thus, if we subject C' to the condition
(CYNH(CH) == or (CY°)TIM(CY) = =,

we would obtain the desired transformation. Under the map y* — —+** the Clifford algebra
relations are invariant and, therefore, such a matrix C' must exist. We simply give an answer

C=iv*y’,
where C' has the following properties
C*=-1, c*=C, CcC'c=1.
Thus,

U = CO%* = iyt = O (4.42)

as (7°)! = 4. By using explicit expressions for u’ is is easy to establish that

A (p)(Cul®) = —E(p)(Cul*), A (p)(Cul*) = B(p)(Cul*), s
4.43
A (p)(CuF*) = —E(p)(CuZ¥), A (p)(Cu?*) = E(p)(CuZ¥),
as well as
S(Cul¥) = ~(Culr), S (Cul*) = ~(Cul¥),
(4.44)
Y(C’ui*) = (Cui*)7 S (Cu?*) = (Cu?*).
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This gives a hint that the following relations hold, as one can verify by explicit calculation,

Cul*(p) = v (p), Cu¥*(p) = —ul(p),
Cvf* (p) = w3 (-p), Cv3+* (p) = —ul(-p). (4.45)

Thus, formally the Dirac theory is invariant under the following sequence of operations

1) Complex conjugate;
2) Multiplication by C~%;
3) Change of A — —AH .

The physical meaning of charge conjugation is that for any physically realizable state of electron
in the field A* corresponds a physically realizable state of a positron in the field —A#. Thus, the
operation of charge conjugation changes electrons with positive energy and spin up on positrons
with positive energy and spin down.

4.6 Quantization

The Dirac equation can be obtained by using the variational principle, starting from the following
Lorentz invariant actionl]

S = f dz [% (%#a,ﬂ,p - 6“%%) - %W] —c f dfdtd_)(i'y“a“ - %)ﬂ) (4.46)

We remind that in the action we have dz = cd@dt. Here ¢ and 9 can be considered as independent
(spinor) variables. With such normalization of the action, the latter is assumed to be dimensionless,
the fermions have dimension [¢~%/2], where ¢ is the length. The Lagrangian density is therefore

Y = c@(i’y“é’# — %)1/1
Note that the quantity “° is nothing else but the inverse the Compton wave length \. = % of the
Dirac field.

The canonical momentum is

T = 5—5 = ipy? = ™. (4.47)
oY
As we see, the canonical momentum does not depend on the velocity 7,/; at all, and therefore the Dirac
Lagrangian falls in a category of singular dynamical systems. To obtain the proper Hamiltonian
description of the system one has to use the so-called Dirac bracket formalism. Here we use however
a simpler alternative approach based on the consideration of equations of motion. First we note that
the Hamiltonian can be obtained through the standard formula

H= fdf(ﬂ@b—Z) = %J‘df(—iﬁcd}yi@iw+mc2¢_}@/}) = %fde(gai(—iﬁﬁi) +mczé)1/),

A

where we recall that 77 is the Hamiltonian operator of the first quantized theory. One can see that
[H] = [E/n] = [1/t].

6The sign of the Lagrangian as well as an overall coefficient can be chosen arbitrarily. Since the Lagrangian involve
derivatives of 1 and ¢ linearly, the corresponding action cannot have neither maximum nor minimum. The condition
S = 0 defines a stationary point but not an extremum of the integral.
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To establish the Poisson structure, we rewrite the Dirac equations in the form of the evolution
equations, which must be nothing else but the Hamiltonian equations of motion

@ = i (col(~ihés) +me 8)y = {H, ¢},

(Wc:i i i%(; 2 * * (4'48)
45 = (ca™ (ih0r) + me? B)y* = (H, 4%},
These equations of motion follow from the Hamiltonian
1
H=+ f Az T ()0 ()b () (4.49)

{i(2),9;(F)} =0, (4.50)

where (%) and 9} (¥) are considered as the usual classical (commuting) variables. Up to now our
considerations were purely classical. In particular, ¥(¥) was treated as a classical four component
field satisfying the Dirac equations of motion. The reader might be very much confused by the
appearance of i in this classical equations of motion. Do not be confused! The Planck constant
is standing there merely as a parameter to provide the proper matching of dimensions of various
quantities entering the Dirac equation. Quantization of the Dirac field has not been performed so
far.

Now we are in a position to perform quantization of the Dirac field. The fundamental feature
of the Dirac field is that it is quantized by means of anti-commutator instead of commutator. This
is dictated by the Pauli-Liiders theorem on the relationship between spin and statistics and also
by the requirement by positivity of the second quantized Hamiltonian. Thus, our quantization
procedure will consist in replacing the classical Poisson brackets with quantum Poisson brackets
(this is as usual), while the quantum Poisson brackets will be realized as anti-commutators, rather
than commutators.

(@), 93 @) = 3 (@) + 9] @) = 69 @ - )35
(@), ()b = 5 (i@ (@) + (@i (@) = 0, (4.51)

2

WF @), 07 (@) = 2 (7 @957 (&) + 7 (@) (@) = 0.

From now on we reserve the notation {.,.} for the anti-commutator of fields! In terms of anti-
commutators the commutation relations between the components of the quantized Dirac field look

like

{1i(@),¥](@)} = he® (@ — &0

{¥i(@),¢;(@)} =0 (4.52)
(i@, vl@)} =0

Every component 1;(z) is now understood as an operator-valued distribution, satisfying the anti-
commutation relations above, as well as the following conjugation rules

)=t Aec,
(i) = vlv] (4.53)
Pt =y
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Recall that we obtained

v = | (2553/2 (%)m > (br oty )7 4 al (oL ()ei™*")
r=1

Introduce the following anti-commutation relations
{0-(), b1(7")} = {d,(P), dL(P")} = 16,0 (5 — ),
—
p

2
{br(mabs( )} = {dr(ﬁ)7ds(ﬁ)} =0,
{b:(9), ds ()} = {b,(7), ()} = {b(D), ds (5')} = 0.

Compute the equal-time anti-commutatorﬂ

f dpdp’ mc? y
(2mh)? (E(p)E(p'))"/?

{vi(@), ¥} (@)}

X

r,s=1

J’_

r,s=1

dp mc?

(2mh)® E(p)

X

Wi(@), (@)} = hf

X [gl(ui(P))i(ui(P))f i) | ;(vi(p))i(vi(p));‘ 6%,,1.(11'7114)]'

From the relations (4.36]) we find

(B@)L+ca'p' +me’5)

(w2 ()i (. ())F = (s ()i (85 (D)5 = (A (D)) = o3 <,
(E(p)]l + ca’p® — mczﬂ) 3
(02 )i (02 ) = W) (P2 (P)1°)s = —(A- () )iy = o “.

Thus, we arrive at

(D). i = b LCQ
{vi(2), ¥ (7)} hj @rhy? E(p)

(E(p)]l +ca'p' + m025> S, (E(p)]l + calpt — m025>
~ ij 6*%1)1-(;#79:I ) +

2mc? 2mc2

Making in the second term the change of variables p— —p, we obtain

2 i / i i1 il
[ 3 160, bL )l (0l (o)) e 07000 =it =it

2 i , i i il
Z {dl(ﬁ%ds(ﬁ)}(v:(p))i(vs_(p'))fe+%(poip0)zo+ﬁ(pﬂ —pi )] .

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

IR THCE

2 i i_ il i i_ il
{i(@), 1@} = hj( dp _ me” 2E(p) —ipiai-e ):J dp_ —ipiaios V855 = ho(T — T)i

2mh)3 E(p) 2mc? (27h)3

Acting on 1 (z) with the Hamiltonian ¢ = ca’(—ihd;) + mc? 3, we get

#0(a) = | e (%)WE(”TZ; (b e 7" — L ez et )

"The time 20 = ct is taken equal for both t(x) and ¥ (x).
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The for the Hamiltonian we get

J dpdp’ mc?
(2mh)* (E(p)E(p'))

(D), ()T ehr™" + dr<p><v1<p>>:‘e—%p”“) 3

H = dew;ﬂp 7 B x

|
e
o,
—~ 8y
Sy
<

ﬁ
Il
-

Mw

(b)) (s )i 77" — L () (0" ()i P ).

@
Il
—_

Since this computation of one of the most important on the Dirac theory, we do it in a very detailed
manner. We have

x Z Bl (p)(U+(p)Ui(p))eﬁ(p“ P bl ()l () (2 ()0 () ) h P70

r,s=1

+ dr(p)bs(p) (”T (p)us. (p’))e_%(p"*ﬁ“w — d-(p)dL(p) (“T (p)v (p’))e_%(p"'_ﬁ”)zﬂ] '

Now we can take the integral over & which is easy, since it results into delta functions §(p'— p’) or

(p+ p'). After this we perform the integration over p’ and find

S f dﬁi [0 @)t o) () () = B ) (=) (w2 (D)o (=p)) 2Fr0"

+dr (P)be(=p) (7 () (=p)) 72570 — d, ()l () (v )0 () |

Note that in the above formulae T applied to spinors u or v means the usual hermition conjugation.
Since

) = 25 e () = DB,
we finally find
H o= [45Ee) (H0b ) - b 0)de). (459)

Now we can really see how the problem of negative energies is solved. Since {d,(p),dl(p')} =
hors0(p — p'), we can bring the Hamiltonian to the normal ordered form

B = a5 (50 6) + de)d.6) - 2000)) (460)

The operators b,(p) and bl.(p) are interpreted as annihilation and creation operators of an electron
(fermion) with momentum p. Analogously, d,(p) and df(p) are interpreted as annihilation and
creation operators of a positron (anti-fermion) with momentum p. The infinite contribution to
the energy can be throwing away passing to the normal ordered expressions. Actually, such an
interpretation of the creation and annihilation operators comes from considering also the second
quantized momentum operator and the operator of an electric charge, which in the normal ordered
form are

P = [ a7 (sl ) + dL0)a ) (161)
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Postdoctoral positions in theoretical physics H Number ‘ %

and

Q = |47 (L))~ L) ). (462)

4.7 The Dirac propagator
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Chapter 5

Electromagnetic field

Ordinary quantum mechnics cannot give an
account of photons which constitute the prime
case of relativistic particles. Since photons have
the rest mass zero, and correspondingly travel in
the vacuum at the velocity, naturally, of light ¢ it
is ruled out that a non-relativistic theory such as
ordinary quantum mechanics could give even an
approximate description.

Stanford Encyclopedia of Philosophy

5.1 Classical electromagnetic field

The classical theory of electromagnetism, which is the Maxwell theory, combines together three
fundamental and observed phenomena — electricity, magnetism and light. Photonsﬂ are presented
here only in terms of electromagnetic waves which propagate in the vacuum with the speed of light.
The theory is relativistic from the very beginning, which is reflected by the covariance of the Maxwell
equations under Lorentz transformations. Quantization of the classical electromagnetic field must
reveal the particle nature of light.

As is known from the course on classical field theory, the Lagrangian formulation of the Maxwell
electromagnetic theory is based on the four-vector electromagnetic potential, which is an underlying
field (a Lorentz invariant 4-vector) with the components

Al = (¢ (x),/f(a:)) . Ay =AY = (¢ (x),_A'(x)) . (5.1)

Here ¢(z) and A(z) are called the scalar and vector potentials, respectively. The relationship
between electric and magnetic fields and the corresponding components of the four-potential are

. - 104 . .
The the action for the classical electrodynamics (without sources) reads asﬂ

| .1 D
S:—Zcfd4IFHVFM :_ZfdtdBIFHVFH )

1The name photon has been coined by the chemist Gilbert N. Lewis in 1926.
2Normalization of the action —1/4c is written in the the Heaviside system of units; in Gaussian sytem of units it
would be —1/(167), as for instance in the Landau and Lifshitz 2nd volume “Classical Field Theory”.
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where F},, is the electromagnetic tensor
F;u} = a/,LAV - aVA;,L . (53)
In terms of electric and magnetic fields the tensor of the electromagnetic field is parametrized as

follows (here the index p = 0,1,2,3 enumerates the rows and the index v = 0, 1,2,3 enumerates
columns)ﬂ

0 E, E, E, 0 -E. —-E, -—-E.

_ _Eac 0 —4ilz Hy 122N ' 1o ) _ Ew O _Hz Hy
Fw=\ g m o -m |> =00 Fe={p g o —@ |

-£. -H, H, 0 E. -H, H, 0

where we have defined the Fp; components to be the electric fields and the F;; components are
related to the components of the magnetic fields. In what follows we set

— —

E=(BE, E, E.), H=(H,H,H), A=(A,A,A,)=(A" A% A%

For reader’s convenience we also present the relationship between the electromagnetic tensor and
its components via indices

1

E;=Fy = F°=—F" F%*=—euH,, H = _§€ilekl~
In particular, we stress the relation
1 ki 1 1 T
Hy = —geimF™ = —gembu = —€ik1Op A = €11 Op A" = (tot A);

that is indeed H = rotA.

The definition of the electromagnetic tensor ([5.3) implies the so-called Bianchi identity

a)\Fpu + avF)\,u + aﬂFl/)\ =0 (54)
and they are equivalent to
L 10H L
V-H=0, a—z—VxE (5.5)

c ot

In absence of sources equations of motion are

0, F" =0 (5.6)
and they are equivalent to
L. 10E - .
V- E=0, -— =V xH. (5.7)
c ot

3The conventions here are that of the the Landau and Lifshitz 2nd volume “Classical Field Theory”.
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Figure 5.1: The left figure represents the gauge orbits. The right figure shows two gauge fixings —
the first one _#; is complete and the second _#» is not complete.

5.2 (Gauge symmetry

All the physical properties of the electromagnetic field as well as the properties of the charge coupled
to the electromagnetic field are determined not by A,, but rather by F),,. The underlying reason
for this is that electrodynamics exhibits an important new type of symmetryﬂ To understand this
issue of symmetry, we may decide to change the vector potential in the following way

A, — A, —0dux, (5.8)

which can be rewritten in a less abstract form of space and time components separately:
A5 A+Vy and ¢—o@—-——=. (5.9)
c

These transformations are referred to as the gauge transformations. Let us see what effect they have
on the tensor of the electromagnetic field:

0F,, = 0u(A,—0ux)—0u(Ay—0ux) — Fup = —0,0,x + 0,0,x =0.

Thus, the Lagrangian as well as the action are invariant under gauge transformations. We know that
global symmetries which depend on constant space-time independent parameters lead to conservation
laws by the Noether theorem. In opposite, the local gauge symmetries do not lead to conservation
laws! A global symmetry takes a physical state and transform it to another physical state, while
two states related by a gauge symmetry have to be identified — they correspond to the one and the
same physical state. Because of gauge symmetry the Maxwell equations

0 =0 = (100, - 0,0,)A” =0 (5.10)
do not have unique solution for all A,, because if A, solve the equations then A, 4+ 0, with
O = 0 also do, simply because

t=to

(n,wapap — 0H0V) 0"a=0 forany «.

