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1.   Introduction 
 
1.1 Soft Condensed Matter vs. Complex Fluids 
An important distinction between conventional or ‘simple’ liquids and solids is that the 
former quickly take the shape of the container in which they are kept, while the latter maintain 
their shape indefinitely. Almost all ‘complex fluids’ are intermediate between a solid and a 
liquid: while they maintain their shape for some time, they eventually flow. They are solids 
on a short time scale and liquids at long times: they are viscoelastic. Clearly, this rough 
definition is connected to a human time scale through the designation ‘for some time’. 
Glaciers do ‘flow’ on geological time scales and solids such as metals creep under large loads 
by defect motion. Nevertheless, these time scales are so far separated compared to the human 
lifespan that it does make sense to define a class of materials based upon their ability to flow 
or not during a (human) experiment, or said in another way, of having mechanical properties 
in between that of simple liquids and solids. Examples of such ‘complex liquids’ that are also 
treated in these lectures are: polymers, colloids, (micro-) emulsions, foams and surfactant 
solutions. 

There are also complex fluids that change from solid-like to liquid-like, or vice versa, 
when subjected to a small deformation. Examples of these are different kind of gels that can 
consist of many of the examples mentioned above. Some fluids change to solids after 
application of an external electric or magnetic field; these are called electro- or magneto-
rheological fluids. Classical solids or liquids do not in general change state in response to a 
weak field.  

Another important distinction between classical solids and liquids is that the former 
have properties that depend on the orientation of the crystallographic axes of the material, 
these properties, like elastic constants, are anisotropic, while the latter are the same in all 
directions, isotropic. Liquid Crystals (LC’s) take the shape of the container they are in 
immediately, because they flow like liquids, but their mechanical properties are anisotropic 
like that of crystals (see Fig. 1.1). Just as there are many types of crystalline symmetries, there 
are also many types of liquid crystal phases depending on the number of degrees of freedom 
that are solid- or liquid- like. These macroscopic anisotropic properties are the manifestation 
of some kind of microscopic anisotropy. This can be the shape of the molecules forming the 
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Figure 1.1 Rod-like molecules can display a gradual decrease of positional and orientational order. Left 
shows some of the possible liquid crystalline phases that are possible, right shows the three fundamental 
anisotropic modes of deformation of a nematic liquid crystal that has only long-range order in the 
orientation of the rods. 
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liquid crystal, but can also be on larger length scales involving self-organized subunits of 
surfactant molecules or colloidal particles as will be explained below.  

A distinguishing feature of complex fluids compared to ordinary condensed matter is, 
that there always is a length scale involved that is large with respect to the size of individual 
atoms or small molecules. This separation of length scales makes it possible to integrate out 
many degrees of freedom and give a more simplified description of the problem. It basically 
means that the ordinary approach of statistical mechanics to treat a complicated many-body 
system, such as simple liquids, is taken a few steps further. Usually simplifying the 
description. Essential to our definition of complex fluids or soft matter is that a final 
description can be based on statistical mechanics. This sets a limit on the larger end of the 
length scale that can be included as will become clear below and from the rest of the course. 
Crossing this upper length scale gets us into the domain of granular matter. In this very 
interesting and, active field a simple connection with a statistical thermodynamic description 
cannot be made (at present). It should therefore be mentioned that there are researchers that 
also include slurries, like cement or wet sand, and foams with mm size air pockets to the 
realm of complex liquids. Through the general definition given above one can argue that they 
do belong to this class. However, as mentioned we would like to treat these granular matter 
systems as separate from the systems that can be dealt with using a thermodynamic 
description. In a strict sense liquid crystals consisting of small anisotropic molecules do not 
have a large length scale associated with them, nevertheless the defect structures that are part 
of these phases determine in a lot of cases their properties (and thus most of the times also 
their behavior in applications). The length scales of the defects include many molecular sizes 

(Fig. 1.2).  

 
 

Figure 1.2  Defect structures made visible through crossed polarizers. Different intensities are caused 
by different local orientation of the molecules, image several mm2. 

Colloidal particles dispersed in a medium encompass a large class of complex fluids. 
They are ‘solutions’ of one phase of matter (solid, liquid, gas), the colloidal particle, into 
another that acts as the continuous phase (liquid, gas). Roughly, the sizes of the particles are 
between several nm and several µm (see the section below on time and length scales). The 
name for solutions of particles in this size range is a dispersion; in the case that the 
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continuous phase is a gas such a dispersions is also called an aerosol. In case the particle is a 
liquid the colloidal system is called an (micro)-emulsion. The distinction between micro-
emulsion and ‘ordinary’ emulsion is made on its thermodynamic stability. Micro-emulsions 
are thermodynamically stable and form spontaneously; emulsions need input of external free 
energy (e.g., in the form of violent stirring) to be formed and are metastable (although they 
can be very long lived). Dispersions of a gas in a liquid are called foams, while one can also 
disperse gases in gases through (soap) films. Again, for completion we mention that, based on 
the colloidal size range, some researchers also consider porous matter (liquid dispersed in a 
solid), solid suspensions (solid in a solid, e.g. wood) and solid foams (gas in a solid) as part of 
colloidal systems. We do not, because also in this case the description of these systems can 
generally not be made by a (coarse grained) thermodynamical approach.  

 
Figure 1.3  The simplest polymer molecules are macromolecules consisting of covalently linked 

monomers. 

Polymers are macromolecules that consist of many subunits connected to each other 
through chemical bonds (Fig. 1.3). More and more complex polymers are manmade, but still 
by far the most advanced types are found in nature. In the cell polymers are not only the 
carriers of the genetic code (DNA, RNA) they also catalyze or, literally, do all the work in the 
form of proteins. When polymer chains are in a collapsed state they form so-called polymer 
colloids or latex particles. However, the distinction between a polymer in a solution is not so 
clear. Generally, the synthetic pathways man has developed to make polymers renders them 
with a relatively broad length distribution, i.e., they are polydisperse in length. This is in stark 
contrast with many biopolymers which are exact copies of one another, a property referred to 
as monodisperse. However, recent new synthetic approaches making use of self-similar 
structures called dendrimers or architectures where polymer arms are attached to a central 
core-unit (so called star polymers) can also lead to monodisperse polymer colloids. 
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Surfactants are molecules with a ‘schizophrenic’ character in the sense that part of the 
molecule is happy in oil, usually an alkane-like tail, while another part of the molecule, 
usually with dissociable or polar groups, likes water (Fig. 1.4). The distinction between ‘oil’ 
and a polar solvent, usually water, is made because generally liquids that have such a large 
difference in polarity, pay a large enthalpic price if they would mix and that is why they will 
not, despite the favorable entropic contribution to mixing. This explains the word amphiphile 
(from the greek ‘loving both’) that is often also used to describe these molecules. Therefore, if 
an oil and immiscible polar liquid like water are into contact the amphiphilic molecules go to 
the interface with their polar part in the water and apolar part in the oil (chapter 3). In the 
process they lower the free energy of the interface between the two phases significantly, i.e., 

they lower the surface tension. In the case where the surface tension gets really low and 
almost vanishes, the entropy of mixing can become large enough that even a 
thermodynamically stable mixture of water droplets in oil or oil droplets in water (water 
should be read here as ‘immiscible polar solvent’) can result: a micro-emulsion. For this to 
occur, it turns out that the droplets need to be very small (~nm’s) to give enough mixing 
entropy and the surface free energy very small as the created interface surface is large. Under 
some conditions the amount of the phase of oil or water inside the droplets can be extremely 
small or even absent. In the case of solutions of surfactant in pure liquids; the colloidal 
entities that than form are called micelles (Fig. 1.4). The more general term referring to these 

 
Figure 1.4  Amphiphiles are molecules with a ‘water loving’ part (dark color) and ‘oil loving’ part 

(light); these are found in nature or are man-made and can even be polymeric. At higher 
concentrations they form complex shapes some of which are shown on the right. Not 
shown are the droplets of water in oil or vice verse that these ‘schizophrenic’ molecules 
can also stabilize: (micro)emulsions. 
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kind of systems, which do not necessarily need to be spheres is: association colloids. The 
non-droplet phases that can form, are characterized by the symmetry of the way the one phase 
is dispersed in the other or, in the case of only one solvent, according to the shape of the 
association colloid. Thus bi-continuous or even liquid crystalline arrangements of surfactant 
arranged matter is known. To distinguish the liquid crystals made up from self-organized 
amphiphiles from those consisting of anisotropic molecules, the former are referred to as 
lyotropic (‘placement of liquid’) and the second as thermotropic. The term thermotropic 
comes from the principle way to change the phase behavior: a change in temperature. And as 
mentioned, there are also liquid crystals where the smallest anisotropic units giving rise to the 
liquid crystalline behavior are colloidal particles; consequently these LC’s are called colloidal 
liquid crystals (chapter 12).  

Droplets for which the surface tension is not low enough that they form 
thermodynamically stable phases can still be dispersed in another liquid by the action of 
surface-active molecules. In this case mechanic energy is needed to overcome the energy 
barrier necessary to form the surface between the two phases. As the amount of forces that 
can be applied on a liquid droplet in a violently flowing liquid determines the size of the 
droplets, they can generally not be smaller in size than ~100 nm and have usually a broad 
distribution in sizes (are polydisperse). Because these emulsion droplets would lower their 
free energy by merging together and reduce the total surface area, a mechanism needs to be in 
place preventing two droplets from coming into contact and coalesce. This is achieved either 
by charge repulsion or a so-called steric repulsion between the surfactant molecules, or a 
combination of both these two mechanisms.  

All the examples of complex fluids mentioned above will be introduced in these 
lectures. The trend nowadays is however, mostly because of increased level of our ability to 
synthesize and control these systems on an ever-increasing level, to ‘mix’ these basic soft 
matter constituents in all kinds of new ways. Some of which will be mentioned briefly in 
chapter 15 of these lecture notes that deals with new materials made from soft matter and the 
use of colloids as condensed matter model system. Examples of these more complex complex 
fluids are: emulsions of thermotropic liquid crystals, amphiphilic and self-associating 
polymers, polymers with liquid crystalline (side) groups, dispersions of colloidal particles 
inside thermotropic liquid crystals, emulsions stabilized by colloidal particles etc. etc.  

The use of the term complex fluids to describe the field as explained above can also be 
seen in a more negative light. With some exaggeration: physicists are used to describing the 
hydrogen atom and consider anything larger as ‘complex’. This is a like the author that just 
finished his new textbook and proudly names it ‘Modern Mathematics’ to set it aside from 
everything written previously. Because of this possible negative connotation, we prefer the 
term soft matter to describe this research field. Our preference may also indicate that we are 
from Europe, as there is a strong preference on this side of the Atlantic for use of the term soft 
matter, while Americans usually prefer complex fluids. In any case, also the term soft matter 
needs an explanation, which we will give by focusing on the high-density phases of colloidal 
particles. The explanation has to do with the large length scale that is, as argued above, also a 
characteristic of soft matter. Colloidal particles at sufficiently high osmotic pressure, the 
equivalent in the colloidal domain of mechanical pressure (see Section 1.2), will crystallize 
forming 3D regular structures in ways that are completely analogous to how molecules freeze 
as will be explained in more detail in chapter 12 of these notes. Next to having lattice 
constants that are now in the range of the wavelength of visible light and time scales of 
crystallization that are much closer to the human time scale, there is another important 
consequence of the very large size of colloidal particles compared to atomic dimensions. 
Compared to molecular crystals colloidal crystals are tremendously soft. Nothing will happen 
to a collection of salt crystals if you put them in a jar and shake it. A colloidal crystal will not 
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survive such a treatment and will be completely destroyed. This dramatic difference is caused 
by the ~1012 difference in the characteristic quantities, the elastic moduli, that determine the 
strength of a crystal. A solid is characterized by the fact that it keeps its shape if a small force 
is applied to it. The proportionality constant between the deformation or stress and the applied 
force per unit area or strain are called elastic moduli. Depending on the direction of the forces 
with respect to the deformation, one can distinguish different kind of constants describing the 
relation between stress and strain. These are the 3D analogs of the spring constant that 
according to Hook’s law describes the proportionality between the force and displacement 
from its equilibrium position for a harmonic spring. In case the force per area (stress) is given 
as in Fig. 1.5, the resulting relative deformation (strain) is a twisting of the body that does not 
change its volume. This kind of stress-strain situation is called shear. The elastic constant 
describing it is called the shear modulus, µ, and is defined by: 

 

 2
pF L

L L
µ ∆

=  (1.1) 

∆L

L 

Fp

Fp

 
Figure 1.5 Crystal with dimension L3 deformed by shear forces parallel to the two opposing faces. 

 
Here Fp is the shear force of a crystal with linear size L and ∆L is the crystal deformation (Fig. 
1.5). Thus, the shear modulus has the dimension of a pressure or energy/(length)3. Intuitively, 
it is clear that the strength of a crystal is originating from the forces that bind the particles 
together in their 3D arrangement. This energy density is proportional to the number of these 
bonds in the crystal per unit of volume. As colloidal particles are about 103-104 as large as 
atoms, the elastic modulus is a factor 109-1012 less; soft matter indeed!  

The association of small energy densities with large length scales is similar in other 
manifestations of soft matter and is accompanied by a dramatically increased sensitivity to 
external fields such as the already mentioned flow fields (shear), or electric and gravitational 
fields.  