In other words, since F},,, is the same for both A, and A, + J,«, these configurations correspond
to the one and same physical state. Given A, the space obtained from A, by acting on it with
gauge transformations is called the gauge orbit of A, see figure Thus, the space of all 4, is
foliated by the gauge orbits. All states belonging to the same orbit describe the same physics and

4This symmetry extends to many other physical theories besides electrodynamics.
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correspond to the same physical state. One can pick a representative from each gauge orbit — the
procedure known as a gauge fixing. Different representative configurations of a physical state are
called different gauges.

Another peculiarity of the electromagnetic Lagrangian, which is also related to the gauge sym-
metry, is that equations of motion for Ay are not dynamical, i.e. they do not involve time derivatives
of Ag. Indeed,

6“F#0 =0 — 62(61140 — 60AZ) = V2A0 + ﬁaa? =

ThusEl,

Vi ~6A=J‘d L() (5.11)

| — 7|

Thus, Ap is not independent — we do not need to specify it at ¢ = ¢o (initial time slice). Thus, the
number of independent degrees of freedom cannot be more than three.

Various gauge choices are possible. Below we discuss two of them.

Coulomb (radiation) gauge

V-A=divA=0=0;A". (5.12)

For any given A; one can always find a representative A; in its gauge orbit which satisfies the
Coulomb gauge condition. Indeed,

A=A +606 (%A’z()

We have _ L
0; A" = ;A" —V?a =0,

ﬂ/
o = 67261‘/12- = Jdﬂl V A

4m|Z — x’ |
From equation (5.11]) we deduce that in the Coulomb gauge Ay = 0.

that is

Thus any field configuration A; can be decomposed into the transverse and longitudinal parts
A; = AF 4 Al (5.13)

where 0;A; = 0 and AL' = 0;¢ for some £. In the Coulomb gauge ¢ = 0 and only transversal
components are present. They represent two physical degrees of freedom corresponding to two
possible polarizations of a photon. Obviously, the Coulomb gauge breaks Lorentz symmetry, but
this is the simplest gauge to use for quantizing the electromagnetic field.

Lorenz gauge
0, A" =0. (5.14)
This is also an admissible gauge choice as
O (AF + M) =0 —  0§,0"a = —0,A"

and the last equation (the inhomogeneous wave equation) can also be solved for a. Obviously, the
Lorenz gauge does not break Lorentz invariance, but it is an incomplete gauge choice, as it does not
pick a unique representative in each gauge orbit, as two configurations A, and A, + d,« are in the
same orbit and satisfy the Lorenz gauge as soon as « is chosen to satisfy 0,0/« = 0.

5We assume that potentials vanish at infinity so that there is no non-trivial solution of the homogeneous Laplace
equation to add.
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5.3 Hamiltonian formulation of electrodynamics

To obtain the Hamiltonian formulation of classical electrodynamics (without sources), we start for
the Lagrangian for electromagnetic ﬁeldﬂ

1 = v
L= —Zjdwa,F”

and rewrite it in the so-called first order formalism. To do so, we first compute the canonical
momentum conjugate to A*. We have

o @A W) _ o 1
~ = P o) = = Pt

pu(x) (5A”

We see that we have a primary constraimﬂ

p():()a

i.e. the momentum conjugate to Ag vanishes. This is a straightforward consequence of the fact
that the Lagrangian does not contain the time derivative of Ay. In other words, the velocity for Ag
is absent so that Ag is not a dynamical field! As to the other three components of the canonical
momentum, they simply coincide, up to the overall factor —1/c, with the electric field:
1 1 1
pi(w) = _EFOi(x) = _E(aOAi — 0;Ag) = —EEi-

This relation allows us to find the velocities A; via the electric ﬁel

Aj = (B + 0;A))  — A= —c(E; + 0;A0).
Now we write the Lagrangian in the Hamiltonian form

_ J &2 py(2) A (z) —rest

[ —

symplectic structure
or
rest = Jdgx pi(x )AZ( jdgm pi(x )Al J’d3 —2Fy Fo; + Fi; Fij)

The rest must be reexpressed via canonical coordinates and momenta (electric field), i.e. all the
velocities must be excluded in favor of the canonical momenta. We have

1
rest = Jd% Ei(E; + 0;Ao) + 1 fd% (—2E? + F;;Fy;) .
We also notice that H = rotA which can be also written as
1
Hi = —ieiijjk.

Since we have
€ijk€imn = 6]m6kn - 6jn6k:m )

6We we assume that the action is dimensionless, then [A,] = /¢/¢, [Fu.] = +/¢/¢? and [L] = 1/t, where £ is the
length (meters) and t is time (seconds).

"Thus, we are dealing with a singular Lagrangian system.

8Be careful: dgA; = %AZ
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we see that 1 1
H} = o Ciak€imn Eipbmn = S Fij Fij .
Thus, we arrive at

1
rest = 5 Jdgx (E;?2 + H12 - 2A061E1> .

Thus, the original Lagrangian takes the following form

1 1
L=— fjd?’wEiAl —ifd% (B2 + 12) +fd3:cA06iEi .
C

J

~ ~ ~
symplectic structure Hamiltonian Constraint

Here

Hzéfd?’x(Ef—i—Hf)

is the Hamiltonian of the electromagnetic field. This is nothing else as the energy of the electromag-
netic field! The first term defines the Poisson bracket (recall that A; = —A?)

{Ei(@), A(§)} = —¢6:;6(Z = 1), (5.15)
{Ei(2), Aj(9)} = c0i;0(T — 7). (5.16)

All the other Poisson brackets vanish. As we see, the right hand side of the Poisson brackets is
perfectly compatible with the scaling [E] = y/c/¢? and [A] = \/c/L.

With these Poisson brackets and the Hamiltonian one can verify the satisfaction of the Hamilto-
nian equations of motion for E and H.

dE . .-

E = {H,E}: CVXH7
dH n .o
E = {H,H}:_CVXE

The last term in the Lagrangian contains Ay which plays the role of the Lagrangian multiplier.
Indeed, varying the Lagrangian with respect to Ay we find the following constraint:

C(z) = 0;E;(x) = divE = 0,
which is nothing else as the Gauss law. As an exercise, one can check that

ac
- = H,C(@)} =0,

that is the constraint is preserved in time. Also, one can easily see that

{C(2),Cy)} = 0.

Some comments are in order.

61



e We can also verify that the Lagrangian (written in the Hamiltonian form) is invariant with respect to the gauge
transformations (see eq.(5.9))

A S AN+ 9

1.
Ap=¢p — AO—EX-

Under the gauge transformations we find

1( . 1 .. 1 .
SL = —= Jd“inalv)'( - - Jd%;'(aiEi == jd“xai(Ei)'().
C C C

Thus, the integrand is the total derivative and we obtain §L = 0.

e To get the equations of motion for A;, it is not enough to use the Hamiltonian; one has to take into account
the constraint

dA;t(x) _ {H — jd3y Ao(y)0; Ei(y), Ai(x)} = —cEi(z) — cd; Ao(z) .

For equations of motion for E; and H; adding constraint to the Hamiltonian is possible but not necessary
— the constarint commutes with both E; and H; and, therefore, gives no contribution to the corresponding
equations of motion. The gauge Ay is called Hamiltonian, because it is in this gauge that equations of motion
for all remaining fields are obtained from the Hamiltonian H. This gauge is, however, is not complete — gauge
transformations generated by functions a(Z) which do not depend on time preserve the gauge choice Ag = 0.

5.4 Quantization in the Coulomb gauge

Notice that C(x) is actually a generator of gauge transformations. Indeed, we define

C= —% fd:?a(x)@iEi(f) = %fdfaia(rﬂ) Ei(T). (5.17)
Then we see that
{C, Ai(2)} = diar. (5.18)

Let us write a decomposition for the potential and an electric field into transverse and longitudinal
parts

A=At + Al E =E'+E (5.19)
or, in a more detailed fashion,
Ai=Af +0£,  Ei=Ef +a(, (5.20)
where
A+ =0, O'Ef=0. (5.21)

Decomposition (|5.20) is easy to construct. We have

A =V2% - £=VT20;4;.

Hence,
0;0j 0;0j
LA Y99 4 _ (s _ Y05\,
Ab = A=Ay = (5 = )4;.
The operator
0;0;
0 i
P =0ij — @7;
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is a projector on the transverse part of the vector A;. Indeed,

0;0 0,0 0:0;  0;04 0,050
ptplt — o Y% YRG5 s WY Y 105 _ pl
A = (b= ) (o — %) -0y - G - S 2025y

Further, note that the field H depends on transverse degrees of freedom only
Hi = —€i0rAl = —€ir0r Al — €ira0k0iE .
—
=0

Now we take the Lagrangian and substitute there our decomposition ([5.20)

1 » 1
C
symplecti: structure Hamiigonian Con;t(raint
We will get
1 .. . 1 N
L - ! f P (B + 0, (A™ +6%) - f a*s ((BE + 00 + H?) + f B )T .
C

Integrating by parts and using the transversality conditions ([5.21]), we arrive at

1 . - . 1 - -
L = —- fd% (El-lA“ + V¢ 5) = fd% ((Eil)2 — (V2 + Hf) + fd?’x AV .
&
symplectiz structure Hami;gonian Cons?raint

Thus, according to this structure of the Lagrangian, the pairs (E;, A7) and (§2C ,&€) represent
canonically conjugate variables. The Gauss law constraint is then ﬁzc , while the Coulomb gauge
means £ = ()E| As the result, the gauge-fixed Lagrangian involves only transverse degrees of freedom
and has the form

1 » 1

L = -= Jd% (Brd=) -3 Jdg’x (BH? + H2) .
C
Symplecti: structure Hamiﬂonian

The Poisson bracket is

(EH@), A7 ()} = —c (@j - aiaj) 5(F— ), (5.22)

V2
and it is perfectly compatible with the transversality conditions on Ef and AiL.

Quantization can be now performed in a straightforward way, by replacing the Poisson brackets
with the quantum Poisson brackets giving

(5@, 4] = ine (3, - S0 ) o). (5.23)

Expanding transverse potentials over plane waves and imposing the commutation relations above, we
can interpret, as in the Klein-Gordon theory, the expansion coefficients as creation and annihilation

91n the free theory one cannot really see the necessity to impose the gauge condition ¢ = 0 because imposition of the
Gauss constraint alone leaves in the Lagrangian the physical degrees of freedom only. However, in the hamiltonian
setting one is allowed to exclude the canonically conjugate variables only by pairs. Moreover, in the interacting
theory, where the electromagnetic field interacts with the conserved matter (electron) current, imposition £ = 0 is
really necessary, otherwise £ will be a propagating degree of freedom.
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Figure 5.2: Unit polarization vectors of the photon field with momentum k and —Fk.

operators. The one important feature of the Maxwell theory is that the corresponding quanta carry
an integer spin. An expansion over the plane waves has the form

. dk & - e o
AL —a7 £ = Cc J —»T i r i —swt+ikd + rt k iwt—ikT . 5.24
@0 = Gy | 15 2 5B« Bye o’ ()™t =H) (5.24)

o
c

For a massless photon we have the dispersion relation k° = |l§|, where w is a frequency and k

- -

is a wave vector. Here we also introduce two three-dimensional vectors € (k) and €(k) which have
unit norm and are orthogonal to the vector k:

e (k) k=0. (5.25)

The last condition guarantees that V -k = 0. It is also convenient to chose these vectors to be
orthogonal to each other for any k

AORAGET (5.26)

-

Two polarization vectors €. s(k) describe two physical polarization of the photon and they satisfy
the following completeness condition

9 o
Coo o k'R
D en(k)el (k) =6 — ——. (5.27)
=1 ||
We note that the explicit polarization vectors can be for instance chosen as follows
0 (k2)2 + (k)2
R _ K3 - 1 o kK2
(k) = NCIICOE ¢ (k) = 7 CORCORE (5.28)
k kK3

(k2)24(k3)2 (k2)2+(k3)2

The vectors are chosen such as €| reverse its orientation, while €5 stays the same as kE— —k, see
figure This implies in particular that

En(k) - E(—k) = (=1)"0rs (5.29)
Since E; = —%Ai, we find an analogous expansion for the electric field has the form
Sl oy i L S N —iwt kT rt () iwt—ikE
BAE0 = o J'dk \@; & (k) (a (F)e —at (ke ) . (5.30)
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Such an expansion of the transverse potential and the electric field together with their commutators
imply the following commutators for the expansion coefficients

[a” (k),a*" (k)] = hé™*6(k — k'), (5.31)

[a"(F), a*(F)] = [ (F), a! ()] = 0. (5.32)

Thus, the expansion coefficients acquire the meaning of the creation and annihilation operators cor-
responding to the two possible polarizations of the photon. It remains to compute the Hamiltonian.
Fist we find the contribution of the magnetic field. We have

J A7 H? = J 4z (6kA“6kAu - 6kA“61A“) - jdfakAuakA“ ,

since the second term in the integrand vanishes upon integrating by parts. With the help of the

formulae ((5.26) and (5.29) we then find
2 2
:deHf: fdk aild 3 [—ar(k)a’"(—k)+2arT(k:)aT(k)—a”(k)a”(k)].

w r=1

Computation of the contribution of the electric field is elementary
: J A (BL)? = Jdk:w 2 [ (Ryar (=F) + 207 (R)a” () + a7 (R)a” (B)]
Adding these expressions up and recalling that w = c|l§ |, we finally arrive at

H=fdl§:'w Za (K)a" *—cfdem K)a" (k). (5.33)

This is the Hamiltonian of the electromagnetic field in the Coulomb gauge written in the normal-
ordered form via creation and annihilation operators. Analogously one can derive the operator of
total momentum

2
ﬁzfdf . Bt xﬁ;:chE D ka(k)a" (k). (5.34)

r=1
Some comments are in order.

e Although we constructed the quantum theory of the free electromagnetic field in the Fock space, we performed
the quantization only once (that is we do not need the second quantization). This makes a difference with the
Klein-Gordon and Dirac fields, both involving % already in the first quantized theory, which are attempted to
be treated as the Schrédinger equation for a single particle. The Maxwell equations do not involve 4 at all —
they are truly classical fields.

e It is clear from considering the physical Coulomb gauge that the electromagnetic field carries only two degrees
of freedom — the field Ag = 0 and A; fluctuate only in the two-dimensional plane which is orthogonal to the
direction of motion, giving rise to two polarizations of a photon.

e We point out that in the formulae and , k is not the particle momentum, but rather the wave
vector. The particle energy (dispersion) E is related to the frequency, and the wave number is related to the
particle momentum p’ by the Planck-Einstein-de Broglie formulae

E=hw, p=hk,
which are valid for both massive particles and light.

e In the Coulomb gauge we have only physical degrees of freedom but the Lorentz invariance is not manifest.
One can nevertheless show that the theory is Lorentz invariant by explicitly constructing the generators of the
Lorentz algebra in terms of a” (k) and a”T(k) and checking that they indeed form the Lorentz algebra. More
severe problems appear in the interacting theory, in particular, in the action there appears a term which is
non-local in space. These complications are avoided in the Lorentz gauge. However, in the Lorentz gauge one
has unphysical excitations Ag and All which has to be quantized but should not change the physical content
of the theory. One of the modern ways is to quantize the theory with constraints is to use the so-called
Becchi-Rouet-Stora-Tyutin (BRST) quantization.
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\ operator-valued

Figure 5.3: The electromagnetic field carries two physical degrees of freedom — the potentials fluc-
tuate in the two-dimensional plane which is orthogonal to the momentum.