 
 
1.2 Historical notes 
It goes much too far to give here a detailed historic account of the main sub fields of soft 
matter. It is however, important to know something about when certain phenomena were first 
studied, why certain names were given to certain fields and what the impact was of 
understanding gained in one field to other disciplines. Again, because of space we can only 
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touch upon these issues and have to refer to text books for a more elaborate description. 
However, really historical accounts dealing specifically with soft matter are rare. We also 
arbitrarily do not mention those developments here that took place less than 50 years ago.  

Therefore, although particle systems were important for human civilization much 
through all of history, be it in the form of making ceramics, paints, inks or later to make steel, 
it is appropriate to start by the researcher who coined the word colloid. This was Thomas 
Graham who in 1861 studied solutions and classified that what could pass through, what we 
would now call a semi-permeable, membrane and what did not. What did not pass he called 
colloids after the Greek κολλα meaning glue. This reflected the fact that many of the 
substances that Graham dissolved and that did not pass his membrane were polymeric in 
nature and often displayed a sticky behavior when dried.  

As a small aside, we mention here some other experiments performed with semi-
permeable membranes, in this case on dilute molecular solutions, because they lead in the 
mid-1880’s van ‘t Hoff in Amsterdam to a law that now bears his name: 

 
 V nRTΠ =  (1.2) 

 
This equation, which bears great resemblance to the ideal gas law, describes the relation, for a 
dilute amount of n moles of dissolved molecules, between the osmotic pressure, Π, the 
volume, V, and the temperature, T. So what is the osmotic pressure? It is the excess pressure 
that is needed to achieve equilibrium between a solution containing n moles of molecules that 
cannot pass a (stiff) membrane that separates this solution with a compartment containing 
pure solvent. When brought into contact with each other through the membrane, solvent will 
start to stream from the compartment with the pure liquid into the compartment containing the 
dissolved species, thereby increasing the pressure, until equilibrium is reached. This excess 
pressure is called the osmotic pressure and assures that the flows of solvent going both ways 
through the membrane become equal again. It is no coincidence that van ‘t Hoff’s law states 
that this excess pressure exactly equals the pressure an amount of n moles of ideal gas would 
have exerted were it to be placed in a compartment of the same volume and temperature.  

However, before the term ‘colloid’ was coined by Graham, important experiments with 
colloidal particles had already been performed. In 1827 the botanist Robert Brown studied the 
thermal motion of pollen grains he observed through a microscope. Contrary to others who 
had tried to explain this erratic motion before him, he correctly concluded by studying a range 
of finely divided substances that this motion had nothing to do with life or a ‘life force’. It 
took till Albert Einstein derived in 1905 the relationship between the diffusive Brownian 
motion and the thermal energy of the solvent molecules that causes it (see Eq. (1.8) in the next 
Section) this correct conclusion was given a theoretical basis. It is much less known that in 
the same year, and independently, W. Sutherland from Australia derived the same relation. 
Despite this fact Eq. (1.8) is generally referred to as the Stokes-Einstein relation. In 1910 
Perrin used it to experimentally determine Avogadro’s number by analyzing the diffusive 
motion observed through a microscope of a model dispersion of colloidal spheres he had 
painstakingly had made monodisperse by repeated centrifugation. These and other 
experiments he performed to determine this fundamental quantity earned him in 1926 the 
Nobel prize in Physics for putting ‘a definite end to the long struggle regarding the real 
existence of molecules’ (committee report).  

Important experiments before Graham were also performed by Faraday (1791-1867) on 
gold sols which he flocculated by adding salt. Without salt however, they can be quite stable; 
several of Faraday’s gold sols are still on display in the British museum. Faraday also 
discovered that small particles could be detected by focusing light into a conical region. This 
lead tot the development of the utramicroscope by Zsigmondy & Siedentopf in 1903, later 
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used by Perrin. The theory for the scattering of particles small compared to the wavelength 
was developed by Lord Rayleigh (1881) and finally as a general solution to Maxwell’s 
equations by G. Mie (1908). Because of the increased length scale characterizing soft matter 
(light) scattering is an important technique that will also be treated in these notes in chapter 5.  

It took until after the development of Quantum Mechanics in the 1940’s before the first 
general description of the interaction forces between two colloidal particles were given. This 
theory was developed independently of each other by Derjaguin and Landau in the former 
Soviet Union and Verwey and Overbeek in the Netherlands. This so-called DLVO theory 
describes the interactions resulting from the (between identical particles) attractive Van der 
Waals forces and the (between identical particles) repulsive forces resulting from charges 
residing on the particles surfaces (Fig. 1.6). This potential is still a cornerstone of colloid 
science and experimental ways to measure it will be presented in chapter 9, together with its 
derivation.  

 
Figure 1.6 Many colloidal particles are stabilized against the attractive Van der Waals forces by 

repulsion of charges on the particles surface (left). After addition of salt this repulsion 
cannot prevent aggregation. On the right a fractal-like aggregate of gold colloids (20 nm) 
after addition of salt (. The potential describing these interactions is the DLVO potential.  

Significant contributions on the study of surfactants (chapter 3) can be traced back to 
Benjamin Franklin’s observations in 1757 of pouring oil on turbulent waters. He noticed that 
the wakes behind ships were calmed after the cook dumped greasy material in the water. 
Although he did obtain patents on this effect, they did not turn out to be too practical. It was 
Agnes Pockels who at the end of the 19th century studied and build the apparatus to measure 
the pressure versus area curves for monolayers of surfactants. This set the stage for 
Langmuir’s work on the same subject in the beginning of the 20th century and our ability to 
characterize and understand the very complex phase behavior of amphiphiles. 

In 1920 H. Staudinger showed that polymers (chapter 6) are not micellar aggregates, but 
real macromolecules, in which the monomers from which they formed are held together by 
covalent bonds. In 1931 Carothers produces the first nylon polymers. Soon thereafter W. 
Kuhn derives in 1934 the probability distribution for the average size and shape of a random 
coil.  
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Early studies on liquid crystals include those of another botanist L. Reinitzer who in 
1888 observed two separate melting temperatures in cholesterol nonanoate. The term liquid 
crystal was coined by the physicist Otto Lehmann, who demonstrated that Reinitzer's phase 
changes were thermodynamic transitions. In the early 1920’s work on the identification of 
many of the new LC phases took place, while also a description of the unusual defects and 
textures present in these phases was started. Most notably among the scientists studying LC’s 
at that time was G. Friedel. 
 
 
1.3 Separation of Time- and Length-Scales: Coarse Graining and Characteristic Forces 
In this section we will focus on colloidal spheres with a radius R, but a lot of the reasoning is 
valid for most of the other soft matter systems as well. The fact that in the description of the 
properties of a dispersion one can take a so-called coarse grained approach is actually what 
defines the colloidal domain, as Evans and Wennerström call the size range between a few 
nm and a few µm. It also sets it apart from the molecular world on the one hand and granular 
matter on the other. If there is still a well-defined set of thermodynamical variables, the 
following approach in the statistical mechanical description can be taken. Coarse graining 
means averaging over a set of variables. If there is a large separation of length and time scales 
between the variables describing the constituents of the dispersed phase (the liquid or gas) and 
that what is dispersed in it (the colloid) one can average over, in other words trace-out, the 
fast variables that change on small length scales. This means we can, for instance, use 
continuum descriptions of the mechanical response of the dispersion medium 
(hydrodynamics). This approach simplifies both theories describing structure and dynamics of 
colloidal matter as it does computer simulations of these systems. On the other hand it is 
equally important for describing these properties and for that matter of what we define to be 
soft matter that not all thermodynamic variables are integrated out. In a physical description it 
means that there is a connection between the thermodynamics of the continuous phase with 
that of the dispersed particles. For instance, by linking the same fluctuations that cause 
Brownian motion to the dissipation that is characterized by the viscosity (first example of a 
fluctuation-dissipation relationship). It is exactly this loss of connection that makes ‘sand in 
water’ not a colloidal dispersion and instead a granular matter system; contrary to a solution 
of glass beads the size of 1 µm. It also means that the description of sand piles or slurries of 
sand in water is much harder and actually at this moment in time even lacks a general 
accepted theoretical framework to tackle this problem. The description of the properties of the 
~1000 times smaller glass colloids, on the other hand, can be dealt with through the usual 
statistical mechanical approach. This is also why the first chapters (2-3) of these lecture notes 
on soft matter will start with both a recapitulation of statistical mechanics and an introduction 
to the description of liquids. These theoretical foundations are necessary to understand the 
methods for deriving, for instance, potentials between colloidal particles that do not contain 
the details of the liquid in which they are dispersed. In the case of charged colloids interacting 
through Van der Waals forces and (screened) Coulombic forces from charges residing on the 
particle surface, we will perform, or more accurately stated, sketch, such a derivation resulting 
in the DLVO potential after those that first derived it (Derjaguin, Landau, Verwey and 
Overbeek, chapter 9).  

Interestingly, the size range that is defined as colloidal is dependant on those who do the 
observations, not through a collapse of a wave function, but by defining the time scale of 
experimental observations. Statistical mechanics shows that if an object has a well-defined 
thermodynamic temperature it has 0.5 kT of kinetic energy per degree of freedom (equi-
partition theorem) where k stands for Boltzmann’s constant (1,381 x 10-23 J/K) and T the 
absolute temperature. This thermal energy leads on the scale of molecules to kinetic chaos 
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that on the particle level, characterized by a radius R, can be interpreted as a Brownian force 
with a magnitude of O(kT/R). Before we can continue our analysis of relevant time and length 
scales and the role of different interactions that are of importance in a colloidal dispersion, we 
first have to take a short digression to that part of continuum physics that describes the laws 
of Newton in a continuous medium like a fluid or gas: hydrodynamics.  

First, let us consider what happens to a fluid of which the density does not change, a so-
called incompressible fluid (∇•U = 0, usually a very good approximation), when we apply the 
same shear stress Fp /L

2 as in the shear deformation of the crystal mentioned above in Section 
1.1. In the deformation of the solid described by Eq. (1.1) in that section we saw that the shear 
strain was, for small values, proportional to the shear strain. In a fluid the shear strain 
increases continuously and without limit as long as the force is applied: a fluid flows (Fig. 
1.7). Therefore, the stress does not depend on the shear strain, but on its rate of change also 
called the strain rate or the shear rate (usually depicted by γ). The viscosity of a fluid, η, is 
defined as the ratio of the shear stress, to the strain rate:  
 

 
2 Shear stress

Strain rate

pF
L

v
L

η = =  (1.3) 

 
For a Newtonian fluid the viscosity does not depend on the speed v (or the shear rate) making 
the speed directly proportional to the applied force (stress). The viscosity, or as it is also 
called the ‘internal friction’, determines for a fluid how easy a liquid will flow by an applied 
force and how much energy is dissipated as heat. Viscous forces oppose the motion of one 
portion of a liquid relative to another. The equations that describe an incompressible 

Newtonian liquid are called the Navier-Stokes equations. These describe the momentum 
conservation principles of elementary physics, for a system that includes friction, as applied to 
a stationary control volume through which fluid may enter or leave. Similarly as in Eq. (1.3), 
a sphere with a stick boundary condition on which a constant force is applied will obtain a 
constant speed. A stick boundary condition means that the fluid just adjacent to the particles 
surface does not move with respect to the particle. Again the proportionality constant is given 
by the viscosity and by the particle size. This friction factor, f, has Stokes’ name associated 
with it, because it follows as a solution to the Stokes hydrodynamic equations.  

Figure 1.7 Shear forces applied onto a liquid lead to a shear rate characterized by a viscosity.

 
 6πf Rη=  (1.4) 
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The Stokes equations are a limit of the Navier-Stokes equations and are obtained by 
neglecting effects of inertia. Inertia and viscous forces affect a mechanical mass-point system 
in similar ways as in a hydrodynamical description. The Brownian time, τB, is defined as the 
relaxation time of momentum of a particle. It is given by the ratio of the mass and the friction 
factor and describes the time it takes a particle with mass m on which a force works to obtain 
its steady state velocity as dictated by the Stokes friction factor:  
 

 
6π RB

m m

f
τ

η
= =  (1.5) 

 
The importance of inertia, as given by O(R2ρU2), with U a typical velocity, relative to viscous 
forces, O(ηRU), is given by the dimensionless group called the Reynolds number: 
 

 e

UR
R

ρ
η

≡  (1.6) 

 
If we fill in some typical numbers (see Table 1.1 for values chosen) we find 2 x 10-10 s for the 
Brownian time and 10-6 for the Reynolds number. Because of its small mass, momentum 
transferred to a Brownian particle is very quickly lost and inertial effects can be neglected for 
all relevant velocities. As our day-to-day experience with hydrodynamics, for instance while 
swimming or paddling a canoe, is in the limit where inertia effects cannot be neglected, one 
has to be careful when applying human intuition to the colloidal domain. For instance, if we 
shrink a person swimming to the size of a µm, his mass is so small that it becomes impossible 
to swim. Swimming relies heavily on pushing oneself off against the water to gain forward 
momentum, something that is not possible in the colloidal domain.  