5.5 Spin of a photon

Since the action of the electromagnetic field is invariant under Lorentz transformations, then in ac-
cord with the Noether theorem, there must be corresponding conserved charges forming the Lorentz
algebra. In the case of the electromagnetic field the rotations of the three-dimensional space are
represented by

. D 3 L
iJ =2 . Ak iYL kE._ . T AT AT A% .
A de[.A (x G 6xi>A = (A4 VAA)J.]. (5.35)
< ~ - spin part
orbital part
For the electromagnetic field the spin part
S4 = de D(ATAT — AT AT
is preserved by itself because
ds" o (AP AG . RPAi 2 - 2 Ad Ad 2 47 Aé
= dz : (A'AT — ATAY) =" | dT : (0 ,A'A7 — 0, AVAY) =0, (5.36)

where we have used the fact that A’ solves the wave equation [JA? = 0 and, in the last step, the
integration by parts. In the Coulomb gauge we compute

1

e

- 1 P
Si eiij]k = ?de . Gijlc ALJAL]c L.

The careful computation of this quantity gives

Now, with the help of the following identities

m TN nT k}z mp\ n n kl
€imn€yp (k)Es (k) = ﬁe'r\s 3 €imn€p (k)es (_k) = ﬁ(l - 6r5) 5



Right-handed: Left-handed:

= N

Figure 5.4: The left picture represents a right-polarized photon with the helicity +1, while in the
right picture a photon is left-polarized with the helicity —1.

it is easy to find

Lk - o

5= dF 0 (o (B)a*(®) — o (B)a (B)) (5.37)
With this expression at hand, one can very by direct computation that [H, S;] = 0, that is .S; are
indeed the conserved quantities for any ¢ = 1,2,3. Obviously, the expression for S; can be written
in the form

S=i f dk &(k) (alT(E)az(E) - a2T(E)a1(/§)) , (5.38)
where we have introduced the third vector €3 (E) with components
ok
€= —, 5.39
T (5.39)

- -,

which is orthogonal to polarization vectors €1(k) and € (k). Thus, as is clear from this momentum
space expression spin always aligns the direction of motion of a photon. Consider now one-photon
states

a" (k)[0)
and act on it with §. We will get
Sa'f(k)[0y = —ihes(k)a® (k)[0),
Sa*(B)|0y = ine(k)a(K)|0).

Omitting the notation of the vacuum this can be written in the matrix form

= a'f(k o 0 —t at(k
s( o ) -ram (9 ) (28 ) (540
——

Pauli o2
The matrix o2 has eigenvalues +1 and
Q- < } _j ) S Q02Q ! = diag(1,—1). (5.41)
Therefore, making the linear combinations
o = 5! o),
al = %(a1T +ia*T),
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which describe the left and right-polarised waves, we have
[y,a;r%] = ﬁa;r%, [,a}] = —hdl .

where . = § - 6'3(/;) is the helicity operator. Hence, in units of A the projection of spin on the
direction of motion is +1 for the right-polarized photon, and it is -1 for the left-polarized one.

Finally, it is not difficult to find the Feynman propagator in the Coulomb gauge
Diyj(x — ') = (0] Ay (2) A; (")]0)

which can be explicitly written as the four-dimensional integral in Fourier space

d*k  eTike kik;
L _ ) = G e o bl
Dgij(x — ') J (2m) k2 + ie (5w |]g|2 ) . (5.42)

Obviously this propagator satisfies the transversality condition.
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Chapter 6

Path integral in quantum
mechanics

One cannot fail to observe that Feynman’s
principle in particular — and there is no hyperbole
— expresses the laws of quantum mechanics in an
exemplary neat and elegant manner,
notwithstanding the fact that it employs
somewhat unconventional mathematics.

Yourgrau and Mandelstam

6.1 Gaussian Integrals

Gaussian integrals play an important role in many areas — in probability theory, in quantum mechan-
ics, in quantum field theory, in the theory of phase transitions in statistical physics. Thus, before
introducing the functional integral, in this chapter we recall several useful mathematical results
concerning gaussian integrals and also properties of gaussian averages.

Consider a positive-definite measure p(z1,22,...,2,) defined on R™ and properly normalized.
The mean value of any function F(z1,s,...,z,) is defined as
< F>»= l[d"mF(f)p(f). (6.1)

Consider now a gaussian integral

n
Z(A) = fd”:c exp ( - % Z :ciAijxj> . (6.2)
i,j=1
This integral is convergent provided the matrix A is a symmetric complex matrix, the real part of
which is non-negative (that means that all eigenvalues of Re(A) are non-negative) and none of the
eigenvalues of a; is equal to zero:
Re(A) >0, a; #0.

Under this conditions one can prove thaﬂ

n

Z(A) = f d"z exp (—% 3 xiAijxj) = (2m)"2(detA) V2. (6.3)

1,j=1

Mf a matrix is complex, one has to pay attention to the square root and an overall sign.
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Let us recall the prove for real positive matrices. One-dimensional gaussian integral of the general
form (a > 0) can be easily computed

+o0 1, R
f dze 2% T = «/2—”637 .
a
— 3G

Any real symmetric matrix can be diagonalized by an orthogonal transformation

A=0DO",

where O is orthogonal OO = 1 and D = a,0;; is diagonal. We make a change of variables z; = O;;y;,
so that
2:4:j7; = y0irAijOjmYm = Yu(O'AO) kmYm = aryj -

The Jacobian J = |det(O)| = 1. Thus, the integral gets factorized

z(4) =]] dei e Y = (2m)"(aray . . an) M = (27)"?(det A) V2.
i=1

It is also easy to compute the gaussian integral of a general form

Z(A,b) = Jd”xexp(—% Zn:

1,j=1

i=1

To compute this integral one has to find the minimum of the quadratic form
a 1 n n n
aixk 5 Z xiAijxj — Z blxl = Z Aijj — bk =0
ij=1 i=1 j=1
or with the help of the inverse matrix b = A~'z. Finally we make a change of variables
x; = (Ailb)i + y;

and the integral takes the form

n

20 =ew[3 0] [aven (<3 3 wagw). (6.5)

ij= ij=1
This finally gives

Z(A,b) = (21)™2(det A)~2 exp [% Zn] bi(A—l)ijbj] (6.6)

4,j=1

The characteristic property of a gaussian integral is that it remains gaussian after integrating over
one variable. This structural rigidity explains a rigidity of gaussian probability distributions.

6.2 Path integral in quantum mechanics

We start with the the Schrodinder equation — the main equation of quantum mechanics

Cdy(t)
W= = Hi(t), (6.7)
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where () is a vector in a Hilbert space. Introduce a concept of the evolution operator. The
evolution operator U (ts,t1) transforms the wave function t(¢1) in the Schrédinger representation
into the wave function (ts):

U(t2) = Ulta, tr)ih(ts) = e #HE=1y (1), (6.8)

where H is a Schodinger operator. This formula can be easily understood. The operator
eHfhy(ty) = erfhe iy = ¢ (6.9)

brings the wave to the Heisenberg (time-independent) representation, while e wH 29 creates again
the Schrédinger wave function but at the moment to. Obviously, U(ta,t1) satisfies Schrodinger
equation with respect to to. As usual the wave function in coordinate representation is obtained as

Y(q1,t) = {q1|¥(¢t)). Thus, eq. leads to

e

Caltb(t2)) = | day gale™ F7 g1 (1),

— %

or

Wz ta) = j " dgr gale FEH g (gr, 1) (6.10)

— o0

This is an integral form of the Schrodinger equation and its kernel is the matrix element of the
evolution operator, which we denote as

(3

W(ga,t1;q1,t1) = {gale 727t H|gy

This kernel obeys two properties

e It is markovian

fdQQ W (g3, t3; q2,t2)W (g2, to; q1,t1) = Wigs, t3,q1,t1) -

e It obeys the following normalization W (qs, t;q1,t) = §(q2 — q1)-
Now we derive a representation for the matrix element of the evolution kernel in terms of the so-

called path integral. To do this, we split the time interval (¢, tx) into N interva;s t;41 —t; = A, so
that ty —tg = NA, and write

W(gn,tn;qo,to) = Jd(JNA . Jdcn Wgn,tnsgn—1,tn—1) ... W(q1,t1; 90, to) -

We have

W(Git1,tivrs @i ti) (Gisrle” "2 gy = J’dpz' {Giv1|pixpile” 78 qiy =

Jdpi <Qi+1|pi><<pi|Qi> - %A(pl|H|ql> +.. ) )

If the Hamiltonian H (P, Q) ordered such that all P’s and on the left from @’s then

e—%PiQi

<pz|H|Qz> = \/ﬁ

H(pi7Qi)~
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Thus,

W(qit1,tivrs @i ti)

1 i )
et (@iv1—ai)pi (1 _ 2 o
27ThJ‘dpzeﬁ (1 hAH(p,L,q,)—i-...)

Ljd _eéﬂ[w—h’(mm)]
oh ) P '

For the case of a particle moving in a potential V(Q) we have

»?
H=—+V
L +v@
and the integral over p; can be computed explicitly, because it is gaussian. Indeed, we have
(i1 —a@)ps P 1 ( qiv1 — G )2 m <Qi+1 — %)2
- - = (p—-——m) + =) .
A 2m 2m A 2 A

Therefore,

B

REYOST,
onh Jdpi e
i

The remaining integral over p; is a well-known Fresnel integral

o 8}
.2 ™ o
et dp = [—et'T | 4>0.
e a

e
W(giv1,tiv1; i, ts) =

(6.11)
Thus, we end up with

N[
o

m
W(Gis1,tivr; @irti) = ( )

m N A () v
2mihA '

In this way we reduced our original matrix element to the following N — 1 fold integral

N . i a—as\2
N E9 dhir [m S fvm)]
W(gn,tniqo,to) = <2m‘hA) 2 JdQNandel e" o) .

Now we take the limit N — 00, A — 0 such that NA = ¢t —to remains fixed. Introducing notation

for the limiting measure

. m 2
Dg = lim (m’fm) 2dgr...dgy_1 = N[N —1]dqs ... dgn -1 ,

(6.12)

we arrive at the path integral representation for the matrix element of the evolution operator

W(gn,tn;qo,to) = fquo):qo Dq en Sl
q(tn)=aqn

Normalization factor in the measure involving N — 1 integrals was defined as N[N — 1], so that with
N integrations we would get

m M
NINT = (Qm'm)
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6.3 Classical limit

Path integral assumes summation over all trajectories of a particles whether or not they solve the
classical equations of motion. However, in the limit & — 0 one expects one expects solutions of the
classical equations of motion to provide a dominant contribution into the path integral. Consider

W= Jqu%S[qu)] .

As h — 0 the integrand is rapidly oscillating and two neighboring half-waves of say cos(%S ) en-
compass almost the same but opposite in sign areas. Sum of these areas is small and, as a result,
the whole integral is small, c.f. figure However, around a stationary point of the action, i.e. a
trajectory which delivers the extremum 65[q(t)] = 0, the functional exp (%S[g(t)]) does not oscillate
providing thereby a dominant contribution. In general a method of computing the asymptotics of
W in the limit & — 0 is called a a method of stationary phase; we refer the reader to the appendix

for the brief account of this method.

Let us expand the action around a classical trajectory

Sla()] = Slao(t) J&d%;%%%b

It is conventional to change the variables ¢(t) — qo(t) + Vhq(t), so thal

(a(t1) = qo(t1))(gq(t5) — qo(t3)) +

q4=qo0

225[a(t)]

W = % [q0(¢)] JDQ Sdt dt; 2q(t7)2q(th)

a(ty)a(ts)
a=q0 + ... (613)

Here integration runs over trajectories g(t) such that g(¢12) = 0. The approximation of W where
all the higher order terms in % are suppressed is called a semi-classical (or WKB) approximation.
Using discretization approach the pass integral

(t))a(th) 2 —1/2
R St
0q(t})0q(t5) la=ao

_225[a(®)]

J'qu 3§ty d Ba(th)2a(th)

can be formally understood as a determinant of the corresponding operator. There exists several
ways to compute this object. Below we demonstrate how to compute it for a free particle by passing
back to its discretized version.

Consider the action for a free particle S[g(t)] = Sdt mg’ . Compute the first variational derivative

08 = fdt mgdq = — fdt md(t)dq(t),

that is
68
dq(t)

To compute the second variational derivative we write

= —mi().

mjdtq St —1t) —detq Yo" (' —t).

Thus,
0S

dq(t)

2The measure D§ arises from Dq upon rescaling ¢ — Vhgq.

mfdt’ dq(t')o" (t' —t)
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and, therefore,
528
dq(t)dq(t’)

Now we can compute

e gy qpt 22Sla®]
jD(jeQ §a6dts Zendacty 4ma0 a(th)a(ts) JD~ 0§12 armg®

The result must depend on the times ¢; and t2 only! We compute this integral by passing to the
discrete version

+
i(t2 . m
JquS i3 —]\}l_r)an[N]hN/zqul...quNexp (—A Z Qiv1 — Qi) ) (6.14)
Here ¢; = ¢(t;) and the initial and final conditions are ¢y = ¢(¢1) = 0 = ¢(t2) = gn+1. Then
N+1 N
Z (g1 —qi)? = Z qiAi;q;
i=0 i,j=1

where the matrix A is depicted on figure 6.3l Hence, once again we arrive at a factorizable expression

N
_ : N/2 im 2
= ]\}13130./\/‘[1\7]71 / jdql...quNexp (ﬁzalqi) (6.15)

Every individual integral here does converge, and is, in fact, nothing else but again the complete

Fresnel integral
- in 2mi
J dg; exp ( alq7 24 / et =4/ = (6.16)
. ma; ma;

It is easy to find that detA; = 2, detAs = 3, which leads to the natural assumption that
detAy = N + 1. By expanding the determinat of Ay over last column one gets recurrence relation

detAN = ZthAN_l — detAN_g .

which is obviously satisfied by detAy = N + 1. This leads to the following result

ngz dtmq 2mihA N/2 1
Jqu N( = ) — (6.17)

Taking into account that

)

- ()"

we then get

. iﬁfdtmfz o m  \WN+D/2 2mihANN/2 1 _ m
Jqu N (2mhA) ( m ) N +1 2mhA(N + 1)

Restoring all the details the final result reads

2
m m (qa —
Wig2, t2;q1,t1) = 7@] . (6.18)

27Tih(t2 - tl) xp I:ﬁ 2 (tg — tl)
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-1 2 -1 0 0
0 -1 2 -1 0 0
A=]| : S :
0 0 -1 2 -1 0
0 0 -1 2 -1

0 v «ov oo 0 -—-1 2

Figure 6.1: The N x N matrix A arising in evaluation the path integral for a free particle. Matrix
A is positive definite, . i.e. all its eigenvalues are positive.

For free particle this result is exact, because semi-classical expansion stops at the second functional
derivative; all higher functional derivatives of S are identically zero. One can easily verify by explicit
calculation that (6.18]) solves the Schodinger equation

252

0
h—W (o, to; qu, 1) = —— =W
? (q27 2,(117 1) 2m aq%

ylasqu,tr).
oty (CI2 2541 1)

Note that the original definition of the evolution operator is valid for o > t; only, which
therefore also holds for the kernel W (ga,t2;q1,t1). It is convenient to require that W vanishes for
ts < t1. This boundary condition (in time) can be incorporated by considering

G(q2,t2:q1,t1) = O(t2 — t1)W (g2, t25q1,t1) (6.19)

Here 6(t) is the so-called step function defined as

1 if t>0
e(t)_{o if t<0 (6.20)

and it has a property that %(tt) = d(t). From definition of G we deduce that it obeys the following

equation

0 ‘
<zha—t2 — H(pa, Q2))G(Q2,t2;(h,t1) = ihd(tz — t1)0(g2 — q1) , (6.21)

i.e. G(go,t2;q1,t1) is nothing else but Green’s function which solves the Cauchy problem for the
Schrédinger equation. By construction this is the so-called retarded Green’s function.

Of course, for free particle there is a much easier way to get the same result.
) ) ) 2
— 5 (ta—t1)H _ — 5 (ta—t1)H —|a —FGa—t1) F _
{gzle lan> = | dpLgzle™ ™ IpXplar) = [ dp{qz2|pXXplaide™ 7 mo=
1 i(gp—qy)p— L (tg—t )ﬁ
_ Jdpeﬁ a2—q1)p—f (ta—t1) 5
2mh

The last integral is gaussian and to compute it, we complete the p-dependent term in the exponential to the complete square,
getting thereby

2
i - 1 im (a2—a1)? _ita—ty (p,m@)
{gale”m 2T gy — eh 2 (2=t1) | dpe 2™ 27/ =
2mh
1 i m (22—91)? i m (a2—a1)?
_ 2mhr R 2 (ip—11) — —m eR 2 (ia—t1) .
oxh V ita—t1) 27ih(to—ty)
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Chapter 7

Functional methods in QFT

The act of creation may be represented as a
source, and that of destruction by a sink, which is,
in a manner of speaking, a source.... The vacuum
at t = —o0 evolves into the vacuum at t = 400, via
the creation, interaction and destruction of a
particle, through the agency of a source. We want
to know the vacuum-to-vacuum transition
amplitude in the presence of a source. This
formulation, using the language of sources, is due
to Schwinger (1965).

Lewis Ryder
Quantum Field Theory

7.1 Generating functional of Green’s functions
Consider a free scalar field ¢(z) with the action (the God-given units are in here!)
Slo@) = [ da(30,0@)00() - dm*e?(x). (71)

Suppose the scalar field ¢(x) has a source J(z). Then we can define the so-called vacuum-to-vacuum
transition amplitude in the presence of the source J

Zo[T] = f D6 exp {z f da[ 2(0) + T@)o(x) + ;e¢2]} (7.2)

The e-dependent factor with € — 07 provides a convergence of the integral for large ¢.

Integrating by parts in the Lagrangian we can rewrite the quantity above as
Zo[J] = f@qﬁ exp {—ifd4x[é¢(ﬂ +m? —ie)p — ng]} . (7.3)
Let us make a shift ¢ — ¢ + ¢g. Then we get
[ dtalso@+ m? 0 - so] -

Jd‘lx[%gb(m +m? —i€)p + Lo+ m? — ie)go + (O + m? — i€)po — J — J¢>O]

76



and chose ¢( to satisfy
O+ m? —ie)po = J.

The path integral reduces then

Zo[J] = ez Sd'aTo J@qﬁ exp {—; Jd4x o[+ m? — ie)qb} — Nez§d'zioo (7.4)

N

where N is a normalization prefactor. Since Feynman propagator satisfy the equation
(O+m? —ie)Dp(z) = —id(x),
it can be used to write a solution for ¢q

do(z) = i f dy Dp(z — ) (y) (7.5)

Hence,
1
Zo(7) = exp| — 5 f dedy J(2) Dr (x — ) (5)] (7.6)

where we have chosen normalization in such a way that Zy(0) = 1. We see that the two-point
correlation function, which coincides with the Feynman propagator, can be obtained as

1 1) )
Di(ey = a2) = 0| T(@()o(w2)) |0 = gy 57e s soe 2l |-
Similarly, we define the n-point correlation function as
Glar, s, 20) = 0| T(@(@1)d(e2) .. owa)) | 0 = =000 z1y)

i 8J(z1) 6J(z2) ~ 6J(zn)
One can see that all the Green’s functions with the odd number of points vanish in the theory of free
Klein-Gordon field. The even-point functions are non-trivial, for instance the four-point function is

G(ml,l’g,l‘37l‘4) = DF($1 — ZEQ)DF(ZE3 — $4) + DF(ZL‘l — .’L‘g)DF(ZL‘Q — 1‘4) + DF(£L‘1 — 1‘4)DF(£L‘2 — 1‘3) .

It can be easily visualized as a sum of Feynman diagrams. Each diagram can be though of as
describing a process where particles created at two space-time points, each propagates to one of the
other points, and then they are annihilated. In general we have

G('xlvx?)"'xn) = Z G(xpl’xp2)"'G(mp2n717xp2n)'

perm

This result is known as Wick’s theorem and it can be alternatively derived by using the field com-
mutation relations.

We finish this section by explicitly mentioning that Zy(J) is nothing else as the generating
functional for Green’s functions and it can be represented in the form

L -
Zo() = Y] %Jdazl...dxn J(21) . I (@) G, s ).
n=0
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Figure 7.1: Feynman diagrams contributing to the four-point function in the free Klein-Gordon
theory.

T3 Ty I3

7.2 Generating functional for interacting fields

Let us now include in the action a potential term V(¢) which is supposed to be quadratic in the
field ¢:

Sl6(@)) = [ dte(30,0)0"o(a) - dm** () = V(9(a))). (7.7

The normalized generating functional is

§2¢ exp (z’S + iSJqu:r)
1= §2¢eis '

Obviously, we can write

f% exp (iS n iJngSd:r) - f@(;s exp {—i fdi(qﬁ(m))} exp {iSo +i de J¢} —
- f.@qﬁ exp{—ifdi(%%)}exp {iSo +ifd:vJ¢} -
- exp{—iJ'de(%ajix))}fgé exp {iSo +ifde¢} -
— Nexp [—z‘ fdxv(%%@))] exp [—% fdmdy J(2)Dr(w — y)J(y)] .
Analogously,
J@qﬁeis - J% exp (iS—i—iJ]q&dx)‘J:O -

N exp [—i f du V(iéJa(x))] exp [_; f dady J(z) Dp(z — y)J(y)]

Thus, for the generating functional the following formula is valid

J=0

exp [—i §dz V(%%)] exp [—1 §dedy J(z)Dp(z — y)J(y)]
exp [—igdz V(% 5(]‘5@)] exp [—3 §dady J(z)Dp(z — y)J(y)]J=O

217] =

The last formula should be understood in the sense of perturbation theory.

To make further progress, we have to specify the potential. Let us consider an example of the
simplest interacting theory in four dimensions where

V() = 539"
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With this choice of the potential we have
exp[ 4 {dz 6J(z) ]exp [—1 §dzdy J(2)Dp(z — y)J (y)]

exp [ i §dz 5575 | exp [ 4 T dady (@) Dela — )T 0)],_,

Z[J] = (7.10)

To only way to treat Z[J] is to expand the interaction term in the power series in g. Taking just
the numerator of Z[J] and expanding V' up to the first order in g, we will get

[1 — ZE dz 5;14) +O(g )] exp [—; dedy J(x)Dp(x — y)J(y)] (7.11)

Below we evaluate the action of four derivatives on e® = exp [—1 {dady J(z)Dp(z — y)J(y)] step

by step.

1) Action of the first derivative

6 UD”_ )dy]

2) Action of the second derivative

5J(Z)2 e® = —Dp(0) UDFZ— )dy]QeA.

3) Action of the third derivative

5J(Z)36A = 3Dp(0) UDp(z—y)J( ] [JDF 2oy )dyr A

4) Action of the fourth derivative

5Te = 3DH0)e® ~6Dr(0) UDF(Z —9)J(y) ] UDF - )dy]4 A

We can represent the final result graphically. The propagator is denoted by a straight line, the cross
means the source and Dp(0) is a circle

[1—2szw ] [I—ZJdZ 300 -6 x

The meeting of four lines at a point in all three diagrams is a clearly a consequence of the fact
that the interaction term (the potential) is ¢*. Moreover, the coefficients 3,6, and 1 in front of
the Feynman diagrams follow from simple symmetry considerations. The first term, for instance,
results from joining up the two pairs of lines in the third term, in all possible ways; there are three
different ways to do this. The second coefficient is obtained by joining any two lines of the third
diagram, obviously this can be done in six different ways. These numerical coeflicients are known
as the symmetry factors.

x + X H et (7.12)

The first term is known as a vacuum diagram, because it has no external lines. It is easy to obtain
the denominator of Z[.J], one has to put J = 0 in the terms of the numerator we just obtained.
Thus, Z[J] has the form

—%Sdz[?)OO—Gx O ><-|-><]—i—...]eA
[1-%#§a:(300) +.. ]

217] = [
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In fact, the denominator contains the sum of unity and all vacuum bubbles. If we expand denomi-
nator we will get

Z[J]

[eA—i—g!sz[3CD—6>< O ><+><]6A+...:|><|:1+%sz<3@)+...:|=
= eAf% dz[3%76>< QO ><+><]6A+%sz<3%)eA+...:

|
[ —
=
|
~|&
—
[oW
&
|
o
X
O
X
+
X
| S—
+
| S
o
>

As we see, the vacuum bubble disappeared from Z[J]. Actually, this property will hold to all
orders in perturbation theory and it is the general property of normalized generating functionals.
Thus, in our further considerations we will just ignore the vacuum diagrams.

Let us compute now two-point Green’s function by using our result for Z[.J]

1 82Z[J]
= "2 . 1
Gl 22) = 5 570 (2a) ‘J:O (7.13)
A simple computation gives
i
G(z1,22) = Dp(zy—x2)— 4—‘? 12 D (0) sz Dp(z—x1)Dp(z —x2) +... =
i
= Dp(zy —29) — 59 Dr(0) fdz Dr(z — 21)Dp(z — 22) + ... (7.14)

We thus clearly see the two-point function in the interacting theory contains a correction to the
propagator of the free theory already at the leading order of perturbation theory. This correction
has an important physical interpretation which we will now discuss. To this end, we first compute

—1—9'12DF(0)jdzDF(z—x1)DF(z—xQ) _
ig L d%k dip i i
= Y pao) | d
P )J Z(27T)4 (2m)* k2 — m? +ie p? — m? + ie

d4k ef’ik‘(:blfxg)
J’ (2m)* (k2 —m?2 +ie)?

e—ik(z—acl)—ip(z—wg) —

Hence, we can write

d4k Z'e_ik(ml_JQ) g d4k ie—ik(z1—fc2)
= =D
Clor, 22) J (27r)4 k2 —m?2 + e + 2 F(O)J (277)4 (k2 —m2 + ie)2 +

Consider now the expression

1 B 1 1 N 1 <1+ « )_
k2—m2+ie—a_k2—m2+iel—k7Nk:Q—m2+ie k2 —m?2 +ie)

(8]
2—m?2+ie
1 . le}
k2 —m?2+ie (k%2 —m?2 +ie)?’

where we have assumed that « is small. Comparing this expansion with the expression for G(x1, x2),
we see that the latter can be rewritten as

d4]€ Z'efik(wlfmz)
2m)4 k2 —m? — 2 Dp(0) + i€’

G(xl,xg) = J ( (715)
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We see that the pole of the propagator gets shifted and it equals to

m2+%DF(O)Em2+6m2=m?,

where
sm? = gDF(O).

The mass m,. is called the physical or renormalized mass. Notice that

d*k 1
(2m)* k2 — m? + de

Dr(0) = |
is the quadratically divergent quantity. Thus, the original mass m? is renormalized by an infinite
quantity, but this is in accord with the basic idea of renormalization — a physical quantity (mass, in
the present case) is not the same as the parameter in the Lagrangian, if an interaction is present.

Now we look for the four-point function (we now do not take into account the bubles)
1 §*Z[J]

Glon,wa, @, 24) = ST )00 ()00 (wa)

= l 64 — Q Z| — X O X EA
= (21100 (22)0) ()0 T () [1 1l fd [ -6 X ]
= DF(ivl — 132)DF(CC3 — x4) + DF(.Tl — zg)DF(xQ — I4) + DF(.Z’l — 1174)DF(IQ — xg) —+

g &4 O A
L 5 7(12)0 (22)0 (3)5T () U dz x X] ¢

_ig o 1
41 6.J(21)6J (22)0J (23)8.] (x4) [ f d X] ~ (7.16)
We have

ig 54 . o s

4 6J(x1)0J (22)0J (23)0J (24) [,[d ] = (7.17)

= —%DF(O) JdZ[DF(Z —21)Dp(z — 22)Dp (23 — 24) + Dr(2 — 21)Drp (2 — 23) D (22 — 24)

+Dp(z —21)Dp(z —x4)Dp(xe — 23) + Dp(z — 22)Dp(z — x3)Dp(x1 — 24)
+Dp(z —29)Dp(z —24)Dp (21 — 23) + Dp(z2 — 23)Dp(z — x4) Dp (21 — xg)] )

The symmetry factor of this diagram is 12. The last term gives
ig 54 J A
- d =
4167 (21)0 (22)0 (23)0 (z4) [ : X] c
54

- z z—x)J(x 4eA =
A 6T (21)0T (22)0] (23)0.T (24) Ud Dr( )J( )]

(7.18)

= —igfdz Dp(x1 —2)Dp(x9 — 2)Dp(x3 — 2)Dp(xs — 2) .

The first term of the order ¢° does not contribute to the non-trivial scattering. The numerical
coeflicients are easily derived by combinatorics, and this suggest a rather simple way to write a
diagram at a given order of perturbation theory. Let us return to our main example of the %¢4
theory and consider all diagrams with contribute to the four-point function. We deduce them as
follows. At order g™ we have n vertices, see figure [7.2] and corresponding to the four-point function
we draw four external lines, see figure[7.3
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XXX X

Figure 7.2: At order g™ there are n vertices.

x _
—————il
2 X ¢
Figure 7.3: Four external lines of the four-point function.

The four-point function is constructed from the following prediagram figure [7.4. We can now
join up all the lines. There are three topologically distinct types of Feynman graphs drawn in figure
[7-4] The multiplicities are calculates as follows

1) To get diagram (a) join z; to one of the legs of the vertex. There are four ways to do it. Now
joint xo up to one of the remaining legs — there are three ways. Altogether, there are 4! = 24
ways to obtain the diagram (a)., which is precisely the coefficient in equation (7.18]).

2) To make diagram (b) join x; directly to one of the external points xo, x3 or x4. There are three
ways to do it. Chose one leg of the vertex and join it up to one of the remaining external legs.
There are 4 x 2 ways to do it. Join one of te remaining legs of the vertex to the one remaining
point. Join the remaining two legs together. The total multiplicity is 3 x4 x 2 x 3 =12 x 6,

as in ([7.17)).