Filling in Eq. (1.5) for a solvent molecule tells us that on the molecular scale momentum 
is relaxed in 10-15 s. This is the time scale on which the solvent exerts forces on the colloidal 
particle. Before Perrin scientists tried to infer from the Brownian motion observed through a 
microscope the mean velocities of the particle. In principle the mean kinetic energy of a 
colloidal particle <0.5mv2>=1.5kT, 0.5kT per degree of translational freedom as stated earlier. 
However, through our estimates of the relevant time and length scales we can now see that 
this method of analyzing Brownian motion is doomed to fail. It would mean accessing the 
particle displacements on time scales much shorter than τB, and length scales much shorter 
than can be resolved through a light microscope. What one observes through a microscope is 
already the result of many different uncorrelated forces on the particle. A process that is 
characterized by a great many realizations of uncorrelated events is a diffusion process 
characterized by a diffusion coefficient Do. We will revisit diffusion not only in chapter 13 on 
the dynamics of colloids, but also find that it describes the basic shape of a polymer molecule 
(chapter 6). The subscript ‘0’ here designates that we are dealing with single particle 
diffusion, not influenced by other particles. In a diffusion process particle displacements are 
not proportional to time as in Newtonian free flight, but instead scale with the square root of 
time: 

 
 2

0( ) 2x t D= t  (1.7) 
 

Eq. (1.7) describes the mean square displacement, <x2(t)>, as a function of time, t, for a 1D 
process. For each extra dimension a factor 2 needs to be added. It was Einstein who was the 
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first to derive a value for the diffusion coefficient by connecting the random diffusion process 
with the average kinetic energy of the colloids:  
 

 0 6π R
kT kT

D
f η

= =  (1.8) 

 
In his derivation Einstein used the Stokes friction factor, Eq. (1.4), van ‘t Hoff’s law, Eq. (1.2) 
and the fact that Brownian motion is described by a diffusion process, Eq. (1.7).  

The time it takes a Brownian particle to diffuse a distance 2R, τI, is thus given by:  
 

 
2 32 12

I

R f R

kT kT

π ητ = =  (1.9) 

 
This time is sometimes called the interaction time and we can use it to calculate the mean 
particle velocity resulting from the Brownian force as manifested through the irregular 
bombardment of solvent molecules, we find: kT/(Rf) and thus indeed that the Brownian force 
is of O(kT/R).  

The interaction time, τI, also has physical meaning in a concentrated dispersion; it is the 
time it takes for a collectoin of colloidal particles that are close together to significantly 
change their configuration. The colloids experience direct interactions with their neighbors in 
addition to hydrodynamic friction in the process. This is not to say that the presence of the 
neighbors is not felt at shorter times. On the contrary, because hydrodynamic interactions are 
very long-range and very fast, as we will see shortly, the Brownian particle feels already the 
presence of the other particles on the so-called hydrodynamic time scale, τH: 

 

 
2

H

Rρτ
η

=  (1.10) 

 
This hydrodynamic time, which is on the order of the time it takes a hydrodynamic shear 
wave to traverse a distance R, comes naturally out of the (Navier-Stokes) equations describing 
the hydrodynamics in which temporal accelerations are taken into account. After some 
thought it is not surprising that this hydrodynamic time, after some rearrangements turns out 
to be of the same order as the Brownian time, τB, defined earlier. Similarly as we did before 
we can calculate that the distance a Brownian particle diffuses in this time, lB, equals: 
 

 2
B

mkT
l

f
=  (1.11) 

 
Filling in our usual assumptions gives, lB ≈ 0.1 nm, which is as was already stated, very short. 
Thus, for times (much) longer than τB and distances (much) further than lB we can forget 
about the transients and consider velocities as determined by the friction factor. Said in 
another way: for distances longer than lB colloidal motions are overdamped. These facts make 
the calculation of hydrodynamic effects, which is still a formidable, many body problem, a lot 
easier and is also at the basis of a computer simulation technique called Brownian dynamics 
(chapters 7 & 12).  

As we will see in chapter 9 it is actually almost always the case that particles dispersed 
in a liquid acquire a net charge. Although we will also derive in that chapter that the 
interaction between two charged spheres is mediated in important ways by the ions in solution 
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that reside around the particle because of its electric potential, an order of magnitude estimate 
from just a Coulombic repulsion of two spheres with a surface potential of ζ, is given by 
εε0ζ2, here ε0 is the dielectric permittivity of free space (8.85 x 10-12 C/Vm). As seen in Table 
1.1 the electrical forces are usually larger than the Brownian forces thus explaining why these 
repulsions can protect two colloids from the attractive Van der Waals forces. As we will also 
see in chapter 9, additivity of the Van der Waals forces between molecules will lead to 
interactions between colloids that are always attrictive between identical particles and that are 
characterized by the Hamaker constant, Aeff. This constant, which has a unit of [energy], 
depends on the dielectric properties of both the particles and the intervening dispersion 
medium and gives rise to a Van der Waals force of O(Aeff/R).  

Lastly, as was already mentioned, soft matter is much more amendable to external fields 
than conventional condensed matter. Here we will look at one field, gravity, that on earth is 
always present and is an important factor limiting experiments on particles that are larger than 
several µm, next of course to the time restraint a human lifetime puts on the time an 
experiment can run. The result of gravity is sedimentation: and the velocity a single colloidal 
sphere in a dilute dispersion will attain either moving down or up under the influence of this 
external field is given by the sedimentation velocity, Us. If ∆ρ is the density difference 
between the particle and the solvent, the gravitational force is O(R3∆ρg) with g the 
gravitational acceleration (9.89 m/s2), than balancing frictional and gravitational forces gives: 
 

 
22
9s

R g
U

ρ
η
∆

=  (1.12) 

 
With Eq. (1.6) we can check that indeed for typical values the Reynolds number is still small 
for all sedimentation processes. Another dimensionless number the Peclet number, here for 
sedimentation, gives the relative importance of diffusion as compared to sedimentation: 
 

 
0

2 s
e

RU
P

D
=  (1.13) 

 
Even gas molecules experience the gravitational pull of the earth resulting in a barometric 
height distribution in which the gas density is characterized by an exponential. The decay 
length of this exponential distribution is called the gravitational length, lg, and gives the height 
one has to lift a particle of (buoyant) mass ∆m to raise its potential energy in the gravitational 
field by kT:  
 

 g

kT
l

mg
=
∆

 (1.14) 

 
For an ideal gas this equation is easily derived by assuming local mechanical equilibrium: the 
gas pressure at a certain height should be the same as the weight of the gas above that point, 
i.e., hydrostatic pressure balance. Similarly, but now taking the osmotic pressure as given by 
Van ‘t Hoff’s law instead of the ideal gas law, we can derive an exponential density 
distribution for colloids if they behave ideally as well. However, while for an ideal gas the 
gravitational height is several km, for colloids it can be even on the order of a particle size or 
smaller. Measuring the gravitational height of a colloidal dispersion was another way in 
which Perrin determined Avogadro’s number.  
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Table 1.1 summarizes the importance of several forces for our chosen example 
parameters. Firstly, for all colloids inertia effects can generally be neglected and for almost all 
time and length scales one can assume diffusive motions and velocities governed by a friction 
factor. As mentioned, electrical forces keep it suspended and stable against aggregation by 
attractive Van der Waals forces, while stirring or a modest speed results in viscous forces that 
are of the same order as those exerted on the particle by thermal motion of the solvent 
molecules. Gravity effects are not dominant, but can in the long run not be neglected. 
However useful these quick order-of-magnitude estimates are, it should also not be forgotten 
that all the forces mentioned have very different dependencies on distance, decaying with 
different power laws or even exponentially. This is why the derivation of some of these laws 
will be dealt with in coming chapters as well as the experimental methods to measure them.  

 
Table 1.1 Order of Magnitude of Characteristic Forces:  
R = 1 µm, η = 10-3 kg/ms, U = 1 µm/s, ρ = 103 kg/m3, ∆ρ/ρ = 10-2, 
g = 10 m/s2, Aeff = 10-20 J, ζ = 50 mV, ε = 102

 
electrical force
Brownian force

 
2

0R

kT

εε ζ  
~102

Van der Waals force
Brownian force

effA

kT
 

 
~1 

viscous force
Brownian force

 
2UR

kT

η  
 

~1 

gravitational force
Brownian force

 
3R g

UR

ρ
η
∆  

~10-1

inertial force
viscous force

 
2 2R U

UR

ρ
η

 
~10-6

 
 
 
1.4 Crossroad of Disciplines and Fields 
The Colloidal Domain: where Physics, Chemistry, Biology and Technology meet. This is the 
appropriate title of a recent textbook on colloid science. Even in recent years this statement is 
gaining more and more momentum, as it is driven by a rapid increase in synthetic methods, 
increased power of computer simulations and an increasing theoretical understanding 
combined with powerful methods, including quantitative 3D microscopy, to study and 
manipulate soft matter. As this course is intended for those who in principle have never heard 
of complex fluids, our focus is on the physics of both the theoretical basis behind the 
approach to describe soft matter and on the physics of the experimental and computer 
simulation tools that are used to study this field. We have limited our focus further to an 
equilibrium treatment for the Masters subjects (marked with an *), and leave phenomena that 
have to do with soft matter under flow conditions (shear) and interacting diffusing systems for 
the advanced part of the course. We can only touch upon the very interesting physical 
chemical or chemical physical processes that underlie many of the synthetic approaches used 
to design soft matter systems. The reason is that without a basic understanding of the forces 
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and phase behavior of the systems in question it is not possible to describe a synthetic 
pathway in any detail. For instance, the route used most in industry to produce polymers, 
emulsion polymerization, illustrates this point nicely. The reaction heat that comes free during 
the chemical routes used to make polymers is large, but more problematically it comes free in 
a short amount of time. Without going into too much detail, this is mostly due to the fact that 
the reaction pathways are autocatalytic and therefore have a tendency to ‘run away’. One way 
to prevent the reactions to get out of hand is to perform them in small droplets of monomers 
in a sea of an inert (heat absorbing) liquid, such as water. To keep the emulsion droplets from 
creaming, they have to be stabilized by a surfactant. Subsequently, an initiator has to start the 
reaction by diffusing from the water phase into the droplets of monomers. A complex set of 
conditions depending on the diffusion constants of the species involved, the phase behavior of 
the growing polymer in the monomer liquid and the details of the chemical reactions, etc., 
now determine the final size of the polymers and the distribution of their length. In short, 
many synthetic pathways for soft matter components are complicated soft matter research 
issues where by far not all problems have been solved and where a lot of active research is 
going on. It is however important to understand how the increased length scale that is present 
in soft matter systems gives chemical control over the properties. To take colloids as an 
example: quantum mechanics dictates the interactions between molecules, while for a 
colloidal spheres with a radius R the interaction potential can be tailored to a very large 

degree both by changing the properties of the particle surface (and/or bulk) and by changing 
the properties of the dispersion medium. Using particles with core-shell structures even 
increases the possibilities.  

 
Figure 1.8 Twisted nematic liquid crystal display. Two surfaces that are treated to align the rod-like 
molecules in such a way that they make a 90o twist in the average direction in which they are 
pointing. This twist is followed by the polarization vector of the light that passes thus allowing light 
to transmit the device even for crossed polarizers. After switching on a moderate electric field, all 
molecules align reversibly perpendicular to the polarizer planes and the pixel becomes dark.  

In many industrial processes soft matter systems play a role, this is clear if they are the 
main components such as in paints, polymers, cosmetics or foods, but is often also less 
obvious such as in oil recovery, or in the making of IC’s. Almost all these systems are very 
complex involving many soft matter components that all interact with each other. This is why 
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most of these systems are not treated in this introductory course. It is certainly true however, 
that progress in the field of soft matter is being made at such a pace that the ‘model’ systems 
being studied are starting to become more and more complex as well, bridging the gap 
between the academic and industrial labs. Moreover, the progress mentioned is also creating a 
whole new class of materials that are directly based on the model systems with their well-
controlled properties. These are advanced materials of which the properties can be adjusted 
dynamically by external stimuli such as: liquid crystal displays (Fig. 1.8), sensors based on 
photonic crystals or electro-rheological fluids. These materials are also called ‘smart’ 
materials (chapter 15).  

As already mentioned, almost all the important content of every cell falls in the colloidal 
domain. This includes on the small end proteins and on the large end red blood cells. Despite 
a lot of recent research that uses almost exclusively theoretical and experimental techniques 
that were developed by soft matter researches, there is still a lot not known. For instance, even 
a simple question like: how does the cell or its components exert forces, is largely unknown 

 
Figure 1.9 Cross-fertilization between the (micro)biology inspired physics and soft condensed 
matter fields. Top: Mixture of monodisperse colloidal rods (virus particles) and spheres show an 
intriguing and complex phase behavior, next to schematic pictures the phases are demonstrated 
with (polarization)microscopy images (M. Adams, et al., Nature, 393, 349-352 (1998)). Bottom: 
Optical tweezers grabbing colloidal latex spheres with an biological actin filament attched 
(explained in Chapter 9) are used to measure forces of molecular motors attached to another 
colloidal particle.  
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and an active field of research. It is fair to say that because of the large number of researchers 
in this field of biology inspired physics, there is also a flow of knowledge starting to go the 
other way (Fig. 1.9). One nice example is the possibility to induce specific, temperature 
reversible, interactions between colloids by coating them with single strands of DNA that will 
only interact with other particles that are coated with the complementary sequence. Similar 
cross-fertilization is also starting in the field of biology inspired (soft) materials science.  
 