3) The multiplicity of the diagram (c) is 3 x 3 = 9. The diagram (c) does not appear because
we assume to work with the properly normalized functional Z[J] which produces no vacuum
diagram.

In summary, the Feynman rules for ¢* theory are rather simple: every line corresponds to the
propagator Dp(xz — y); every vertex contributes —ig together with one integration; every diagram
must be multiplied by a symmetry factor S/24!. The graph (b) is called disconnected and it does
not contribute to the S-matrix (it modifies a propagator of one of the particles). Only connected
graphs, like X contribute to S — 1, that is to the non-trivial part of the S-matrix.

7.3 Generating functional for connected diagrams

It turns out that there exists the generating functional which produces the connected diagrams only!
It is called W[J] and it is related to Z[J] by the following formula

Z[J) ="l o W] = —ilog Z[J].

82



| X .
X+ X4
a & §

Figure 7.4: Prediagram to construct the four-point function and Feynman diagrams obtained at
order g.

The corresponding connected Green’s functions are denoted by G, and they are given by

1 MW
18I (xq) ... 6J(x)

Ge(x1,...,2,) = (7.19)

By using as an example two- and four-point functions let us show that W[J] produces no dis-
connected graphs. We have

L A N A P Y B §2Z[J] (7.20)
§J(21)6J (x2)  Z[J|2 6J(w1) 6J(x2)  Z[J] 6J(21)6J (22) ’
Now taking into account that Z[0] = 1 and g([ﬁ = 0, we find
2 2 2
1 ewlJ] c#z[J] 1 &zlJ] Glar.am). (721)

i 6J(x1)6(z2)  0J(x1)0J(x2) 02 6J(w1)00 (z2)

This shows that W[J] generates the propagator to any order in g. This is expectable since the
propagator has no disconnected parts. To find the four-point function, we differentiate W[J] twice
more and put J = 0 at the end.

First, for the third derivative we find

SFWIJ] _ 2 52  8Z 62
i 82z 6Z i 5%z 6Z i 82z 5Z
I 67(21)67 () 6 (w2)  ZIJJ2 67 (w2)0J (z3) 67 (w1)  Z[J]? 67 (21)3] (w2) 6.7 (x3)
i 83 Z[J]

 Z[J] 6J(21)6J (w2)6J (x3)
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and now applying one more derivative and putting J = 0, we get up to the order g

SAW[J] ‘ _ [7 54 Z[J] N
6J(x1)6J(22)0J(x3)0J (x4) lT=0 0J(x1)0J(x2)dJ(x3)0J(x4a)
N 62Z 627 N 627 62Z N 62Z 627 ] _
0J(x1)0J(x3) 6J(x2)0J(xa)  8J(x2)0J(x3) 6J(x1)8J(xa)  8J(m1)0J(22) 8J(x3)0 T (x4)

= i[G(:c1,:1:2)G(:(33,:1:4) + G(z1,23)G(w2,24) + G(x1,24)G (22, 23) — G(:(Jl,xg,xg,x4)] =
= [Dr(a1 — 2) - 2 D) sz Dp(z = 1) Dp(z = 22)]| [ D (a5 — 24) - ’;g D (0) sz Dp(z — w3)Dp(z — 24)] +
[ |
+[DF T — x4) DF(O) sz Dp(z —x1)Dp(z — 14)] [DF T2 —x3) — — DF(O) sz Dp(z — x2)Dp(z — IS)]
)

—[Dr(z1 — Iz)DF(IS —24) + Dp(z1 — 23)Dp(z2 — 24) + Dp(21 — 934)DF(932 —x3)

+|Dp(xy —x3) — — DF(O)JdZDF(z —x1)Dp(z — x3) [DF (x2 —x4) — = DF(O)szDF(z —x2)Dp(z 7504)]

_EDF(O) sz Dp(z —x1)Dp(z —x2)Dp(x3 — x4) + Dp(z — z1)Dp(z — 23)Dp(x2 — x4)
+Dp(z—21)Dp(z —x4)Dp(z2 — 23) + Dp(z — 22)Dp(z — x3)Dp(z1 — x4)

+Dp(z—22)Dp(z —z4)Dp(x1 —x3) + Dp(z — 23)Dp(2 — 24)Dp(z1 — 1‘2)]

19 [sz Dp(xz1 — 2)Dp(z2 — 2)Dp(v3 — 2)Dp (x4 — 2) + 24 termsH . (7.22)

The result is
19

SAW[J] B
57(e1)07(22)87 (23)00 () ‘J:O = 2 [J dz Dp(x1 — 2)Dp(z2 — 2)Dp(xs — 2)Dp{zs — 2) + 24 terms] ,

which is the sum of connected graphs only.

7.4 Connected diagrams in the momentum space

It is very convenient to work with Green’s functions in the momentum space as it allows one to
straightforwardly define the vertex functions — one of the most important notions in quantum field
theory. Green’s functions in the momentum space are defined as the Fourier transform of the
coordinate space Green’s functions

G(p1,---,pn) = JH da; ePr@TPan Qg xy). (7.23)

Since we are interested in the connected Green’s functions below we compute the two- and four-point
connected functions in the momentum space up to the order g. We have

d4]€ ieik(wlfxg)

+
2m)4 k2 —m?2 + ie

Ge(pr,p2) = fd:mdfrzeip”““pmj(

DF(;:—I2)
d4k‘ ie—ik(ml—mz)
2m)* (k2 — m?2 + ie)?

+ gDF(O)JdIldxg eip1r1+ip2m2 J, (

Taking into account that the d-function in d-dimensions has the following Fourier transform
eikaz
0(x) = | ——dux,
=] oy
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we find

: 1D (0) '

i i F i
Gelpr,p2) = (21)*8(p1 + + 2 + ...
(P p2) = (2m)70(py pQ)[p%—mz—i-ie p?—m2+ie i p?—m?+ie

Analogously, for the four-point function at the leading order g we compute

4 4
Ge(p1,p2,p3,pa) = —igf (H dei e“’m) sz [[Dr(zi—2).
i=1 =1

Performing the Fourier transform, we find

4 .
1
Ge(p1,p2,p3,p1) = (20)28(p1 + pa + p3 + pa) l—zgn -+ .. ] : (7.24)

—m?2 =
i1 by —m* — e

7.5 Self-energy and vertex function

We saw in the previous sections how to apply perturbation theory to calculating the 2- and 4-point
Green’s functions. We also found that the mass of a particle, defined as a pole of the two-point
function, was no longer the bare mass m? but m? + ém?2, with ém? = —2Dp(0) in ¢* theory. Here
we want to look at the problem of summing to all orders and, therefore, obtaining the exact Green’s
functions. We will approach this problem again in ¢* theory.

As was already mentioned, to study scattering processes, we are most interested in connected (also
called irreducible) Feynman graphs, which are generated by the functional W[.J]. All the graphs
generated by Z[.J] can be expressed via connected ones entirely through the formula Z[.J] = ¢"WL7],
More precisely, if we denote by G the n-point Green’s function and by Gg") the corresponding

connected one, then G is equal to ng) plus products of Gt connected Green’s point functions
of lower order m < n.

We therefore made a digression from the class of all Feynman diagrams to the class of connected
ones. Now we make a further digression from the class of connected diagrams to the class of one-
particle irreducible ones. Ignoring numerical prefactors, the connected 2-point function is, to all
orders,

+

o+

8.
Bo. 0
8.

Figure 7.5: Connected 2-point Green’s function at all orders in g.
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We want to develop a method for summing up all these graphs. The sum will be naturally called
the complete or dressed propagator. The effect of all interacting graphs is to change the physical
mass away from the bare mass and, therefore, give rise to self-energy. Note first that all graphs
contain two free external propagators. This allows us to define truncated graphs by multiplying the
external legs with inverse propagators. For instance at order g we will have three truncated graphs
Of the three truncated graphs of order g2, the first is a product of of graphs of the lower order,

Figure 7.6: Truncated 2-point graphs at order g2.

but the other two are not; this is because the first graphs contains the propagator. It is called one-
particle reducible, while the other two graphs — one-particle irreducible. In general, a one-particle
irreducible graph (1PI) is the graph which cannot be make disconnected by removing one line (i.e.
one propagator). Based on this classification, we may define the proper self-energy part as a sum of
all 1PT graphs, see figure [7.7} The complete propagator in the momentum space may therefore be

O, O, o

Figure 7.7: One-particle irreducible graphs contributing to the self-energy %E.

written in terms of the bare propagator Gg = pZ_ZW and the proper self-energy %E(p) as follows

22 60(0) + Gon) 22 o0 2 o) + .. =

7

GP0) = Golp) + Golp)

G 1= =60

= Go(p) [1 + Go(p) + @Q)(M@Go(p) +.. ] =

~Jero -2 -

—1

T
)

al s g (7.25)

Here the function 5(2)(]3) is defined as

Geolpr,p2) = (2m)48(p1 +22)C 2 ), p=p1,

i.e. by stripping off from the momentum space expression G.(p1,p2) the delta function 6(p1 + p2).
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Defining the physical mass mpnys by the pole of the complete propagator

=(2) i
Go ()= 5———
¢ p2 - m}%hys
gives
mghys =m? + E(p) ’
which justifies the term “self energy” for ¥(p). It represents a change from the bare mass to the

physical one to all orders in perturbation theory. It happens not because we have divergent diagrams
rather because the theory is interacting.

We see that . S (p) 1
[&w)]  =catw) - = = <[ —m? - =)
This leads to
e p) =G0 w)[p - m? - 2] =i (7:26)

The inverse of the complete propagator is called the verter function f(2)(p) and it contains the
inverse of the free propagator plus the sum of 1PI graphs:

T (p) = p* —m> = X(p). (7.27)

Let us show that there exists a generating functional for the functions '™ . It is denoted by o]
and is defined by means of the Legendre transform

WIJ] = I[¢] + f dz J(2)é(x) (7.28)
One gets
owig) _ o Tl _
ST = 0@ i = @), (7.29)
For the propagator we
Gl ) = © CW___00m) (7.30)

i 6J(x1)0J (22) 6J (z2

~—

Define the kernel
_ 8Tlel (=)

It is easy to see that this kernel is inverse to the propagator

6p(x1) 6J(21) _ .0¢(w1) _ |
dz G.(z1, 2)(z,x =sz =1 =i6(x1,x2). 7.32
We define the inverse Fourier transform of G.(x1,x2)
_ dpldpQ —i(z1p1+x2p2) 4 =(2) —
Gc($1,$2) - (2’/T)8 € (277) (5(])1 +p2)Gc (pl) -
_ dp 7ip(x1712)*(2)
- J(Qﬂ')‘le Gc (p)
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and also of the vertex function

Panas) = [ oo oo an)t s+ paT (o) =
- [ e ),
Plugging these expressions in the left hand side of and integrating over z, we find
[@:Gutor ) = [ eGP e =i [ gl

where we have written the delta-function on the right hand side of (|7.32)) via its Fourier image. The
relation we just obtained implies the relation (7.26]).

N

Figure 7.8: The relation between the connected three-point function fo”) and the vertex function
I'®). The connected Green’s function is nothing else as the vertex function with external lines being
the dressed propagators.

Consider the equality (7.32)) again and write it in the form
SPWI[J] 5°T[4]
dz = —§(xe — 2/ 7.34
J 4 i1 ey ~ ) (734
We have the following identity

o _ zéqb(z)izi z zwL
5@ Ja 5.0 (x) 50(2) Jaz6uce 5o

We take a variation of equation (7.35) over J(z”) and use the identity above

W[J] 52r[¢] J Tle]l 7 _
f 5T <x1>6J<x2)5J<) f 1 wu w 6J<x1)[ <> (ﬂ
Wl [

J] n
f y; (xl)aJ(xz)ch() Iz 2) + fdzdz Ge(@a, 2)Ce(2", 1) 5

=0.

|
() P(z")p(z")

Multiplying both sides of the last relation with G.(2’, x3) and integrating over 2/, we get the following
remarkable relation

SPWIJ] _ 53T[¢]
5J(I1)5J(I2)5J(I3) = — de1d22dZ3 G’c(azl, Zl)Gc(IQ, ZQ)GC(.Tg, 23) 5¢(Z1)5¢(22)5(b(23) . (735)
The previous relation means
1
Ge(z1, 20, 3) = = de1dZ2sz Ge(x1,21)Ge(x2, 22)Ge(x3, 23) T (21, 22, 23) . (7.36)
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and its meaning is explained in figure The last formula can be inverted with the help of relation
(17.32) giving

F(S) (.CL‘17 x2, xg) =1 fdzld22d23 F(Z1, 131)F(Z27 JL'Q)F(ZQ,, $3) GgS) (Z17 z2, Z3) . (737)

Differentiating these relations again we find the expression for the connected four-point function,
see figure [8:4]

Figure 7.9: The relation between the connected four-point function G£4) and the vertex functions
I'® and ', These vertex functions are 1PI irreducible blocks which are glued by means of dressed
propagators.

In general we have

I[¢] = Z %del...dxn T (2.2, o) ... d(x) . (7.38)
n=0 """

Since an arbitrary connected diagram is obtained once and only once as a tree diagram using
these complete propagators and proper vertices, the proper vertices must be one-particle irreducible
amputated n-point functions. Since a tree diagram is never divergent if the vertices and propagators
are finite, it is clear that any diagram will be finite if all T(") are. Hence the issue of renormalization
can be entirely discussed at the level of T'(™).

7.6 Functional methods for fermions

The fermions satisfy the anti-commutation relations

{¥(2),¥(y)} = 0.

Thus, in quantum theory fermions must be realized as anti-commuting operators. In the approach
based on the functional integration, the generating functional for Green’s functions is written as
a functional integral over the fields, which are regarded as classical fields. These classical fields,
however, are ant-commuting numbers at each space-time point. As such they satisfy the so-called
Grassmann algebra which is generated by letters C; satisfying the relations

{Ci,Cj}ZCiCj-l-CjCi:O, t=1,...,n.
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These relations imply that C2 = 0. Any function of C; can be expanded as
f(Cz) =ag + a;C; + CLijCin + aijkC’iCjC’k +...4+a1 ,C1...C,. (739)

The operations of multiplication and differentiation satisfy the following rules

0 0o 0
Gl ST o o R

We need to define integration with respect to the grassmann variables. The rules are
JdCZ-=O, JdCiC’izL (7.40)

where no summation over 7 is assumed.

Let us now 71 and 7 be independent complex grassmann variables, so that

J’d77=fd77=0, Jdnn=dﬁﬁ=1.

Since, n? = 72 = 0, we have e~ = 1 — nf) and, therefore,

Jdndﬁ e”M = Jdndﬁ — Jdndﬁnﬁ =0+1=1. (7.41)

We would like to generalize this formula to the higher dimensional case. For the two-dimensional

case we have
m _ m
- o= ). 7.42
7 ( o ) n ( s ) (7.42)

Now we have nn = 7111 + 72m2 and

(m)* = (m + T2n2) (M + M2m2) = Mmianz + N2leMm = 2Mmians - (7.43)
Thus,
€™M =1 — (m + 72n2) + % X 2Mm2n2 -
Defining he integration measure as

dn dn = dfidnidijadn,

we have
fdndﬁ e M= JdﬁldﬁQ dmidne mimifane = 1.