 
Figure 1.10 Self-assembled array of spherical di-block domains are used in lithographic 
procedures to make a pattern of holes or pillars in silicon nitride with dimensions of only a 
few nm. (M. Park, et al., Science, 276, 1401 (1997)). 

 
1.5 Connection with NanoScience and NanoTechnology 
The (materials) science ‘buzzword’ at present is certainly anything that has ‘nano’ in it. Not 
only have the promises of ‘nanoscience’ and ‘nanotechnology’ inspired governments to 
increase funding in this area, the general public is starting to become aware of this ‘new field’ 
of science as well. Already, there are serious warnings in editorials in the journal Nature to 
the scientists working in this field that ‘objections and worries about the dangers of this 
emerging field need to be taken seriously’. By definition anything that has at least one 
dimension with feature sizes under 100 nm is determined to be part of nano-science. This 
length scale is chosen completely arbitrarily. Part of the motivation to study systems below 
this size is that this is roughly the size at which commercial IC’s are produced at the moment. 
And although it has already been predicted for over 20 years, there will indeed be an end to 
the doubling of the number of transistors on a silicon chip every (now) two years. Also 
without the ‘hype’ it is fair to say that the ability to make and design structures below 100 nm 

 18 
-19-



is increasing rapidly. As may be clear from the above, soft matter scientists are playing an 
important role in this field.  

Another reason for increased expectations is that new effects arise when one enters 
dimension truly close to a nm. For particles of this size one can no longer state that  = 0 and 
quantum mechanical effects manifest itself. This can be understood qualitatively by 
considering the QM description of an electron in a box. Confinement of the wave function 
leads to a discrete spectrum of energy levels where the spacing is determined by the size of 
the box. This explains why metal particles or semiconductor crystals with sizes of several nm 
have strong size dependant properties and why, for instance their absorption spectrum shows 
discrete absorption bands. In similar ways as we can tune the interparticle interactions for 
larger colloids, one can now chemically tune the wave function of these ‘quantum dots’ 
(chapter 8).  

What we have hoped to have achieved after following these SCM lectures is the ability 
to understand why in nano-science is not is not possible to just scale down a steam engine to a 
micron size and expect it to still work. It is amazing how many ‘serious’ scientists do not 
realize this. 
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Origin Figures 
All figures in this chapter have been obtained from the Timeline of soft condensed matter that 
was presented at the 100 year APS celebration, a version of this timeline can be found at:  
http://www.nat.vu.nl/~fcm/ComplexFluids/ComplexFluids.html 
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Chapter 2

Classical ensemble theory

2.1 Phase space

Consider an isolated system of N identical classical particles in a three dimensional volume V . If we
assume that each particle has three translational degrees of freedom, then the microscopic state of this
system is fully characterised by the 3N coordinates rN ≡ {r1, · · · , rN} and the 3N conjugate momenta
pN ≡ {p1, · · · ,pN} of the particles. The values of these variables define a phase point Γ ≡ (rN ,pN ) in
a 6N -dimensional phase space1. The time evolution of the system can be seen as a motion of the phase
point along its phase trajectory. This motion follows from the Hamiltonian H(rN ,pN ) of the system,
which is written here as

H(rN ,pN ) =

N
∑

i=1

p2
i

2m
+ Φ(rN ), (2.1)

where m is the mass of the particles and Φ(rN ) the potential energy, which includes the external potential
that defines the volume V . The Hamiltonian thus depends parametrically on the number of particles
N and the volume V (or parameters that describe the volume V ). This form of the Hamiltonian is not
suitable for electro-magnetic systems, with velocity-dependent forces, but the formalism can be extended
to include these as well. The Hamilton equations

ṙi =
∂H

∂pi
; ṗi = −∂H

∂ri
, (2.2)

together with 6N initial conditions, determine the trajectory uniquely and completely. It follows that
trajectories in phase space do not intersect.

2.2 The Liouville equation

It will turn out to be useful to consider an arbitrary large collection of macroscopically identical systems
that only differ by their position in phase space. Such a collection is called an ensemble. At a given
time t an ensemble is characterised by a cloud of phase points distributed according to a phase space
probability density f(Γ, t), with f(Γ, t)dΓ the probability that the system is in a microscopic state lying in
the infinitesimal 6N dimensional volume element dΓ = drNdpN around Γ. The time evolution of f(Γ, t)
is governed by the Liouville equation. This equation is the 6N -dimensional analogue of the continuity
equation of a fluid; it describes that phase points can neither be created nor destroyed as time evolves,
plus how they flow. The Liouville equation can be written compactly as

∂f(Γ, t)

∂t
+

∂

∂Γ
·
(

Γ̇f(Γ, t)
)

= 0, (2.3)

where ∂/∂Γ denotes the phase space gradient operator, and Γ̇ the 6N dimensional vector (ṙN , ṗN ). As
it follows directly from the Hamilton equations (2.2) that ∂/∂Γ · Γ̇ = 0, we rewrite Eq.(2.3) as

∂f(Γ, t)

∂t
= −Γ̇ · ∂f

∂Γ
1If each particle has n other internal degrees of freedom (e.g. orientations), then the dimension of the phase space

becomes (6+2n)N.
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=

N
∑

i=1

[∂H

∂ri

∂f

∂pi
− ∂H

∂pi

∂f

∂ri

]

≡ {H, f}, (2.4)

where {, } denotes the Poisson bracket. The Liouville equation is the starting point of most theories of
nonequilibrium statistical mechanics. The focus in this course is on equilibrium statistical mechanics,
where f(Γ, t) is stationary, i.e. (∂f/∂t) = 0. Equilibrium ensembles are therefore characterised by
phase space distributions f(Γ) that satisfy {H, f} = 0. This implies that the Γ-dependence of f can
only be through conserved quantities. In most cases of interest here the energy is the only conserved
quantity2, so that then f(Γ) = f̃

(

H(Γ)
)

for some function f̃ . We will see that important examples include

f(Γ) ∝ δ
(

E − H(Γ)
)

(microcanonical ensemble) and f(Γ) ∝ exp[−H(Γ)/kT ] (canonical ensemble).

2.3 Time averages and ensemble averages

The aim of equilibrium statistical mechanics is to calculate observables that result from a macroscopic
measurement. Such a measurement yields the time average A of a corresponding microscopic function
A(Γ) over a sufficiently long time interval t0 ≤ t ≤ t0 + τ of the phase trajectory, i.e.

A =
1

τ

∫ t0+τ

t0

dtA
(

Γ(t)
)

. (2.5)

Even if τ is very large compared to an atomic time scale (say τ = 1s), this average depends, strictly
speaking, on the initial time t0 and on the particular trajectory of the measured system. It is common
experience, however, that repeating the measurement on the same equilibrium system at later times
t0 yields an indistinguishable answer. Apparently most values of a phase function (with a macroscopic
meaning) are close to their average value on a particular trajectory. Moreover, repeating the measurement
on a replica of the original system (i.e. on a different trajectory) often also yields the same answer for
A. This suggests an alternative microscopic description of a macroscopic equilibrium state: instead of
time averaging over a single phase trajectory (as proposed in Eq.(2.5)), we can average over a suitably
constructed equilibrium ensemble with a corresponding equilibrium probability density f(Γ) that does
not depend on time explicitly. The ensemble average is now defined as

〈A〉 =

∫

dΓf(Γ)A(Γ), (2.6)

where the normalisation
∫

dΓf(Γ) = 1 is understood. In the next paragraphs we will discuss the standard
classical ensembles, characterised by a specific form for f(Γ). This form depends on the macroscopic
parameters that are chosen to characterise the ensemble.

Remark 1. Systems for which A = 〈A〉 for all continuous phase functions A(Γ) are called ergodic.
Although ergodicity can almost never be proven, it is often assumed to hold. There are, however,
manifestly nonergodic systems. Nonergodicity results if trajectories are restricted, for macroscopically
long times, to a subspace. This can be caused by the presence of other conserved quantities besides energy
(e.g. angular momentum), or due to spontaneous symmetry breaking (e.g. in antiferromagnets). Also
systems with an extremely slow dynamics compared to the observation time, e.g. glasses, are nonergodic.

Remark 2. The two type of averages discussed here are also manifest in present day computer sim-
ulations of model systems for condensed matter. In Molecular Dynamics simulations the equations of
motions (2.2) are integrated numerically for typically N = 100 − 10000 particles, starting from some
initial configuration. This generates a phase trajectory over which time averages are taken. In Monte
Carlo simulations configurations are randomly generated, and then accepted or rejected in such a way
that configurations (and hence observables) are sampled with the correct statistical weight f(Γ).

2.4 The microcanonical ensemble

2.4.1 The fundamental assumption

The microcanonical ensemble describes the equilibrium properties of a
closed ergodic system with fixed energy E, volume V , and number of particles N . It is characterised by

2Linear and angular momentum are not conserved due to collisions with the wall of the container that specifies the
volume (unless the wall itself is considered part of the system)
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the phase space distribution

fm(Γ) =
δ
(

E − H(Γ)
)

ω(E, V,N)
, (2.7)

with the Dirac-δ and with the normalisation

ω(E, V,N) =

∫

dΓδ
(

E − H(Γ)
)

. (2.8)

This distribution is such that it is zero anywhere except on the 6N−1 dimensional hypersurface H(Γ) = E.
The hypersurface “area” is ω(E, V,N). The microcanonical distribution can alternatively be written as
the ∆E → 0 limit of the distribution

fm(Γ) =



















[

∫

E−∆E<H(Γ)<E

dΓ

]−1

; E − ∆E < H(Γ) < E,

0 otherwise.

(2.9)

The systems of the microcanonical ensemble are distributed uniformly in the energy-shell of thickness
∆E below E: each phase point in this shell is equally probable. This is the fundamental assumption of
statistical mechanics, from which all results in this chapter follow.

2.4.2 Connection with thermodynamics

Consider a small and sufficiently slow volume change of a microcanonical (E, V,N) system, such that the
volume V at time t0 changes to V + dV at time t0 + τ . The number of particles N remains fixed. During
this volume change an amount of work dW is performed on the system. Since the volume of the system
can be seen as a parameter on which the Hamiltonian depends (through the wall potential), we can write

dW =

∫ t0+τ

t0

dt

(

∂H
(

Γ(t)
)

∂V

)

(

dV

dt

)

= dV
1

τ

∫ t0+τ

t0

dt

(

∂H
(

Γ(t)
)

∂V

)

= dV

(

∂H

∂V

)

,

where we used the time-average defined in Eq.(2.5). We assumed implicitly that τ → ∞, i.e. that the
volume change is carried out sufficiently slowly or quasi-statically. If the system is ergodic, we rewrite
this as

dW = 〈
(

∂H

∂V

)

〉mdV ≡ −pdV, (2.10)

where 〈·〉m denotes the microcanonical ensemble average, and p the pressure of the closed system, i.e.
the force per unit area exerted on the wall. This will be considered in more detail in one of the problems.
We will now use Eq.(2.10), together with the thermodynamic relation (First Law)

dE = −pdV + TdS (2.11)

(+µdN,with µ the chemical potential, but dN = 0 here)

to establish a microscopic picture of the thermodynamic (macroscopic) quantity S, the entropy.
This identification requires the introduction of the so-called

energy sphere, the set of phase points Γ with H(Γ) < E. It is that part of phase space that is “enclosed”
by the hypersurface of magnitude ω(E, V,N) introduced in Eq.(2.8). The (hyper)volume Ω(E, V,N) of
the energy sphere is defined by

Ω(E, V,N) =

∫

dΓΘ
(

E − H(Γ;V,N)
)

, (2.12)

where we explicitly indicated the volume and particle number dependence of the Hamiltonian, and where
Θ(x) is the Heaviside step function

Θ(x) =

{

0 x < 0
1 x ≥ 0

. (2.13)
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Using that Θ′(x) = δ(x) (this is a bit loose, but can be made rigorous by regarding Θ(x) and δ(x) as
distributions), we obtain from Eqs.(2.12) and (2.8) that

∂Ω(E, V,N)

∂E

(2.12)
=

∫

dΓδ
(

E − H(Γ;V,N)
)

(2.8)
= ω(E, V,N) (2.14)

and

∂Ω(E, V,N)

∂V

(2.12)
= −

∫

dΓδ
(

E − H(Γ;V,N)
)

(

∂H(Γ;V,N)

∂V

)

(2.7)
= −ω(E, V,N)

∫

dΓfm(Γ)

(

∂H(Γ;V,N)

∂V

)

(2.6)
= −ω(E, V,N)〈

(

∂H(Γ;V,N)

∂V

)

〉m
(2.10)
= +ω(E, V,N)p. (2.15)

In other words, at fixed N ,

dΩ = ω(E, V,N)
(

dE + pdV
)

(2.11)
= ω(E, V,N)TdS, (2.16)

which implies that

TdS =
1

(

∂Ω

∂E

)dΩ. (2.17)

One should not conclude now that T = (∂Ω/∂E)−1 and S = Ω, since any function g(Ω) satisfies

(

∂g(Ω)

∂E

)−1

dg(Ω) =

(

∂Ω

∂E

)−1

dΩ. (2.18)

We can therefore just conclude that S = g(Ω), with the function g to be determined yet!

In order to find g(Ω) for which dg(Ω) = dS we use that S is extensive, i.e. S(E, V,N) = 2S(E/2, V/2, N/2)
for large N . Since one can prove(not here) that log[Ω(E, V,N)/N !] = 2 log[Ω(E/2, V/2, N/2)/(N/2)!] +
O(log N), we conclude that g(Ω) = k log[Ω/N !] is the correct expression, with k a constant to be deter-
mined. Since Ω has the dimension of (angular momentum)3N , it is not very elegant to take its logarithm.
Division by h3N , with an appropriate dimension for h, does not affect the extensivity condition, and
hence we obtain the final relation between the thermodynamic entropy S and the classical phase space
volume Ω as

S(E, V,N) = k log
Ω(E, V,N)

N !h3N
. (2.19)

We will see later that the conventional temperature scale follows by taking k = kB , the Boltzmann
constant kB = R/NA, with R the gas constant and NA Avogadro’s number. Quantummechanics provides
Planck’s constant as a natural choice for h. The factor N ! must be included in order to obtain an
extensive entropy. Gibbs included this factor exactly for this reason. It can be interpreted as a correction
for counting all N ! classical phase space configurations, that result from a permutation of one of them,
as distinct states, whereas these N ! classical states are quantummechanically indistinguishable. In this
sense the entropy is proportional to the logarithm of the number of accessible quantummechanical states.

From the thermodynamic definition 1/T = (∂S/∂E)V,N and Eq.(2.19) it follows that

1

T
= k

ω(E, V,N)

Ω(E, V,N)
=⇒ Ω = kTω. (2.20)

The proportionality between the “volume” Ω and “surface area” ω is a consequence of the fact that
essentially all of the volume of high dimensional convex bodies is concentrated in the surface shell. As
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2.4. THE MICROCANONICAL ENSEMBLE 5

a consequence, we not only have Eq.(2.19) for the entropy, but also the equivalent expressions (in the
thermodynamic limit)

S(E, V,N) = k log
ω(E, V,N)kT

N !h3N
(2.21)

= k log
ω(E, V,N)∆E

N !h3N
, (2.22)

where ∆E is a constant of dimension energy that is arbitrary within extreme bounds.
For later reference we also introduce the intensive function

β(E, V,N) ≡
(

∂ log ω(E, V,N)

∂E

)

N,V

(2.23)

=

(

∂ log Ω(E, V,N)

∂E

)

N,V

=

(

∂S(E, V,N)/k

∂E

)

N,V

(2.24)

=
1

kT
, (2.25)

with T the temperature of the microcanonical (E, V,N) ensemble.

2.4.3 Application to ideal gas

For a system of N noninteracting particles in a volume V at fixed energy E the hypervolume Ω reduces
from the general form given in Eq.(2.12) to

Ω(E, V,N) = V N

∫

dpNΘ
(

E −
N

∑

i=1

p2
i

2m

)

= V N

(

2πmE
)3N/2

Γ( 3N
2 + 1)

, (2.26)

with Γ(x) the Euler Γ-function (not to be confused with the 6N -dimensional phase point!) defined by

Γ(x) =

∫ ∞

0

dt exp[−t]tx−1. (2.27)

This result, together with the property log Γ(x) = x log x − x + O(log x) for x → ∞ (“Stirling”), will be
worked out in detail in one of the problems. Apart from logarithmic corrections the ideal-gas entropy
therefore reads,

S(E, V,N) = k log
Ω(E, V,N)

N !h3N

= Nk log

[

V

N

(

4πmE

3Nh2

)3/2
]

+
5

2
Nk. (2.28)

The temperature T , the pressure p, and chemical potential µ follow directly as

1

T
=

∂S

∂E
=

3Nk

2E
=⇒ E =

3

2
NkT

p

T
=

∂S

∂V
=

Nk

V
=⇒ pV = NkT

µ

T
= − ∂S

∂N
= −k log

[

V

N

(

4πmE

3Nh2

)3/2
]

. (2.29)

These relations show immediately that the constant k should indeed be the Boltzmann constant kB . We
will often omit the index B for notational convenience.
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6 CHAPTER 2. CLASSICAL ENSEMBLE THEORY

2.5 Thermal equilibrium

Let us consider an isolated system that consists of two subsystems, labeled 1 and 2, with fixed volumes
V1 and V2 and fixed particle numbers N1 and N2. Also the total energy E = E1 + E2 is fixed, but
energy exchange between the two subsystems is possible, i.e. E1 and E2 = E − E1 are not fixed3. The
Hamiltonian therefore satisfies

H1(Γ1) + H2(Γ2) = E. (2.30)

We now consider the energy distribution between the two subsystems. Let W (E1)dE1 be the probability
that the energy of subsystem 1 is in the regime between E1 and E1 + dE1. Then

W (E1) ∝
∫

dΓ1dΓ2δ
(

E1 − H1(Γ1)
)

δ
(

E − E1 − H2(Γ2)
)

(2.8)
= ω1(E1, N1, V1)ω2(E − E1, V2, N2), (2.31)

where we omit, for a while, a normalisation constant (which is, and this is important, independent of
E1). The most probable value of E1, say E∗

1 , is the one that maximises W (E1). Since E∗
1 also maximises

log W (E1), we see that (∂ log W (E1)/∂E1)
∣

∣

E∗

1

= 0. We rewrite this with Eq.(2.31) as

0 =
∂

∂E1

(

log ω1(E1, V1, N1) + log ω2(E − E1, V2, N2)
)

∣

∣

E∗

1

(2.23)
= β1(E

∗
1 , V1, N1) − β2(E − E∗

1 , V2, N2)

(2.25)
=

1

kT1
− 1

kT2
. (2.32)

As a consequence the most probable energy distribution is the one for which the temperatures T1 and T2 of
the two subsystems are equal: T1 = T2 ≡ T . This is consistent with the Zeroth Law of thermodynamics.
By rewriting Eq.(2.31) with (2.21) as

W (E1) ∝ exp[S1(E1, V1, N1)/k + S2(E − E1, V2, N2)/k], (2.33)

we also see that the most likely energy distribution is the one that maximises the total entropy of the
system (under the constraint that Ni, Vi and E are fixed). The form of Eq.(2.33) can be used to construct
a more explicit form for W (E1) by Taylor expanding the exponent of Eq.(2.33), S1 +S2, about E1 = E∗

1 .
The lowest order term, S1(E

∗
1 )+S2(E−E∗

1 ) is independent of E1 and can be absorbed in the normalisation
(to be calculated afterwards). The linear term O(E1 − E∗

1 ) vanishes because of the extremum condition
Eq.(2.32). The first nontrivial term of the expansion is therefore O

(

(E1 − E∗
1 )2

)

. Its coefficient follows
from the thermodynamic relation

(

∂2S(E, V,N)

∂E2

)

∣

∣

∣

E∗

=

(

∂1/T

∂E

)

=
−1

T 2

1

Cv
, (2.34)

with the (extensive) constant-volume heat capacity Cv = ∂E/∂T . Using Eq.(2.34), and truncating the
Taylor expansion beyond the quadratic term, yields the Gaussian distribution

W (E1) ∝ exp

[ −1

2kT 2

(

1

Cv,1
+

1

Cv,2

)

(E1 − E∗
1 )2

]

. (2.35)

The justification of truncating the expansion follows from the fact that the successive next order terms
are smaller than the previous term by a factor O(1/N). The standard deviation of the Gaussian in (2.35)
equals [kT 2Cv,1Cv,2/(Cv,1 + Cv,2)]

1/2 ∝
√

N . The relative fluctuations in E1 vanish as 1/
√

N for large
systems; the distribution is sharply peaked about E1 = E∗

1 , and the average energy 〈E〉 equals the most
probable energy E∗.

3Here we ignore the energy associated with the interactions between particles in the different subsystems. This energy
contribution scales with the interface area between subsystem 1 and 2, and is therefore irrelevant in the limits V1, V2 → ∞

that we (implicitly) consider here. Note, however, that the existence of these interactions is crucial for the exchange of
energy between the two subsystems.
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2.6. THE CANONICAL ENSEMBLE 7

2.6 The canonical ensemble

We now consider the same, closed, composed system as in the previous section, but now in the extreme
limit where subsystem 2 is much bigger than subsystem 1. Yet, however, subsystem 1 is big enough to
ignore surface effects etc. In this limit subsystem 2 plays the role of a heat bath, with which subsystem
1 is in thermal contact. As before, the total energy E of the total system is fixed (as are V1, N1, V2,
and N2), but the energy E1 of subsystem 1 fluctuates. We are interested in the phase space distribution
fc(Γ1) of subsystem 1, and in the energy distribution. The index “c” is for canonical, as the ensemble of
systems in contact with a heat bath is conventionally called the canonical ensemble.

The canonical phase space distribution fc(Γ1) of subsystem 1 is obtained by integrating the micro-

canonical distribution of the total system, fm(Γ1,Γ2) ∝ δ
(

E − H1(Γ1) − H2(Γ2)
)

over all configurations
of the heat bath. Ignoring the normalisation (for a while) we obtain

fc(Γ1) ∝
∫

dΓ2δ
(

E − H1(Γ1) − H2(Γ2)
)

(2.8)
= ω2

(

E − H1(Γ1), V2, N2

)

(2.23)
= exp

[

log ω2(E, V2, N2) − β2(E, V2, N2)H1(Γ1) + O(H2
1/E)

]

,

(2.36)

where the Taylor expansion of log ω2 about E is justified by the much larger size of subsystem 2. In the
limit N2/N1 → ∞ of interest we can ignore the third term in the exponent of Eq.(2.36). Moreover, its
first term is independent of Γ1 and can be absorbed in the normalisation. The canonical distribution
function thus satisfies fc(Γ1) ∝ exp[−β2H1(Γ1)]. The only effect of the heat bath (subsystem 2) is to
fix the value of β2, i.e. to fix the temperature. We have seen above that subsystem 1 takes the same
temperature in equilibrium.

We can now drop the indices 1 and 2 for the subsystems, and write the normalised canonical distri-
bution function of a system of volume V , number of particles N , phase points Γ, Hamiltonian H(Γ), at
temperature T (= 1/kβ) as

fc(Γ) =
exp[−βH(Γ)]

N !h3NZ(N,V, T )
(2.37)

with the so-called canonical partition sum or partition function

Z(N,V, T ) =
1

N !h3N

∫

dΓ exp[−βH(Γ)]. (2.38)

The factor h3N is included to make Z dimensionless, and the factor N ! to make log Z extensive, as we
will see.

Let us now calculate the energy distribution W (E) of the canonical ensemble (with E playing the role
of E1 above),

W (E) =

∫

dΓfc(Γ)δ
(

E − H(Γ)
)

(2.8)
=

1

N !h3NZ(N,V, T )
exp[−βE]ω(E, V,N). (2.39)

This distribution is maximal for E = E∗ with E∗ given by β(E∗, V,N) = β, i.e. for that E∗ for which
the temperature of the system equals that of the reservoir. Expanding about E∗ then yields a Gaussian,
just as obtained in Eq.(2.35), which with the correct normalisation, is written as

W (E) =
(

2πkT 2Cv

)−1/2
exp[− (E − E∗)2

2kT 2Cv
], (2.40)

with Cv = ∂E/∂T the heat capacity. Note that this result is indeed the limit of Eq.(2.35) when Cv,2 À
Cv,1 ≡ Cv, i.e. when subsystem 2 is much bigger than subsystem 1. Also note that Cv > 0 in order that
E = E∗ has a maximum probability. It follows directly from (2.40) that the relative energy fluctuations
are characterised by

√

〈(E − E∗)2〉
E∗

∝ 1√
N

. (2.41)
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8 CHAPTER 2. CLASSICAL ENSEMBLE THEORY

In the thermodynamic limit these fluctuations become vanishingly small, and then the average energy
〈E〉 equals the most probable energy E∗. This also implies that the microcanonical and the canonical
ensemble are equivalent, for most purposes, in the thermodynamic limit.

The connection with thermodynamics can now be made by integrating Eq.(2.39) over all values of E,
and using that the result equals unity by definition. This yields, using the vanishing width of W (E) in
the thermodynamic limit, that

Z(N,V, T ) =
1

N !h3N

∫ ∞

−∞

dE exp[−βE]ω(E, V,N)

=
ω(E∗)

N !h3N
exp[−βE∗]

∫ ∞

−∞

dE exp[−(E − E∗)2/(2kT 2Cv)]

= exp[S∗/k] exp[−βE∗]
(

2πkT 2Cv

)1/2
, (2.42)

where S∗ = S(E∗, V,N) ≡ 〈S〉 the entropy of the (N,V, T ) system. Ignoring terms of O(log N), it follows
that

−kT log Z(N,V, T ) ≡ F (N,V, T ) = E∗ − TS∗ = 〈E〉 − T 〈S〉, (2.43)

where F is the Helmholtz free energy. As is well known from thermodynamics, F (N,V, T ) generates
the full thermodynamics of systems with fixed (N,V, T ), just like S(E, V,N) does for systems with fixed
(E, V,N).