Thus the result we get for the two-dimensional case, according to our rules, is the same as in the
one-dimensional case! More generally, we could consider the change of variables

n=Ma, n=Na,

where M and N are two 2 x 2 matrices and o and @ are the new independent grassmann variables.
In particular, we have,

mmne = (Mnal + M12042)(M21041 + M22a2) = (M11M22 - M12M21)C¥1042 =detMoa;a;.

90



However, if we would like to preserve the integration rule

fdmdwnmz = Jdoqdaz fe3re?)

we must require
dnydne = (detM) 'dasdasy,

which is very opposite to the logic of the change of variables! We further have
(det MN) f dada e N Mo _ 1
Since detM N = det M*N. denoting M‘N = A, we have
f doydag e=%4% = detA . (7.44)

This is an extremely important formula in the calculus of grassmann variables!

To describe fields with the Fremi statistics, we have to introduce an infinite-dimensional grass-
mann algebra with generators C(z). The generators obey the anti-commutation relation

{C(2),C(y)} =0,
and the integration rules

JdC(az) o, JC(:c)dC(x) _1.

With these rules we can write the vacuum-to-vacuum transition amplitude for the free Dirac field
Zalnoi) = 57 [ 2590 exp [i [ 6@)3#0, = m)b(a@) + n()o(e) + @], (T45)
where the normalization constant is chosen as
N = [ 9096 exp i [ Ga)ir0, - myuo)].

Here 7(x) represents the source term for ¢(z) and n(x) the source for (x).

Our next goal is to calculate Green’s functions in the same manner as has been done for the
Klein-Gordon field. Introduce for simplicity the following notation

St =iy"0, —m,
so that
Zoln.il = 57 | 2690 exp [i [ @) 0(a) + 1)) + dan(e)|. (7.46)
To evaluate this integral, we define
Q%) =S~ + i +
and find the value of ¢ which extremizes Q. It is

5 _
(sg 25711/)“!‘77:0 - wcxt:_sna wcxt:_ﬁs'
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Thus, B
Q(wextawext) = _ﬁSn

and the path integral takes the form

Zalnl = v [ 2620 e i [ del = 08w+ (5~ Do) STHw Yt
_ %exp[—i f () Sn(y)dedy | det(~i5 ) (7.47)
This gives
Zofnol = exp[ =i [7(0)S( ~ pn()dedy].
where

S(x) = ("0, +m)Dp(z)

is nothing else but the Feynman propagator for the Dirac field. Analogously, to the Klein-Gordon
case, we can define the two-point Green’s function

1 62Z0 [777 ﬁ]

G(z,y) = ﬁm‘n=ﬁ=0

=iS(z —y). (7.48)

The generalization to the interacting case is straightforward

Z[n,n] = exp [ZJ,oZnt(i(;;, %%)dx]Zo[n,ﬁ].
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Chapter 8

Renormalization

If the doors of perception were cleansed everything
would appear as it is, infinite.

William Blake
The Marriage of Heaven and Hell

Integration over internal loops in Feynman diagrams often leads to divergent expressions. Thus,
the perturbation series is miningless unless we find a way to solve this divergence problem. In this
chapter we discuss how this can be done for the ¢* theory. The main idea is to build up the pertur-
bation series order by order in the coupling constant and to show that at any given order physical
quantities (such as mass, coupling constant, Green’s functions) can always be renormalized to finite
values. In the theories like ¢*, Quantum Electodynamics (QED) and Quantum Chromodynamics
(QCD) the renormalization procedure can be carried out to all orders and, therefore, these theories
are renormalizable.

8.1 Superficial degree of divergence

As we have seen, the quantity Dg(0) is divergent and it modifies the propagator of the free particle
giving a contribution to the self-energy. In the momentum space the corresponding expression is

g g [ d*k i
Ipp(0) =2 . 1
o Pr(0) =3 J (2m)2 k2 —m2 + ie (8.1)

Obviously, in the spherical coordinate system d*k is proportional to k2, while denominator grows as

Figure 8.1: Divergent diagram at order g. It has one loop L = 1 and one internal line I = 1. The
superficial degree of divergence is D = 2.

k2, so that the integrand behaves as k for large values of k and, therefore, the integral is quadratically
divergent.
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This divergence arises for large values of momenta and, for this reason, it is called ultm—m’oleﬂ
Another divergent quantity arises at order ¢ it is given by the following expression

2[ d*qr d*qe 6(q1 + g2 — p1 — p2) _ QJ dq 1
)t 2m)* (6 = m?) (g2 — m?) @) (@ =) + 2 — P =)

This diagram is logarithmically divergent.

(8.2)

Figure 8.2: Divergent diagram at order g2, It has one loop L = 1 and two internal lines I = 2. The
superficial degree of divergency D = 0.

There is a general way to find a degree of divergence of a particular Feynman graph. Each
propagator contributes a power of ¢2 in the denominator, each vertex four powers of ¢ in the
numerator, together with the momentum conservation d-function. Also, the number of independent
momenta (over which we integrate) is the same as a number of loops. So consider a diagram with
of order ¢g”, i.e. a diagram with n vertices, F external lines, I internal lines and L loops and, for
generality, consider a theory in d-dimensions. The superficial degree of divergency of such a diagram
is

D =dL—-2I.

Thus, indeed, with this formula we find for the diagrams discussed D = 2 and D = 0. We want to
express this formula in terms of F and n, i.e. we want to eliminate I and L. There are I internal
momenta. There is a momentum conservation at each vertex (of which there are n), but there is
a total momentum conservation, so there are n — 1 constraints between the momenta. Hence the
number of independent momenta is I —n+1 and it concides with the number of loops L = I —n +1.
In ¢* theory each vertex has four legs; so all together there are 4n legs at order n — some of them are
external and some of them are internal, internal legs are counted twice as the connect two vertices:

in=FE+21I.

Thus, we get

d
D=dl-n+1)—2l=d2n—E/2—n+1)—(4n—E)=d — (5—1)E+n(d—4).
For d = 4 we have D = 4 — E. This indicates that diagrams with more external legs than 4 will all
converge. For instance, if £ =6, D = —2.

Could we imagine that d is a little bigger than 47 Would it be the case we would run into a
terrible situation that the superficial power of divergency increases with the number of loops! This
means that adding one more term of perturbation theory leads to more severe divergence. Obviously,
to treat such theories from the perturbative standpoint is hopeless. For ¢* in four dimensions we see
however that D depends on E only, but not on the order of perturbation theory. Here we are lucky
to have only a small number of divergent graphs and the hope is that their effect can be eliminated

IDivergences in the Feynman diagrams arising for small values of k are called infra-red. We will not touch the
issue of the infra-red divergencies here.
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by infinite renormalization of various physical quantities. In the case this turns out to be true the
corresponding theories are called renormalizable. Note that the situation improves if d is slightly
less than 4, because in this case the term n(d — 4) contributes negatively to D. This fact will be
used in the dimensional regularization procedure described in the next section.

If our theory would be ¢", then the corresponding superficial degree of divergency would be

D:d—(g—1)E+n[g(d—2)—d], (8.3)

which for d = 4 gives
D=4—FE+n(r—4). (8.4)

From this formula we see, for instance, that the ¢ theory is nonrenormalizable, while for ¢> we have
D =4— FE —n and it is called superrenormalizable because D decreases with n meaning that there
is only finite number of divergent graphs for a given E. Note also that in two dimensions D = 2—2n
independent on r.

Let us now return back to D = 4 — E and figure out if all graphs with £ > 4 are actually
convergent.

M-

[

a & c

Figure 8.3: The graph a) is convergent. The graphs b) contains the one-loop contribution to the two-
point function — it is divergent. Similarly, ¢) contains two one-loop contributions to the four-point
function, it is also divergent.

The situation outlined in figure happens to all loop orders. This means that a given Feynman
graph diverges if it has hidden two- or four-point functions with one loop (or more) — this is despite
of the formula D = 4 — E! This is precisely the reason why D is called a a superficial degree of
divergency. There is an important Weinberg’s theorem which says that a Feynman diagram converges
if its degree of divergences D, together with the degree of divergence of all its subgraphs, is negative.
The two divergent diagrams G2 and G® we discussed above are called primitive. They are the
only primitive divergencies in ¢* theory.

8.2 Dimensional regularization

Regularization is a method of isolating the divergencies of the Feynman integrals. Regularization
can be performed in a variety of different ways. One extremely intuitive is to introduce a cut-off in
the Feynman integrals in the momentum space. For instance, in QED the photon propagator gets

modified as
1 1 1 A2

— -

PP PPN PP —A?)
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As usual, the game relies on the order of limits! Obviously, introduction of A improves the con-
vergence properties of the Feynman integrals in the ultra-violet region, but simultaneously such a
regularization procedure brings quite a lot of difficulties when non-abelian gauge theories are con-
cerned. One very interesting regularization scheme is that of dimensional regularization. The main
idea here is to treat the divergent loop integrals as integrals over d-dimensional momenta and take a
limit d — 4 at the very end of the calculation only. In this approach the singularities of the Feynman
graphs show up as simple poles in the variable d — 4.

To explain the dimensional regularization scheme, we have first to generalize the Lagrangian
description of the system to d dimensions. For the Lagrangian density we have

1 m3
L = S0u009" 90 — 007 — o

If we stay with the units 7 = 1 = ¢ in which the action is dimensionless, then the mass dimension
of ¢ is [¢] = % — 1. The coupling constant, also called ‘charge’, is dimensionless in
four dimensions, but if we want to keep it dimensionless in d dimensions, it must be
multiplied by ©*~%, where p is an arbitrary mass parameter. We will make use of this fact
later. We call this .Z the bare Lagrangian with the bare field ¢, the bare mass mgy and the bare

charge go. As aresult of interactions, these bare quantities will undergo a non-trivial renormalization.

One-loop contribution to the self-energy

The one-loop integral contributing to the modification of the propagator is

d4 3
7] Gy (55)
2 ) (2m)9p2 —mg + ie

Due to the fact that [go] = 4 — d, the mass dimension of this integral is exactly 2.

Thus, we have to learn how to compute this integral in d dimensions. We assume that our space
has a Minkowski-like signature with one time- and (d — 1) space-like directions. In general, we are
interested in the integrals of the typeE|

d
I[d] = J' ( dp (8.6)

P+ 2pq — m?)*’

where ¢ is another fixed d-dimensional vector. To proceed, we first make a change of p,, — p, — q,
so that the integral takes the form

1) = | 4

[p* = (¢* + m?)]*

Second, we to rotate the integration contour through 90° ( Wick rotation) and change the variables
p® — ip®. The integral becomes

d d
Iw]:m_uaj dp u—naj((yp. (8.7)

[p? + (g2 + m?)]> p? + )

where we introduce a concise notation ¢ = ¢?> + m?. To compute the last integral, we pass to the
spherical coordinates in d-dimensions

p= (ra¢701702a .. 'od—Q)

2As our discussion of the integration in d-dimensions is general, we use here the notation m? instead of m%.
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The measure is

d—2
d% = r¢=1dr d¢ H sin® 0,0y, .
k=1

This is the standard formula of the change of variables in the integration measure and below we
indicate the integration regions of parameters

r<0<ow, 0O0<o¢<22r, 0<6b;<m.

Further, we have (this formula can be, for instance, easily checked with the Mathematica pro-

gram)
: r(s)
J sin® 0 df = \J1——L .
0

2
()

E

and, therefore,

d=2 ~m 3 -1 d—2
. a2 T'(1) I'(35) T'(2 %) w2
k 2 2
sin” 0, df, = 7 2 =
,Hfo rrerE 1y e
Thus,
d d d
dp 2r2 (* rd-idr 2r2c2” de
= = dtt = 1+t 8.8
[ras =t | e = Tray |, wtaser 5

where we made a change of variables ¢ = r/ y/e. The formula for the Euler beta-function

[(2)(y 221 2
B =———"—"=2 det=*= (1 +t 8.9
() = T = [Tty (39)
valid for Rex > 0 and Rey > 0, so putting
d d
T = 5 ) y=a— 5 )
we have
d d
a’p 7T§c§_af<o< - %)
J _ . (8.10)
(P* +0)* I'(a)

This is one of the main formulas of dimensional regularization. Thus, we finally obtain

MNa-3
I[d] = (=1)%ix? (F(a) ) T +;2)ag , (8.11)

One comment is in order. For the case a = 1 we are most interested in, y =1- 5 =1-2+% s=-1 + £ 5, which
is less than zero for ¢ — 0%. Thus, for € in the vicinity of zero the integral (8.8) remains divergent and dimensional
regularization cannot make it finite. This is, of course, is the consequence of the fact that in four dimensions this
integral is quadratically divergent. Strictly speaking7 only logarithmically divergent integrals can be made finite by
dimensional regularization with d = 4—e. To understand this issue, we compute the integral for @ = 1 by putting
also a momentum cutoff A. For Red > 0 the integral exists and is evaluated in terms of the Gauss hypergeometric
function o F}

d d d d

dd 2m2e¢ 5*1 -1 2n2c2 ANd1 d 2+4d
f Po_ J*f = et (—) 72F1<1, LJ\—z) (8.12)
P2 +ec 1+ 2 r(9) d 2" 2 c




The large A expansion gives

—1

dip  2rm2c S (1)t A yd—2k 1
jp2+c* r(d) LZI d— 2k (%) ol —9G)| (8.13)

Thus, the answer contains two terms: the first one depending on A and the second, A-independent term, which
precisely coincides with the expression (8.10) with o = 1! In the renormalization procedure one first considers the
limit A — oo while keeping € fixed. As is clear from eq.(8.13), the series in A has a structure

() ()
2 —e\4/c e \4/c
For € > 0 in the limit A — oo only the first term matters. This term is regular in the limit ¢ — 0. One normally
sets up a scheme, where a first step is to renormalize m? by removing the A2-divergence while keeping € finite. As
a second step, one performs a multiplicative e-renormalization making Green’s functions finite in the limit e — 0.
Usually in the literature on dimensional regularization the first step is assumed as already implemented and therefore
is not discussed. In our treatment below we undertake the same root.

Returning back to our one-loop integral in d-dimensions, we find

d¢ ; ; 2 gn2,,2\2-4 d
[ e = S g0 = 8 () (1 ),
2 ) @2m)dp2—m§+ie  2(2m)d ’ 3272\ mg 2

where we introduce a dimensionless coupling g through the relation gy = gu*~?, where p is an
arbitrary mass parameter which represents a freedom of dimensional regularization.

The gamma function has poles at negative integers where

(=D"

n!

I'(—n+e¢) = E + 1 (n+1) +O(e)], (8.14)

with

11 1
D=1l4+-+-+4...+——
Yi(n+1) totgt -y

and v = —1(1) = 0.577 being the Euler-Mascheroni constant. Taking e = 4 — d, we find

d € 2
r(1—7)=r(—1 7)=—7—1 . 1
5 +3 ; + 7+ O(e) (8.15)
Thus,
gu‘*‘df d?k i _gm® sl <4i52)r(1 B g) 20
2 2m)? k2 —m? +ie 3272 2
2 2 2.2
20 _ 9Mp gmo(_1 _1 (47r W )) 1
T6n2e T 1672 + v —log 2 +0(e). (8.16)

~
finite

We clearly see that in dimensional regularization the divergence of the present integral manifests
itself as a pole in €. Further, the finite part depends on an arbitrary mass scale p; changing p — tu
we can adjust the finite part to take any desired value! From this result we immediately read off the
contribution to the proper self-energy

gm?