Specifically we have for the energy

E =

∫

dΓfc(Γ)H(Γ)

=
1

N !h3NZ(N,V, T )

∫

dΓH(Γ) exp[−βH(Γ)]

=
1

N !h3NZ(N,V, T )

−∂

∂β

∫

dΓ exp[−βH(Γ)]

=
−∂ log Z(N,V, T )

∂β
=

∂
(

βF (N,V, T )
)

∂β
. (2.44)

The pressure and chemical potential are given, respectively, by

p = −
(

∂F

∂V

)

N,T

µ =

(

∂F

∂N

)

V,T

. (2.45)

The Maxwell-Boltzmann velocity distribution is easily obtained in the canonical ensemble, viz.

fMB(p) ≡ 〈δ(p1 − p)〉c
=

1

N !h3NZ

∫

dΓδ(p1 − p) exp[−βH(Γ)]

=
exp[−p2/(2mkT )]

(

2πmkT
)3/2

. (2.46)

The canonical average of momentum independent observables, i.e. observables described by phase
functions A(Γ) = A(rN ), can be written as

〈A〉 =
1

N !h3NZ(N,V, T )

∫

dΓ exp[−βH(Γ)]A(rN )

=
1

Q(N,V, T )

∫

drN exp[−βΦ(rN )]A(rN ), (2.47)

where the configurational integral is defined as

Q(N,V, T ) =

∫

drN exp[−βΦ(rN )]. (2.48)
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2.7. THE GRAND CANONICAL ENSEMBLE 9

Note that

Z(N,V, T ) =
Q(N,V, T )

N !Λ3N
, (2.49)

where the thermal (De Broglie) wavelength is defined by

Λ =
h√

2πmkT
. (2.50)

2.6.1 Application to ideal gas

The canonical partition function for N classical noninteracting particles in a volume V at temperature
T is given by

Z(N,V, T ) =
1

N !h3N

∫

dΓ exp[−βH(Γ)]

=
V N

N !

1

h3N

∫

dpN exp[−β

N
∑

i=1

p2
i

2m
]

=
V N

N !Λ3N
, (2.51)

where Λ is defined in Eq.(2.50). The Helmholtz free energy follows as

F (N,V, T ) = NkT

[

log

(

NΛ3

V

)

− 1

]

, (2.52)

It is easily checked that the energy E, the pressure p, and the chemical potential µ are given by

E =
3

2
NkT

p =
NkT

V

µ = kT log

(

NΛ3

V

)

. (2.53)

These results are identical to those obtained in the microcanonical ensemble, Eqs.(2.29). Note, however,
that the explicit calculation of Z(N,V, T ) in Eq.(2.51) is much simpler than that of Ω(E, V,N) in the
microcanonical case. This is an example that illustrates the more general result that the ensemble used
in theoretical calculations can be chosen for calculational convenience; it need not necessarily correspond
to the experimental situation.

2.7 The grand canonical ensemble

Although many physical systems can be characterised by fixed (N,V, T ), and therefore by the canonical
ensemble, there are also many cases where the number of particles N can fluctuate because of the
permeability of the walls or surface of the system. Examples include membrane equilibria (where some
chemical species can and others cannot cross a semi-permeable membrane) or gas-liquid coexistence
(where particles can move from the liquid to the gas and vice versa through the meniscus). One can also
consider a system that is a part of a bigger system, e.g. a subvolume that contains a fluctuating number
of particles. The ensemble of systems that can exchange energy and particles with their environment is
called the grand canonical ensemble. This ensemble can be constructed by considering a bipartitioned
microcanonical ensemble of fixed total energy E, volume V , and number of particles N . If the wall that
separates the two fixes V1 and V2 = V − V1 conducts heat and is permeable to the particles, then the
energy E1 and the number of particles N1 of subsystem 1 fluctuates (and that of subsystem 2 as well,
with E2 = E − E1 and N2 = N − N1). In what follows we assume that subsystem 2 is a reservoir with
which 1 is in contact, i.e. we assume that E2 À E1, V2 À V1, and N2 À N1; we ignore terms O(N1/N)
compared to O(N1) terms. Implicitly we also ignore the interaction energy between the two subsystems,
which implies that V1 is large enough to neglect surface contributions.
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10 CHAPTER 2. CLASSICAL ENSEMBLE THEORY

The grand canonical phase space distribution of subsystem 1, fg(Γ1, N1), depends explicitly on N1,
and follows by integrating the microcanonical distribution of the total system over the phase Γ2 of
subsystem 2. Recalling the definition of ω(E, V,N) from Eq.(2.8), which we rewrite here as ω(E, V,N) =
∫

dΓ1dΓ2δ
(

E − H1(Γ1) − H2(Γ2)
)

, we can write

fg(Γ1, N1) =

(

N !

N1!(N − N1)!

)

∫

dΓ2δ
(

E − H1(Γ1) − H2(Γ2)
)

ω(E, V,N)

=
N !h3N

ω(E, V,N)

1

N1!h3N1

ω2

(

E − H1(Γ1), V2, N − N1

)

(N − N1)!h3(N−N1)

∝ 1

N1!h3N1
exp

[

log

(

ω2

(

E − H1(Γ1), V2, N − N1

)

(N − N1)!h3(N−N1)

)]

(2.54)

The bracketed factor in the first line of Eq.(2.54) is of combinatorial nature, and denotes the number of
possible ways to divide N particles into two sets of N1 and N −N1 particles. The second line follows from
the first one by rearrangement of terms. Its first term is independent of N1 and Γ1, and hence serves as
a mere normalisation that is ignored in the third line but will be restored later. A more explicit form of
fg is obtained by a Taylor expansion of the argument of the exponent in the third line of Eq.(2.54) about
E2 = E and N2 = N ,

[

log

(

ω2

(

E, V2, N
)

N !h3N

)

− β2H1(Γ1) + β2µ2N1 + O(N1/N,H1/E)

]

, (2.55)

where the dominant term is again a scaling factor as it is independent of N1 and Γ1; it will be absorbed
by the normalisation. The quantities β2 and µ2 are the reservoir quantities defined by

β2 =
∂ log ω2(E, V2, N)

∂E

β2µ2 = −∂ log ω2(E, V2, N)/N !h3N

∂N
= −∂S2(E, V2, N)/k

∂N
. (2.56)

We have seen already that β2 = 1/kT2, and µ2 is called the chemical potential. Ignoring the small
O(N1/N) terms, we conclude that fg(Γ1, N1) ∝ exp[−β2H1(Γ1) + β2µ2N1]/(N1!h

3N1). Restoring the
normalisation, setting the fixed reservoir quantities β2 = β and µ2 = µ, and dropping all indices (we now
focus only on the system that we previously called subsystem 1) yields

fg(Γ, N) =
1

N !h3NΞ(µ, V, T )
exp[−βH(Γ) + βµN ] (2.57)

with the so-called grand canonical partition function

Ξ(µ, V, T ) =

∞
∑

N=0

exp[βµN ]

N !h3N

∫

dΓ exp[−βH(Γ)]

(2.38)
=

∞
∑

N=0

exp[βµN ]Z(N,V, T ). (2.58)

The grand canonical ensemble can be regarded as a linear combination of canonical ensembles with
different numbers of particles. (Similarly one can regard the canonical ensemble as a linear combination
of microcanonical ensembles with different energies).

The probability distribution W (N) to find N particles in a grand canonical ensemble is given by

W (N) =

∫

dΓfg(Γ, N)

(2.57)
=

exp[βµN ]

N !h3NΞ(µ, V, T )

∫

dΓ exp[−βH(Γ)]

(2.58)
=

exp[βµN ]Z(N,V, T )

Ξ(µ, V, T )
. (2.59)
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2.7. THE GRAND CANONICAL ENSEMBLE 11

This distribution is maximal for that value of N , say N ∗, for which
(∂ log W (N)/∂N) = 0. This implies, from Eqs.(2.43) and (2.59), that

(

∂F (N,V, T )

∂N

)

∣

∣

∣

N∗

= µ, (2.60)

i.e. the most probable number of particles, N ∗, is such that the chemical potential equals that of the
reservoir. The distribution can now be obtained explicitly by a Taylor expansion of N about N ∗, with
the result

W (N) = exp
[

log W (N)
]

(2.59)
=

exp[βµN∗ − βF ∗]

Ξ(µ, V, T )
exp

[

− 1

2
β
( ∂µ

∂N

)

V,T,N=N∗

(N − N∗)2
]

(2.61)

with F ∗ = F (N∗, V, T ). Neglecting the O
(

(N −N∗)3
)

terms is justified provided (∂N/∂µ) > 0; this is a
well known thermodynamic stability requirement. One checks that the relative width of the distribution,

√

〈(N − N∗)2〉
N∗

∝ 1√
N∗

, (2.62)

vanishes in the thermodynamic limit, unless (∂µ/∂N)V,T = 0 as is the case for phase coexistence. In
the one-phase regime, (∂µ/∂N)V,T > 0, the average number of particles, 〈N〉, equals the most probable
number N∗. It also implies that the grand canonical ensemble is equivalent, thermodynamically, to the
canonical and microcanonical ensemble (unless (∂N/∂µ) ≤ 0).

An interesting result is obtained by considering the variance of the Gaussian distribution (2.61), which
is given by

〈(N − 〈N〉)2〉 =
kT

(

∂µ

∂N

)

V,T,N=N∗

=
kT 〈N〉
(

∂p

∂ρ

)

T

, (2.63)

where we used that the thermodynamic result that

(

∂N

∂µ

)

V,T

= V

(

∂ρ

∂µ

)

T

= V

(

∂ρ

∂p

)

T

(

∂p

∂µ

)

T

= N

(

∂ρ

∂p

)

T

. (2.64)

The relative variance in the number of particles is therefore related to the compressibility through

〈N2〉 − 〈N〉2
〈N〉 = kT

(

∂ρ

∂p

)

T

. (2.65)

The relation between the grand canonical ensemble and thermodynamics is obtained by integrating
(adding) the left- hand right hand side of Eq.(2.61) over all values of N . By definition the left hand side
yields unity, while the right hand side yields exp[βµN ∗ − βF ∗ − log Ξ + O(log N)], where the O(log N)
term (that follows from the Gaussian integration) is vanishingly small compared to the other three when
N → ∞. Consequently we have

log Ξ(µ, V, T ) = βµ〈N〉 − βF (〈N〉, V, T )

= βp(µ, T )V , (2.66)
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12 CHAPTER 2. CLASSICAL ENSEMBLE THEORY

with p(µ, T ) the pressure of the (µ, V, T ) system4. The average number of particles is given by

〈N〉 =
∞
∑

N=0

NW (N)

(2.59)
=

1

Ξ(µ, V, T )

∞
∑

N=0

N exp[βµN ]Z(N,V, T )

=
1

Ξ(µ, V, T )

∂

∂βµ

(

∞
∑

N=0

exp[βµN ]Z(N,V, T )

)

V,T

(2.58)
=

(

∂ log Ξ(µ, V, T )

∂βµ

)

V,T

. (2.67)

For later reference we define the fugacity

z =
exp[βµ]

Λ3
, (2.68)

which is, for any temperature T , one-to-one related to µ. In terms of z Eq.(2.67) is rewritten as

〈N〉 = z

(

∂ log Ξ(z, V, T )

∂z

)

V,T

. (2.69)

2.7.1 Application to the ideal gas

The grand canonical partition function for a system of classical noninteracting particles in a volume V
at temperature T and chemical potential µ is given by

Ξ(µ, V, T )
(2.58)
=

∞
∑

N=0

exp[βµN ]Z(N,V, T )

(2.51)
=

∞
∑

N=0

1

N !

(

V exp[βµ]

Λ3

)N

(2.68)
= exp[zV ]. (2.70)

It follows from Eqs.(2.66) and (2.69) that, for the ideal gas, βp = z and N = zV , which is consistent
with all ideal-gas results previously obtained in Eqs.(2.29) and (2.53).

4µN − F only equals pV in homogeneous bulk systems. It does not hold for e.g. an ideal gas in a gravity field, or for
systems for which the pressure is of tensorial character due to surface effects.
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Chapter 3

Simple Fluids

3.1 Some experimental facts

The classical ideal-gas laws pV = NkT and E = 3
2NkT do not hold for real gases at finite density

ρ = N/V because of the interactions between the atoms or molecules of the gas. Over the years many
empirical “laws” have been introduced that account for these deviations from ideality. One of the most
fundamental of these is due to Kamerlingh-Onnes, who introduced, on empirical grounds, the so-called
virial expansion for the pressure. It is written as

p(ρ, T ) = kT
(

ρ + B2(T )ρ2 + B3(T )ρ3 + · · ·
)

, (3.1)

where the temperature dependent virial coefficients Bn(T ) can be obtained by fitting to the observed
deviations from ideal-gas behaviour. In this chapter we will derive the functional form of Eq.(3.1) using
the ensemble formalism of the previous chapter, and find explicit expressions for the virial coefficients in
terms of the interaction potential between the particles.

There are more phenomena in real, interacting, gases that do not occur in ideal gases. By lowering the
temperature or increasing the pressure, a real gas can be transformed into a dense liquid or crystalline
solid phase. The transformation from one phase to another is called a phase transition. The phase
behaviour of a substance can be characterised by a phase diagram. A sketch of the phase diagram of
a monoatomic substance like Argon is depicted in Fig.3.1, both in the density-temperature and in the
pressure-temperature representation. The curves denote the phase boundaries, i.e. the state points where
two phases coexist. These curves are also called binodals. Fig.3.1 shows that above the critical temperature

0 T

p

gas

solid

liquid

TcTt

fluid

Figure 3.1: (a) Phase diagram of a simple fluid like Argon.

Tc a gas can be compressed continuously up to the dense crystalline phase, while density-jumps occur at
temperatures below Tc. For Tt < T < Tc a liquid phase exists in between the dilute gas and the crystal,
and below the triple temperature Tt the dilute gas can coexist with the crystal. At T = Tt the three
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14 CHAPTER 3. SIMPLE FLUIDS

phases can coexist simultaneously. The calculation of such binodals, and the analysis of the critical point,
is possible within the framework of statistical mechanics, as we will see in this chapter.

θ q
ko

ki
to detector

k

ki

o

s r

s2

R

1
θ

Figure 3.2: Schematic setup of a scattering experiment.

Experimentally it is possible to measure correlations in a gas or liquid by neutrons or X-ray scattering.
Imagine a sample of gas or liquid irradiated by a coherent X-ray beam, say, of wavelength λ. The
wavevector of the incident radiation is called ki, with |ki| = 2π/λ ≡ k the wavenumber. Due to the
presence of particles in the sample, radiation will be scattered in all directions, and its intensity I(θ)
can be detected far from the sample as a function of the angle θ with respect to the incident beam, as
illustrated in Fig.3.2. Scattered radiation in a particular direction θ, with outgoing wavevector ko, satisfies
|ko| = k for elastic scattering. Consider now the path length difference ∆s = s1 − s2 between the path
“source→ R →detector”, with R an arbitrary point in the sample, and the path “source→ r →detector”,
where r is the position of a scattering particle. It follows from the geometry that ks1 = ki · (r−R) and
ks2 = ko · (r − R). From this the phase difference ∆ψ of the two paths at the detector is obtained as

∆ψ =
2π∆s

λ
= k∆s = (k0 − ki) · (r − R)

= q · (r − R), (3.2)

where we defined the momentum transfer q ≡ ko − ki in the scattering process. The contribution from
this particle to the field amplitude A at the detector is proportional to exp[i∆ψ]. The total amplitude
at the detector is given by the contribution from all particles, and can be written as

A(θ) ∝
N

∑

i=1

exp[iq · (ri − R)], (3.3)

for some static configuration of N particles in the irradiated volume. The measured intensity is the
ensemble or time average of the squared modulus of the amplitude, and can be written as

I(θ) = 〈|A(θ)|2〉 ∝ 〈
N

∑

i,j

exp[iq · rij ]〉 ∝ S(q), (3.4)

where rij = ri − rj , and where the structure factor S(q) is defined as

S(q) ≡ 〈 1

N

N
∑

i,j

exp[iq · rij ]〉

= 1 + 〈 1

N

N
∑

i6=j

exp[iq · rij ]〉. (3.5)
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3.2. INTERACTIONS 15

Note that q is directly related to θ through q ≡ |q| = 2k sin(θ/2) from elementary geometry. It is
implicitly assumed that the fluid of interest is homogeneous and isotropic, so that only the modulus q is
relevant and not the direction of q. A typical liquid structure factor is shown in Fig.3.3.

Figure 3.3: Structure factor of a simple fluid close to its triple point.

3.2 Interactions

The phenomena of the previous section are all caused, in one way or another, by the fact that particles
in real gases or liquids are not ideal but interact with each other. In theoretical descriptions it is often
assumed that the interactions are pairwise additive, i.e. the interaction energy is a sum of pairwise terms,
each of which is characterised by a pair potential φ(ri − rj) that depends on the relative coordinates of
particle i and j. For so-called simple fluids the pair potential is radially symmetric, which means that
the Hamiltonian can be written as

H(Γ) =
N

∑

i=1

p2
i

2m
+

N
∑

i<j

φ(rij), (3.6)

with rij = |ri−rj | the radial distance between particle i and j. Radial symmetry is a good approximation
for the noble gases, and a fair approximation for small molecules like CH4 (methane), N2 and O2. The
typical form of φ(r) is depicted in Fig.3.4. We distinguish two important features:

• The interaction is steeply repulsive for r <∼ σ, with σ a measure for the diameter of the particle.
For simple fluids σ is typically 2-5Å. This short-ranged repulsion is due to Pauli exclusion (and
Coulomb repulsion) of outer shell electrons of two particles in close proximity.

• The interaction is attractive for r >∼ σ, with Van der Waals interactions φ(r) ∝ −r−6 when r À σ.
These attractions are caused by correlated (induced) dipole fluctuations in the two particles. The
range of these attractions is typically ' 2σ, and the depth of the minimum, −ε, that occurs at
r ' σ, depends on the chemical species.

A convenient, successful, and famous parameterisation for φ(r) is the Lennard-Jones form

φLJ(r) = 4ε

[

(σ

r

)12

−
(σ

r

)6
]

, (3.7)

which gives good agreement with many experiments by adjusting the well depth ε and “size” σ. A less
realistic, but an analytically more tractable form is the square well potential

φSW (r) =







∞ r < σ
−ε σ < r < λσ
0 r > λσ

, (3.8)
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16 CHAPTER 3. SIMPLE FLUIDS

0

repulsion

attraction

rσ

−ε

φ(r)

Figure 3.4: Typical pair potential of a simple fluid.

where σ denotes the hard-core diameter, and where λ > 1 is a measure for the range of the attractive
well. Another important potential is the hard-sphere potential

φHS(r) =

{

∞ r < σ
0 r > σ

, (3.9)

where σ is the hard-sphere diameter. The hard-sphere system does not contain any attraction, but does
describe the short-ranged atomic repulsions crudely. This neglect of attractions may seem unphysical
at first sight, but we will see that the hard-sphere fluid plays a crucial role as a reference zeroth order
approximation in perturbation theory of liquids, where the attractions are treated as a perturbation of
the purely repulsive short-ranged interactions. For this reason the hard-sphere fluid has been of great
theoretical importance. Moreover, due to advances in the synthesis of colloidal particles (mesoscopic solid
particles with diameter in the range from 1nm to 1 µm), experimental realisations of hard-sphere systems
actually exist in the form of colloidal suspensions.

The question we will address in this chapter is how these nonzero microscopic interactions are related
to macroscopic observables such as the pressure, and to phenomena such as liquid condensation and
freezing.

3.3 Corrections to the ideal-gas law

3.3.1 The Mayer expansion

We consider a gas described by a Hamiltonian of the form (3.6) in a fixed volume V . It turns out to
be convenient to consider this system grand canonically, i.e. at fixed temperature T (with β = 1/kT )
and fixed chemical potential µ (or fixed fugacity z = exp[βµ]/Λ3, see Eq.(2.68)). Starting point of our
analysis is the grand partition function, which takes the form

Ξ(µ, V, T ) =

∞
∑

N=0

exp[βµN ]

N !Λ3N

∫

V

drN exp



−β

N
∑

i<j

φ(rij)





=
∞
∑

N=0

zN

N !
Q(N,V, T )

≡ 1 + Q1z +
1

2
Q2z

2 +
1

3!
Q3z

3 + · · · , (3.10)
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3.3. CORRECTIONS TO THE IDEAL-GAS LAW 17

where we defined the configurational integral

QN ≡ Q(N,V, T ) =

∫

V

drN exp



−β

N
∑

i<j

φ(rij)



 . (3.11)

It follows from Eq.(3.10), together with the Taylor expansion log(1 + x) =
∑∞

n=1
(−1)n+1

n xn that

log Ξ = V

∞
∑

j=1

bjz
j , (3.12)

where the first few coefficients are given explicitly by

b1 =
1

V
Q1 = 1

b2 =
1

2!V
(Q2 − Q2

1)

b3 =
1

3!V
(Q3 − 3Q2Q1 + 2Q3

1)

b4 =
1

4!V
(Q4 − 4Q3Q1 − 3Q2

2 + 12Q2Q
2
1 − 6Q4

1). (3.13)

Even though the expressions for bj become more cumbersome as j increases, it is possible to write down
a general formula for bj in terms of the Qi’s; we will not do that here as we focus on the lowest few terms
only. Note that we implicitly assumed that the expansion of Eq.(3.12) exists.

Inserting the expansion of Eq.(3.12) into the expressions for p (Eqs(2.66)) and N = ρV (Eq.(2.69))
yields

p(z, T ) = kT

∞
∑

j=1

bjz
j (3.14)

ρ(z, T ) =
z

V

∂ log Ξ

∂z
=

∞
∑

j=1

jbjz
j . (3.15)

Now we have both p and ρ as a power series in z, whereas much experimental data involves the density
dependence of the pressure, see e.g. Eq.(3.1). It is our task now to eliminate z between the Eqs.(3.14)
and (3.15). This can be accomplished algebraically by writing

z = a1ρ + a2ρ
2 + a3ρ

3 + · · · , (3.16)

where the yet unknown coefficients aj follow by inserting Eq.(3.16) into Eq.(3.15) and equating the
resulting coefficients of each power of ρ on both sides of the equation. This gives

a1 = 1

a2 = −2b2

a3 = −3b3 + 8b2
2. (3.17)

Higher order terms become more complicated but are, in principle, tractable as well. Inserting the
density expansion of z, given by the Eqs.(3.16) and (3.17), into the fugacity expansion of p, Eq.(3.14),
yields a density expansion of the pressure as phenomenologically given in Eq.(3.1), but now with explicit
expressions for the virial coefficients,

B2(T ) = −b2 (3.18)

B3(T ) = 4b2
2 − 2b3. (3.19)

These expressions will be worked out in detail below.
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18 CHAPTER 3. SIMPLE FLUIDS

3.3.2 The second virial coefficient B2(T )

The second virial coefficient is given by

B2(T )
(3.18)
= −b2

(3.13)
= − 1

2V

(∫

dr1dr2

(

exp[−βφ(r12)] − 1
)

)

= −1

2

∫

drf(r), (3.20)

where we used translational invariance of the pair interaction, ignored (small) surface effects that arise
when r1 and/or r2 are close to the wall of the container, and where we introduced the Mayer function
(named after the first who performed this analysis)

f(r) = exp[−βφ(r)] − 1. (3.21)

We have now expressed the lowest order correction to the ideal-gas pressure in terms of the pair interaction
φ(r). The Mayer function is temperature dependent, and is shown in Fig.(3.5) for the Lennard-Jones
potential (3.7). We first remark that f(r) for r < σ is very insensitive for the details of φ(r); it equals −1

0

βε=2
βε=1
βε=1/2

e
βε−1

rσ

−1

f(r)

Figure 3.5: Mayer function f(r) for the Lennard-Jones potential, at several temperatures.

as long as φ(r) À kT . At r ≈ σ the Mayer function changes sign quite abrubtly, goes through a positive
maximum and decays to zero as f(r) ' −βφ(r) for r À σ. The latter implies that B2 exists, i.e. is finite,
if φ(r) decays to zero more rapidly than r−3. Although this convergence criterion excludes application
of the Mayer theory to the important cases of Coulombic fluids (electrolytes, plasmas) as well as dipolar
fluids (water, magnetic colloids), it shows that systems interacting through e.g. Lennard-Jones, square-
well, hard-sphere, and screened-Coulomb potentials can be treated within this framework. Note that the
temperature dependence of f(r) implies that B2(T ) can change sign at the so-called Boyle temperature
TB , i.e. B2(TB) = 0. At low temperatures T < TB we have B2(T ) < 0, signifying that the Van der
Waals attractions reduce the pressure with respect to the ideal-gas pressure. At temperature T > TB the
hard-core repulsions increase the pressure beyond the ideal-gas pressure.

3.3.3 The third virial coefficient B3(T )

The third virial coefficient is calculated as follows.

B3(T )
(3.19)
= 4b2

2 − 2b3
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3.3. CORRECTIONS TO THE IDEAL-GAS LAW 19

(3.13)
= − 1

3V

[

(Q3 − 3Q2Q1 + 2Q3
1) − 3Q−1

1 (Q2 − Q2
1)

2
]

= − 1

3V

[

Q3 − 3Q−1
1 Q2

2 + 3Q1Q2 − Q3
1

]

= − 1

3V

∫

dr1dr3dr3

(

exp[−β(φ12 + φ13 + φ23)]

−3 exp[−β(φ12 + φ13)] + 3 exp[−βφ12] − 1
)

= − 1

3V

∫

dr1dr3dr3f(r12)f(r13)f(r23), (3.22)

where we used the shorthand notation φij = φ(rij), the fact that Q1 = V , and that ri are dummy
integration variables. The product of three Mayer functions in Eq.(3.22) implies that B3(T ) involves
three particles, and since f(rij) vanishes if particle i and j are separated, the product will vanish unless
all three particles are simultaneously close to each another.

3.3.4 Higher order virial coefficients and diagrams

The analysis of higher order virial coefficients becomes increasingly difficult, and the expressions increas-
ingly involved. To keep track of the bookkeeping a pictorial technique has been developed, whereby
integrals of Mayer functions are represented by cluster diagrams. These diagrams, or graphs, consist of
points (representing coordinates ri, rj , etc.) and lines connecting points (representing f(rij)). Using this
we can write

B2(T ) = − 1

2V

∫

dr1dr2
s s

B3(T ) = − 1

3V

∫

dr1dr2dr3
s s

s

¡¡

B4(T ) = − 1

8V

∫

dr1dr2dr3dr4



3
s s

ss

+ 6
s s

ss

¡
¡ +

s s

ss

¡
¡@
@



 (3.23)

It has been proven that all diagrams appearing in the integrand of the virial coefficients are doubly

connected, i.e. are still connected when any point and all of its associated lines are removed. This means
that diagrams like

s s

s

¡¡

do not occur. We remark that in most of the literature the integral symbol and the integral measure
dr1 · · · drn are ignored when the diagrams are defined, and often even the prefactors, like the “3” and the
“6” in the expression for B4, are absorbed in the definitions. We will not pursue this here.