 1672¢

Y= + finite (8.17)

and therefore the vertex function can be written up to O(e) as

I (p) =p* —m? |1 g 9 (—1+7—10g(47:b52))]. (8.18)
0

1672 | 1672
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Figure 8.4: The vertex function I'®) at the leading and sub-leading orders in perturbation theory.
Dashed lines depict the amputated propagators. The three graphs at order g2 are parametrized by
the Mandelstam variables s, t, u, respectively. At the leading order the vertex is simply guc.

One-loop contribution to the four-point vertexr function
Now we turn to the one-loop divergent integral at order g3

1, [ di 1
— . 8.19
39| @) (@ — 2 + i) (o1 + P2 — ) — M + i) (8.19)

Since go = gu*~? the integral has the mass dimension 2(4—d)+d—4 = 4—d = e. Using the formula

1_11 da
ab  Jo [ax +b(1 — )]’

we rewrite the integral as

4 d 1
J J [¢> + (p> — 2pq)(1 — ) — mi + ie]>’ (8.20)

where p = p; + pa. Making the shift of the integration variable ¢ — ¢ + (1 — z)p, the integral is
brought to the form

1
)i
J dxf [¢2 + p2x(1 — z) —m3 +ie]? (8.21)

After the Wick rotation it becomes

2(u?)t= dj dxf ! . (8.22)

[¢? +m§ — p?a(l — x)]?

The integral over momenta is computed by using the formula (8.10)), so we get

. a
%QQ(lﬂﬂfle(Q ;l) . dx[ —p .Z‘(l _ x)]g -2 _
‘ 27% (1 — 2)14-2
Iy ) [ "do [iw(l)] | o

Here we written the integrand in such a way that it is dimensionless. Detection of the divergent and
the finite piece is easy. We have

. 7”.27 2(2 —x
s face
327'('2 0

- 2 €
ig°p —pPa(l — =)
_ 1 .

6%~ 3207 ( f de o | a2 D +0(9)
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For 0 < x < 1 the maximum of z(1 — x) is reached at x = 1/2 and it equals 1/4. Thus, for p? > 4m?
the argument of the logarithm is on the branch cut of the latter and the integral representation
above looses its validness. Note that the presence of u€ reflects the correct mass dimension of the
original expressiorﬂ In what follows it is convenient to adopt the notation

1 2

dz In [w] , (8.24)

F(s,m.) = [ o

0

where s in the Mandelstam variable s = (p; + p2)?. The other two Mandelstam variables are
t = (p1 +p4)? and u = (p1 + p3)?. The Mandelstam variables are not independent; if all incoming
momenta are on-shell and because of the conservation law they satisfy the relation

s+t+u=4m?. (8.25)

In the region —oo < p? < 4m? the integral can be computed to give
1 2 2 2 2 2 2
_ 1— Am2 —
[ [P o I sV e [ V] (s26)
0 A A /P2 [Am? — p?

This result exhibits a square root branch cut with the branch point at p?> = 4m2. The expression
R
for the vertex function F( ) reads, c.f lb

arctan [

32.92/1/6 i92M6

=(4) .
™ = _igue —
gp 1672¢ 3272

(3'y+F(s7m0,u) + F(t,mo, 1) +F(u,m0,u)) , (8.27)

where contribution at order g* comes from three graphs on figure (8.4)).

Renormalization at one loop

At tree level and one loop, up to terms vanishing in the limit € — 0, we have found for the two- and
four-point vertex functions the following result

=(2) 9 g g ( (47r2u2))
T — P2 1— —14~—1
() pm o 1672e * 1672 +y—log m3 ’
(4 ) 3 2, —€ i 2, —€
T () = —igy+ 2008 10K (35 4 F(s,mo, p) + F(t, mo, 1) + F(u, mo, )] -

1672¢ 3272

The vertex functions above depend on the bare quantities m3 and go, and on the additional mass
parameter p of dimensional regularization. They exhibit pole-type singularities in the limit € — 0.

We suppose that at one loop the bare parameters (go, m3) are expressed via renormalized pa-
rameters (g, m?) as

2
x %k(g7 72)
md o= m? |1+ ———L | =m?Z, (8.28)
k=1 €
2
~ gk(g, %)
€ © €
o = gp 1+ZT =gpZy. (8.29)
k=1

The functions Z,,, and Z, are dimensionless. In perturbation theory all Z’s are series in renormalized
dimensionless charge g starting from unity and having poles in e.

3Mass dimensions of the graphs we computed is the same as of the corresponding vertex function
T (p1,pa,...,pn=1) = T (p1,pa,...,pn)0(p1 + ...pn). For generic n it is d + n(l — %) =4—n+ (% — 1)6.
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Let us show how the procedure of renormalization works. We start from T(Z) (p) and substitute

. . =(2 . . . . . . .
their m3. Since I‘( )(p) is of the first order in g and has a pole in €, considering renormalization at
one loop, it is enough to restrict ourselves to

M
m2 = m? (1 + —19) . (8.30)
€
Concerning g, we do not need to do anything here, since the two-point function already depends on

the renormalized coupling g. We then have

@, s g g g g I
I'(p) = p —m(H . )[1_167r26+167r2 (_1+7_log(m2(1+“’?g)) '

According to the ideology of dimensional regularization, we have to expand this expression in g
keeping € finite up to the order g, as the computation of the corresponding vertex function has been
done up to this order. In particular, in the term containing the logarithm it is enough just to take
the leading order m?2, as the sub-leading term will produce the contribution of order g and higher.
Thus, making this expansion we get

=) o ol 9 _ g g (47r2u2)
T = p?om?|1 . -] .
() prome b € 1672e * 1672 ( +ty—log m?2

Finally, picking up .#;1 = ﬁ we cancel 1/e terms and get the finite vertex function in the limit

€ — 0 at one loop. Such a renormalization scheme where Z-functions and start from
identity and they are designed just to cancel poles in € is called minimal subtraction schemeﬂ In
what follows we confine ourselves to minimal subtractions. Thus, renormalization of mass at one
loop in the minimal subtraction scheme is

2 2 6579
mg=m (1 + e) . (8.31)

Let us turn our attention to the four-vertex function. Here we should substitute in the four-vertex

function
4,
go = gu <1+ig>

and expand the result up to the order g? (again keeping e finite), which is the order the vertex

function was computed. Concerning my, it is obviously enough to substitute just the leading order
mgo = m. We find

1672¢ 3272

g 3 2, € 142, €
19) I YW 3 4 F(s,m, p) + F(t,m, @) + Flu,m, )] -

4 .
F()(pi) = —igp <1+€

Now by choosing ¢ = # we cancel the e-pole and get the finite four-point vertex function in
the limit € — 0. Thus, at one loop in the minimal subtraction scheme the coupling constant is
renormalized as

6.7
go = gu° <1 + 16’;) . (8.32)

Starting from two loops, it appears that renormalization of the vertex functions cannot be achieved
through renormalization of charge and mass only but one has to also invoke renormalization of the

4The minimal subtraction scheme was proposed in ’t Hooft, Nucl. Phys. B61, 455 (1973).
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normalization of the field strength from its bare value ¢ as ¢g = Z;/ 2¢), where Zg has the similar

structure to egs.(8.28) and (8.29)

o 9 7m72
Zy=1+ zf] 'C(i’”) (8.33)
k=1

Here 2 starts from the order g2. Renormalization of an arbitrary vertex function is achieved by
multiplying it with a proper power of Z:

T (ps, g, mopie) = zy T (i, go, mos )

Here on the right hand side we have a bare vertex function f(n) which depends on bare parameters

go, mg. On the right hand side we have a renormalized vertex function ﬁ,n). Both vertex functions,
on the left and on the right, also depend on e. Renormalized vertex functions at any order of
perturbation theory in g remain finite upon taking the limit ¢ — 0. All infinities are soaked in a

proper dependence of the bare parameters on e.

One of the extremely pleasant features of the minimal subtraction scheme is that Zy,, Z, and Zy
are actually independent on the parameter %, that is they have the form

o8]
mg = m? (1—1—2 ,///:k(g)> =m?Z,,,

k=1
[00)
9
go = gy’ (1 + ) keig)) =guZy, (8.34)
k=1
 Zi(g)
Z¢ = 1+;1 P

We will not give here the proof of this statement, but mention that it relies on a statement that
divergent terms are p-independent and the whole p-dependence occurs in the finite parts of Green’s
functions only.

Summary and relation to the approach based on counterterms

Renormalization is a procedure of canceling the divergences by adjusting the parameters in the
action. For ¢* theory we consider the bare Lagrangian in dimension d = 4 — ¢

1 m3
& = S0ut0d b0 — 067 — T,

The subscript zero indicates bare quantities. Green’s functions and vertex functions obtained from
this Lagrangian, for instance,

7(n)

" (piy 9o, mos €)

are finite for finite € but diverge as ¢ — 0 at any given loop order.
We further rescale the field by writing ¢¢ = Zé/ 2¢, where Z is a multiplicative parameter with

zero canonical dimension called the wave function renormalization. In terms of the ‘renormalized
field’ ¢, the Lagrangian is

1 Z m2 9022
L = 57200 b~ % 2 _ T%‘*. (8.35)
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The Green’s functions of the quantum field are now obtained by using this Lagrangian in the
functional integral. We let Z, mg, and gg be functions of the dimensional regularization parameter
€, and we choose these functions (if possible) so that the Green’s and vertex functions of ¢ are finite
as € — 0. If this can be done, then we have succeeded in constructing a continuum field theory, and
it is termed ’renormalizable’. We will call mg the bare mass, and gg the bare coupling, and we will
call Z the wave-function, or field-strength, renormalization. In the renormalization procedure the
dependence on an arbitrary mass parameter u enters due to dimensional reasons.

An alternative way of viewing the renormalization is to write the Lagrangian as

1 m2 4—d
L = GO ot = et
1 dm? Sgut—a
- 50Z0,00" — “o-¢* - 9’1! ot (8.36)

We will call the first three terms the basic Lagrangian and the last three the counterterm Lagrangian.
The renormalized mass m and the renormalized coupling g are finite physical quantities held fixed
as € — 0. The fact that the basic Lagrangian does not lead to finite Green’s functions means that
it is incomplete. The counterterms are then adjusted to cancel the divergences as ¢ — 0. This
form of the Lagrangian is useful in doing perturbation theory; we treat %OMQS@“QZ) - mTQQbQ as the
free Lagrangian and the remainder as interaction. The expansion is in powers of the renormalized
coupling g. The counterterms are expanded in infinite series, each term cancelling the divergences
of one specific graph. The form also exhibits the fact that the theory has two independent
parameters, m and g. The counterterms are functions of m, g, and of e.

The basic ideas of renormalization procedure are

1) The self-interactions of the field create, among other things, dynamical contributions to the
mass of the particle, to the potential between particles, and to the coupling of the field to the
single particle state. Thus the measured values of these parameters are renormalized relative
to the values appearing in the Lagrangian.

2) These contributions, or renormalizations, are infinite, in many cases. The most important
theorem of renormalization theory is that they are the only infinities, in the class of theories
called 'renormalizable’.

3) The infinities are cancelled by wave-function, mass, and coupling counterterms, so that the
net effect of the interactions is finite.

4) To make quantitative the sizes of the infinities, the theory is regularized, for instance, by the
method of dimensional regularization. The infinities appear as divergences when the regular-
ization parameter tends to zero.

8.3 Introduction into renormalization group

As we have seen in the previous section, the renormalized and unrenormalized, i.e. bare, vertex

functions are related as
fin)(pz,g,m,,u, E) = ZZ/Q f(") (piag()am();e) ) (837)
T i gomore) = 2,"°T (i, g.m, i e). (8.38)

Here we keep € finite and recall that gy and mg are the bare coupling constant and mass, while m
and g are their renormalized counterparts. Parameter Z, is the wave function renormalization. In
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these equations we can either regard the bare parameters as functions of the renormalized ones or
take the bare parameters as independent variables; in the latter case the renormalized parameters
are functions of the bare ones.

It is important to realize that all the bare quantities, vertex functions in particular, do not depend
on the mass parameter 4 and therefore they are invariant under rescaling

w—e‘n, seR.

These rescaling form a group known as the renormalization group. Why this is the case is clear
from the computation procedure — the bare Green’s and vertex functions are obtained from the bare
Lagrangian and therefore they must depend on bare parameters only; as such they do not involve
1. Indeed, look for instance at the formulae (8.5 and for the two- and four-vertex functions
at one loop.

Remarkably, equation (8.38)) shows that while its left hand side is independent on u, the right
hand side exhibits both an explicit and implicit dependence (through g and m) on u. Therefore,
acting on a bare vertex function with the dimensionless operator ;Ld%, we must have

(n)

d d o —(n
0=M@F (pi,go,mo;6)=u@[z ”/21“5 )(pi,g,m,u;e)]7 (8.39)

which leads to the following differential equation for the renormalized vertex function

0 dg 0 dm 0 n 6an¢]F(n)

i = - - ce)=0. 4

Define the following dimensionless quantities

m _ g
B(g7 /176) - /”‘alu7
my o= KOm
71’71(97/1176) - m@u’
m 61nZ¢
7(15(97?76) - 0,u .
The equation (8.40) takes the form
0 0 0 n —(n)
A A maAa_ a5 r 19 Y s M3 =Y. 41
[uau+ﬂag+w i 2%] r (Pirg,m,p;€) =0 (8.41)

This is a renormalization group equation. It expresses the invariance of fin)(pi, g,m, w; €) under a
change of the mass parameter .

It is inconvenient to have in this equation the partial derivative uﬁ The latter can be excluded

by the following argument. The vertex function fin) must have the same engineering dimension as
its bare counterpart, which is

d
D=d+n(1—§) =4—n+e(%—l).
It means that under the simultaneous rescaling

a vertex function scales as (g is dimensionless!)

T (tps, g, tm, tus €) = tPTV" (py, g, m, pis€) - (8.42)
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This equation can be rewritten as

_ — m u
F'S‘n) (tpi7 g,m, U; 6) = tDri") (pl? 9, ?7 ?; 6) (843)
which implies in turn the following differential equation
0 0 0 —(n)
+m—+t— —D|I, (tp;,g,m,u;¢) =0. 8.44
[“au o Tl ]r(ng 13 €) (8.44)
Equation can be derived from as follows. Applying to an operator t% one gets
9 =(n),, N — DR (L I3 D4 9 ) m o
bl (tpi,g,m, ps€) = Dt- T (pz,m e )+t a (1%9777?6). (8.45)

Further, one has

T (piyg, ™, 2ie) ot (piyg,m, & T (pi,g, ™, mse
pot b lantd) L (pe TR

On the other hand,

t

B T 23 0 I G SO T
om om mo
o™ (pivg, 22, s e ory" (pivg, % e
u (aut t ) - . (aut )u_)/:(i)
so that
T m o
tarr (pz,i’?v‘f,e) =_< aa +#%>fff‘)(pi,g,% % €>. (8.46)

Plugging this identity into 5) gives precisely eq.

Since in eq.(8.41] - the dlfferentlal operator does not depend on p;, it is valid for tp; as well, and,
therefore, excluding from and the operator u=- ﬂ , we find

0 0 n | =) N

This equation admits a smooth limit € — 0 in which D reduces to D = 4 — n. Mathematically, this

equation expresses directly the effect on fs,n) of scaling up momenta by a factor of £. Note that if
B = Ym = 74 = 0, the effect is simply given by the canonical dimension D, as it would be expected
from from a naive scaling argument. Because of interactions one has to apply renormalization which
leads to non-trivial 3, vy, 74 and, therefore, to a departure from the naive scaling behavior of Green’s
functions. It is worth emphasizing that even if we would start with a massless theory, in which case
the corresponding Lagrangian is scale invariant, we would find that Green’s functions are not scale
invariant because of non-vanishing S and ~4. In other words, renormalization introduces a scale in
the form of a mass p in dimensional regularization; typically a classical scale invariant theory leads
to a quantum theory where scale invariance is broken.

Let us now explain how one can solve eq.(8.47) in the minimal subtraction scheme where the
quantities 3,7y, and 74 do not depend on the parameter m/pu, cf. the discussion around eq.(8.34).
The equation (8.47)) then reads

0 0 0 —(n
[—tat +8(9) 5, + (mle) = yma +D Zv¢<g>] T (tpi, g,m, ) = 0. (8.48)

Let us make the chance of variables t — 1/t under which t% —
equation by t. We get

[6 Blg) 0 | (vm(g) — 1)

t5;, and further divide the resulting

0 1
LA ; =0. 4
-+ + mam + (t "pi,g,m,u) =0 (8.49)

D — Zy4(9) e
ot t 0Og t t r
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This is a partial differential equation of the first order for a function of three variables

F(t,g,m) =T (7 ps, g, m, 1)

Such an equation is solved by the method of characteristics. One assumes a parametric dependence
of t, g, m on a parameter s such that

d _ . dg _ B dm _ (ym(g) —1)m

— — —_— = 8.50
ds ’ ds t ds t (8:50)
The first differential equation implies ¢ = s, so that the last two equations take the form
dg Bly(t))
- = — 8.51
I T (8.51)
d t)—1
dm _ (ym(g(t) —m (8.52)
dt t
Equation (8.49) takes the form
0 dgd dm 0 D —574(9)
—+—=—+——|F(t =— 2 F(t .
|5+ G+ e | P (t.9,m) (5.53)
and, therefore, reduces to an ordinary differential equation
dF D-2
dF_ _D=5%0) p (8.54)

dt t
Performing integration we obtain

+ D=Fv4(g(7) n ot Yo (a(1)
-5 22 35 w—dr

F(t) =Ce T T =t Pe ,

where C' = F(1) is an integration constant. Thuﬂ

—(n),,_ —(n) _ n ¢t Y (9(7) -
L, (" pi, g(t), m(t), p) =T, (pi, g, m, p) t~Ped =4

or rescaling p; — tp;,

t

() n (" (9(7) ;| wm)

Fr (tpi797m,ﬂ) = tD exp [_2 J, %dT Fr (pl,g(t),m(t),,u) :

1

This is an explicit solution solution of the renormalization group equation in terms of ‘running’
coupling constant ¢(¢) and ‘running mass’ m(t). Indeed, under a change of scale of external momenta
Green’s functions scale in a rather non-trivial way: ¢ and m run and besides their engineering
dimension D they develop an anomalous overall scaling represented by the exponential term. The

solution is controlled by egs.(8.51)) and (8.52), which we rewrite as

9= B, ) =g, (8.55)
(BB )1, m(1)=m. (8.56)

The function B(g) in the first of these equations is called ‘beta-function’. Both 5(g) and v,,(g)
can be computed in perturbation theory, again departing from the fact that bare quantities should
not depend on u. For instance, at one loop we found the following result

ig
go = gu° <1 + 16’5) . (8.57)

5Here the initial conditions are g(1) = g and m(1) = m.
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Ultraviolet stable
fixed point

Infrared stable
fixed point

Figure 8.5: Possible form of the  function. Here g, is an ultraviolet stable fixed point and g = 0
is an infrared stable fixed point. An IR fixed point corresponds to 3'(g.) > 0, while a UV one to

B'(gx) < 0.

Since gq is p-independent, we must have

dgo dg 16%9 16%9 3g dg
0=p"2 = 59 e (1 4 18227 (14 o2 end
'ud,u ’ud,uu + € +egu + € + 672" ’ud,u

that gives

2
dg _ —€g— 1?:312

Md# 14 -89

16m2e

We now expand the right hand side of this expression in g (keeping € finite!) up to the order g2

“Zl% _ _eg+ 1%22 + 0" (8.58)
After this is done we can take the limit € — 0, obtaining
u% = 1?;597:2 O(g®) = Bl = 1%22 >0 (8.59)
This equation for the running coupling can be rewritten in the form
d(é) = —%dln 1
and then integrated to give an expression
1 1 3 !
P T T
from which we finally find the running coupling
9(p) = Jﬁ (8.60)
1672 pg

where p/pus =t and an integration constant is chosen such that g(1) = gs.
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Ultraviolet stable
fixed point

Infrared stable
fixed point

Figure 8.6: Another possible form of the § function. Here g, is an infrared stable fixed point, while
g = 0 is an ultraviolet stable fixed one.

As is clear from (8.60), g(u) increases with . Indeed, if we start from some small g; << 1 at
a given scale ug, then the effective coupling will increase with increasing . Thus, we will have to
deal with larger and larger g so that eventually we will leave the domain of validity of perturbation
theory: g << 1 or, more exactly, 1nﬁ << 1. At shorter distances, we have to take into

1672
account more and more terms on the right hand side of eq.(8.59). This discussion shows that

perturbation theory becomes more reliable at large distances (small momenta), that is, in the long
range properties of the interaction, and it can be trusted in defining asymptotic states. Note that
should the sign of the right hand side of be negativﬂ then perturbation theory would fail for
defining the asymptotic states but would work great for short distance behavior. This is precisely
the situation which takes place in Quantum Chromodynamics (QCD) — the theory which describes
interactions between quarks. Asymptotic states of quarks, like protons, cannot be described by
means of perturbation theory. Going to large distances makes interactions between quarks very
strong and therefore impossible to describe in the framework of perturbation theory.

B-function scenarios

One can speculate about possible behavior of g outside the domain of perturbation theory. If for
some reason even for large p the running coupling is given by (8.60]), then it will blow up at a scale

1672

W= i€ 395 (8.61)

which is rather large if g5 is small. This is called Landau pole after Landau recognized the same
behavior in QED. Of course, there is no reason to believe that the one-loop contribution to 5(g) is
valid for large g.

We do not know how to compute 8(g) for large g, but we can imagine the following hypothetical
behavior of the S-function:

1) For large g the S-function remains positive; with ¢ increasing the beta-function follows a
concave or convex curve depending on the sign of 5'(g). If 8(g) blows up for some value of g,
g itself is infinite there (Landau pole).

2) B(g) behaves as in figure We assume that it crosses the g-axis at g.:
Bg«) = 0.

6Notice that this is the case when € is kept finite, see formula Ii
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3)

4)

The point g, is called the fixed point, because if for some reason the coupling was originally
at g, it would stay there

dg

Mg, = B(g«) =0.

The behavior of g near g, can be analyzed by expanding 5 around g.

pGl = 9= 980 + .. (8.62)

We see that the sign of 5'(g.) is crucial. If 5'(g«) < 0, then Z—Z > 0 for g just below g, that

drives g to a large value, that is, towards the fixed point g.. For g above g., j—z < 0 driving
g to smaller values, that is to g,. This means that ¢ is driven to g, as u increases: such a
fixed point is called untraviolet stable, because g will approach the value g, asymptotically as
i — o0, from above or from below depending on the starting point gs, which can be either
above or below g,.

B(g) starts out negative for small g, decreasing its value monotonically. This means that ¢
decreases monotonically with In . In this case the perturbative approximation becomes better
and better at short distances, and g is driven to zero which in this instance is an ultraviolet
stable fixed point. Such coupling constant behavior for low ¢ is exhibit by non-abelian gauge
theories — a phenomenon known as asymptotic freedom.

B(g) behaves as in figure In this case 5'(g«) > 0 and g, is an infrared point. This means
that if at s, gs < g«, g will be driven towards zero, but if g > g, it will be driven away from
gy for large values of g.
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Chapter 9

Appendices

9.1 Method of stationary phase
Consider an integral of the Fourier type

b
F(\) = J f(x)e?5@dg

Here [a, b] is a finite interval of R. The function S(z) takes only real values and A is a large positive
number. The function S(z) is called a phase function or simply a phase. We are interested to find
an asymptotic behavior of this integral in the limit A — +0.

Typical example of the integral above is the Fourier transform

b
F(\) = f f(x)erda (9.1)

If f(x) is continuous on [a,b], then F(A\) — 0 when A — +c0. Indeed, Re(f(z)e!**) strongly
oscillates for large A and two neighboring half-waves encompass almost the same but opposite in
sign areas. Sum of these areas is small and, as a result, the whole integral is small, c.f. figure[9.1] The
most general result about asymptotic behavior of such integrals constitute the Riemann-Lebesgue
theorem: Let integral SZ | f(x)|dx converges. Then

b
f f(@)e?dz — 0, A— +o.

The Riemann-Lebesgue theorem contains no information on how fast this integral converges to zero;
this depends on differential properties of f(x) and can be actually very slow. Asymptotic expansions
of F'(\) are possible to obtain only for sufficiently smooth f(x) and S(z). In the following we assume
that these two functions are infinite-differentiable.

Let f(z) and S(z) are infinite-differentiable and let S'(x) # 0 on [a,b]. Then F()) has the
following asymptotic expansion as A — +00

eiAS(b) & eirS(a) X

b, an
O~ =5 Z:‘AO )7 ix A g (9:2)
where
a’n = (_1) M (SI(Z'))LL,:GI’ bn = (_]‘) M (Sl(l'))|a::b’ = Sl(x)% (93)



100

op
4>

i

i —

&F

| ool

Figure 9.1: An illustation to the Riemann-Lebesgue theorem. On the left figure the function
22 cos(10x) is plotted in the interval [0,10]. On the right figure one has the graph of 22 cos(40z) on
the same interval.

This asymptotic expansion easily follows by integrating by parts e*5(*) = m%ei’\s (*) and by

using the Riemann-Lebesgue theorem. Note that F'(A\) expands into an asymptotic series in 1/A.
As an example consider the integral

o
d(x) =J e dt

x

and compute its asymptotics as x — +00. By parts,

e LT et
2z 2i ), 2

. x? o8] P ix? o0
_ e _ff Ld(eiﬂ):w +e _Sff 6#% )
2x L 4t3 2x 423 4 ), t4

O(x) = ¢ie’ (i + ﬁ) + (9(%) .

Contribution of a non-degenerate stationary point.

1 it?
O(z) = Z—itd(e )dt = —

Thus,

In the previous considerations we assumed that S’(z) # 0 on [a, b], 7.e. S(z) has no stationary points
on this interval. If there exists stationary points of the phase, then the asymptotic expansion of the
integral F'(\) changes its form dramatically. For instance S = x? has a stationary point z = 0. Close
to this point on the interval of order 1/4/X the function cos(Az?) does not oscillate, while the sum
of remaining areas of cosine has the order O(1/)) which is essentially smaller. In what follows we
consider the most interesting case for our applications where [a, b] is replaced by an infinite interval.

To proceed we expand the integrand around a stationary point

o e "
FOV = [ f@)e™ds = fla)eSten [ RSt g
—0

—C

+o0
~ f(xo)eMS(ro)J e%sgn(S"(xo)))\\S”(xo)\(x—xo)Zdw.

—L

We split the last integral into two and make a choice of variables t = 4/A|S”(zo)|(x — x¢). That is

FO) ~ f(xo)emsm)[ J " hsan(” (@0)) MS" (@) (a—20)® g . J " e%sgnw"(zo))A\S"(xon(z—xo)zdx]7

- xo
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giving
iAS(zo) o 0 o
F(A) ~ f(xo)e()[J eéSg“(S"(%))tht—i-Jy e%Sgn(S”(mO))tzdt]:
AlS"(zo)] LJ-ct 0
AlS" (o) Jo

The last integral here is the complete Fresnel integral and it is given by \/ge%sg“(su(%)). Thus,
the leading term in the asymptotic expansion of F'()\) is

Codsen(S (@)t gy

. 2 in " 1
— iAS(zo) “sgn(S"(zo)) —
FQ) = fl@o)e NEZEDE * O(A) ' (9-4)

Most importantly, as we see, the presence of the critical point leads to the asymptotic expansion
which starts from 1/v/.

9.2 Path integral for harmonic oscillator

Consider a one-dimensional harmonic oscillator with the Hamiltonian

2 2
P mw? o
H=—+ .
2m 2
Equations of motion
j+wiq=0

so that a general solution is
q(t) = Asinwt + B coswt .

the period of oscillation is T' = %’T We have then a system of equations

q = Asinwt; + Bcoswty ,
g2 = Asinwty + Bcoswtsy. (9.5)

Solving it allows to find A and B and establish a path through ¢; and ¢s:

1
tzi[— i t—t i t—t ]
1) = e =y~ Sl — ) + aasinfet — 1)
This is a unique well-defined path provided t; —t3 # n x T/2, n € Z. The classical action is

mw

Sy = ) [(q% +¢3) cosw(ty — ta) — 2f11Q2] :

2 sinw(t1 — t2

The path integral reduces ,
W (g2, ta;qu,t1) = f(t2 — t1)en >
where for f one has a path integral representation

to

f= fquXp [%L (> — wzqz)dt] ,

where now ¢(t1) = 0 = ¢(t2). Expand

[ 2 & . t—t
q(t) = ag sink
() to — 11 kgl to — 1t
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2 t—ty
o Sinmk -

space of square-integrable functions with the boundary conditions ¢(t1) = 0 = g(t2).

The functions

form a complete orthonormal basis on the interval [¢1,¢5] in the

We come to the integration over the Fourier coefficients (Jacobian is unessential).

o o " im.
— i [ my ]d . .da, .
p=tim || e[ 3 et aar o

Here

2
/\k:( km ) —wg.
ta —t1

Now we have to use the Fresnel integral formula

%L
oy 2 T im s
f e dx = mef&g“’\. (9.6)
—C
Euler formula
o> 2 .
T sin x
H‘l_k22‘:| |’ x>0
palle] T T
The correct formula
mw 2 _in *[(qurq%)COSW(t1*t2)*2q1qz} _in N
W (go, to; qu, t :< : ) T ysmw(t;—ta) 7 . 9.7
(g2, t2341,11) 2mh| sinw(ta — t1)| ¢ € ¢ — (6.7)

Maslov cor.
valid for

nE<t2—t1<(n+l)E.
w w
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