The number of diagrams for Bn increases rapidly with n, e.g. 468 in B7. For the hard-sphere potential
(diameter σ) B2, B3, B4 are known analytically,

B2 =
2π

3
σ3 ≡ b0

B3 =
5π2

18
σ6 =

5

8
b2
0

B4 =

(

− 89

280
+

219
√

2

2240π
+

4131

2240π
arccos(

1√
3
)

)

b3
0

' 0.28695b3
0, (3.24)

while higher order terms have been calculated by various numerical techniques (e.g. Monte Carlo meth-
ods),

B5 = 0.1097(3)b4
0 ; B6 = 0.0386(4)b5

0 ; B7 = 0.0138(4)b6
0. (3.25)
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20 CHAPTER 3. SIMPLE FLUIDS

The convergence of the hard-sphere virial expansion can be judged from Fig.3.6, where the numbers 2, 3,
etc. label the second, third, etc. virial approximation, and where the full curve is the “exact” result as
obtained from computer simulations. Obviously the deviations between the exact equation of state and

0 0.1 0.2 0.3 0.4 0.5 0.6
η

0

5

10

βP
/ρ

 −
 1

2

3

4

5

6

7

Figure 3.6: Equation of state of hard-sphere fluid as a function of the dimensionless density η = (π/6)σ3ρ (the
packing fraction). The black dots labeled by n = 2, 3, · · · , 7 denote the results from the n-th order virial expansion
at η = 0.5

the truncated virial expansions become more pronounced as η increases, and the 7th order expansion gives
a good account up to moderate packing fractions η ' 0.3, say. Since not even the diagrams have been
generated for B8 and higher virial coefficients, we can also conclude from Fig.3.6 that the virial expansion
is not suitable to describe liquids quantitatively, since a typical liquid density is η ' 0.5. Another reason
why the virial expansion is cumbersome when applied to liquids is that the virial coefficients are generally
T -dependent, so that lengthy calculations must be performed at many values of T . This contrasts the
hard-sphere case, where the virial coefficients are temperature independent. For these reasons other
methods have been devised to deal with dense liquids.

The virial expansion is, nevertheless, a valuable tool in the study of dilute or moderately dense
gases. For instance, much of our knowledge of atomic pair potentials stems from measurements of virial
coefficients. Although we focused on the application of the virial expansion to a one-component, classical,
monoatomic gas, it is possible to extend these results to more components, polyatomic molecules, and to
quantum effects.

3.3.5 The Helmholtz free energy

For later reference we also calculate the density expansion

F − Fid

V kT
= f − fid = fex =

∞
∑

n=2

Cn(T )ρn (3.26)

of the excess (over ideal) Helmholtz free energy density (per kT ) fex, with Cn(T ) the coefficients to be
determined. Recalling that p/kT = −f + ρ(∂f/∂ρ)T , we have

p − pid

kT
= −fex + ρ

(

∂fex

∂ρ

)

T

=
∞
∑

n=2

(n − 1)Cn(T )ρn, (3.27)

which in combination with the virial expansion for the pressure, Eq.(3.1), yields

Cn(T ) =
Bn(T )

n − 1
n ≥ 2. (3.28)
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The Helmholtz free energy can thus be written as

F

V kT
= f = ρ log(ρΛ3) − ρ + B2(T )ρ2 +

B3(T )

2
ρ3 + · · · , (3.29)

with the virial coefficients Bn(T ) given in Eqs.(3.20) and (3.22).

3.4 Dense fluids

3.4.1 The pair correlation function

The rapidly increasing complexity of higher order virial coefficients prohibits practical applications of
the virial expansion to dense fluids such as liquids. In fact, the problem is not only practical but also
fundamental, as it is not guaranteed that the radius of convergence of the virial series is large enough to
include the high densities of interest. Moreover, the virial expansion does not take into account the true
nature of a liquid, in which each molecule constantly interacts strongly with all its neighbours. Other
approaches have therefore been devised to deal with dense fluids. A key role in these theories is played
by the distribution functions

ρ(1)(r) = 〈
N

∑

i=1

δ(r − ri)〉 (3.30)

ρ(2)(r, r′) = 〈
N

∑

i=1

N
∑

j 6=i

δ(r − ri)δ(r
′ − rj)〉, (3.31)

which are called the one-particle distribution and the pair distribution function, respectively. Higher order
distributions can be defined accordingly, but we do not need them here because we restrict attention to
pairwise interactions. The angular brackets in Eqs.(3.30) and (3.31) denote an ensemble average, either
canonical or grand canonical. ρ(1)(r) is a measure for the probability density that a particle is present
at position r. Because of the normalisation

∫

drρ(1)(r) = N , we see that ρ(1)(r) is the local density, and
equals ρ = N/V in a homogeneous bulk system. ρ(2)(r, r′) is called the pair distribution function, and is
a measure for the probability that there is a particle at position r and another one at r′ simultaneously.
Within the canonical ensemble, we obtain from Eq.(3.31) that

ρ(2)(r, r′) =
1

QN

∫

drN exp[−βΦ(rN )]





N
∑

i=1

N
∑

j 6=i

δ(r − ri)δ(r
′ − rj)





=
N(N − 1)

QN

∫

drN exp[−βΦ(rN )]δ(r − r1)δ(r
′ − r2)

=
N(N − 1)

QN

∫

dr3 · · · rN exp[−βΦ(r, r′, r3, · · · , rN )]. (3.32)

Recall the definition of the configuration integral

QN = Q(N,V, T ) =

∫

drN exp[−βΦ(rN )]. (3.33)

At sufficiently long distances |r − r′| these probabilities become uncorrelated, and we have ρ(2)(r, r′) →
ρ(1)(r)ρ(1)(r′). In isotropic, homogeneous systems such as liquids and gases we can use translational
invariance to define the radial distribution function g(r) by

ρ(2)(r, r′) = ρ2g(|r − r′|). (3.34)

Note that ρg(r) is the average particle density at a distance r from a fixed particle. Also note that
limr→∞ g(r) = 1. For systems with pairwise additive interactions the thermodynamics follows completely
from g(r), that is from g(r; ρ, T ) in the canonical ensemble or from g(r;µ, T ) in the grand canonical
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ensemble. There are three independent routes from g(r) to thermodynamics, viz.

p = ρkT − ρ2

6

∫

drrφ′(r)g(r) (virial route) (3.35)

E

V
=

3

2
ρkT +

ρ2

2

∫

drφ(r)g(r) (caloric route) (3.36)

kT

(

∂ρ

∂p

)

T

= 1 + ρ

∫

dr
(

g(r) − 1
)

(compressibility route) (3.37)

The virial and caloric route follow straightforwardly from the canonical partition function of a pairwise
additive system, as will be shown in one of the problems. The compressibility route is necessarily derived
grand canonically, and follows directly from the normalisation

∫

drdr′ρ(2)(r, r′) = N(N−1) = 〈N2〉−〈N〉
and Eq.(2.65).

Knowledge of g(r) does not only lead to the thermodynamics of the fluid, but also to the structure
factor S(q) (that can be measured in scattering experiments). The relation between S(q) and g(r) is
obtained as follows,

S(q)
(3.5)
= 1 + 〈 1

N

N
∑

i6=j

exp[iq · rij ]〉

= 1 +
1

NQN

∫

drN exp[−βΦ(rN )]

N
∑

i6=j

exp[iq · rij ]

= 1 +
1

N

∫

dr1dr2 exp[iq · r12]

(

N(N − 1)

QN

∫

dr3 · · · drN exp[−βΦ(rN )]

)

(3.32)
= 1 +

1

N

∫

dr1dr2 exp[iq · r12]ρ
(2)(r1, r2)

(3.34)
= 1 + ρ

∫

dr exp[iq · r]g(r), (3.38)

i.e. S(q) is essentially the Fourier transform of g(r). Since g(r) approaches unity for large r it is convenient
to rewrite Eq.(3.38) as

S(q) = 1 + ρ

∫

dr exp[iq · r]
(

g(r) − 1
)

+ (2π)3ρδ(q), (3.39)

where the last term is irrelevant as long as the scattering angle θ, and hence the scattering vector q, do
not vanish. Clearly, we can also invert Eq.(3.38) with the result

ρg(r) =
1

(2π)3

∫

dq
(

S(q) − 1
)

exp[iq · r], (3.40)

which can be used to deduce g(r) from a measurement of S(q). Typical g(r)’s for dense fluids are shown
in Figs.3.7 and 3.9.

Although we wish to calculate g(r) in dense fluids eventually, it is useful to consider its low-density
behaviour first. Using methods similar to the virial expansion, it is possible to write

g(r; ρ, T ) = g0(r;T ) + ρg1(r;T ) + ρ2g2(r;T ) + · · · , (3.41)

with

g0(r12;T ) = exp[−βφ(r12)] (3.42)

g1(r12;T ) = exp[−βφ(r12)]

∫

dr3f(r13)f(r32), (3.43)

where φ(r) is the pair potential and f(r) the Mayer function defined in Eq.(3.21). The lowest order term
g0 is the Boltzmann weight of an isolated pair, as expected for classical particles, and the next order
correction describes the effect of a third particle on the pair correlations of the pair (12).
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For later reference we define the potential of mean force w(r; ρ, T ) by

w(r12) = −kT log g(r12) ⇐⇒ g(r12; ρ, T ) = exp[−βw(r12; ρ, T )] (3.44)

This name stems from the fact that the gradient −∇1w(r12) is the average force f(r12) acting on particle
1, keeping 1 and 2 fixed and averaging over all the others,

∇1w(r12)
(3.44)
=

−kT

g(r12)
∇1g(r12)

(3.32)
= −

∫

dr3 · · · drN exp[−βΦ(rN )]
(

−∇1Φ(rN )
)

∫

dr3 · · · drN exp[−βΦ(rN )]

≡ −〈f(r12)〉. (3.45)

3.4.2 Ornstein-Zernike theory

Because of the importance of g(r) in the theory of strongly interacting, dense fluids, many approaches have
been devised to calculate (approximations to) this function, either analytically or numerically. Methods
go by the names of “Kirkwood integral equation”, “BBGKY hierarchy”, and “Ornstein-Zernike” theory.
The latter one will be discussed here heuristically. Rigorous derivations require extensive graph analysis
or, a bit more modern, functional techniques that are too involved for the present course.

It is convenient to define the total correlation function

h(r12) = g(r12) − 1, (3.46)

which is a measure for the “influence” of molecule 1 on molecule 2 a distance r12 away. In 1914 Ornstein
and Zernike proposed to split this influence into two contributions, a direct part and an indirect part.
The direct contribution is defined to be given by what is called the direct correlation function, denoted
c(r12). The indirect part is due to the direct influence of molecule 1 on a third molecule, labeled 3, which
in turn influences molecule 2, directly and indirectly. Clearly, this indirect effect must be weighted by
the density of particle 3, and averaged over all its possible positions. Mathematically this decomposition
can be written as

h(r12) = c(r12) + ρ

∫

dr3c(r13)h(r32), (3.47)

which is called the Ornstein-Zernike (OZ) equation. It can be viewed as the defining equation for the
direct correlation function c(r). One may also argue, however, that we have rewritten a function we wish
to calculate, h(r), in terms of another function that we do not know, c(r). In that sense Eq.(3.47) can be
viewed as a single equation with two unknowns, which can only be solved if another relation between c(r)
and h(r) is given. Such an additional relation is called the closure. The power of the decomposition given
by Ornstein and Zernike is that approximate closures can be given, that allow for explicit calculation of
c(r) and h(r) at a given density and temperature.

Before discussing an example of such a closure, we remark that the OZ equation (3.47) can be rewritten

in terms of the Fourier transforms ĥ(q) and ĉ(q) of h(r) and c(r), respectively, as

ĥ(k) = ĉ(k) + ρĉ(k)ĥ(k), (3.48)

from which we obtain that

ĉ(q) =
ĥ(q)

1 + ρĥ(q)
; ĥ(q) =

ĉ(q)

1 − ρĉ(q)
. (3.49)

From Eqs.(3.39) and (3.49) we find that ĉ(q) is related to the structure through

S(q) =
1

1 − ρĉ(q)
. (3.50)

A very successful and relatively simple closure is named after Percus and Yevick (PY). It consists of
the approximation that

c(r)
PY≈ g(r)

(

1 − exp[+βφ(r)]
)

. (3.51)
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Figure 3.7: Radial distribution function g(r) of a dense hard-sphere fluid.

The physical motivation behind the PY closure is as follows. First we note that the direct correlation
c(r) can be seen as the difference between the (total) pair correlation g(r) ≡ exp[−βw(r)] (see Eq.(3.44))
and an indirect term gindirect(r). This indirect term, which is defined as gindirect(r) = g(r) − c(r), is
now approximated as gindirect(r) = exp[−β

(

w(r) − φ(r)
)

] = g(r) exp[+βφ(r)], i.e. as the Boltzmann
factor of w(r)− φ(r). Eq.(3.51) then follows readily. Having in mind that w(r) is the (total) potential of
mean force, while φ(r) is the pair potential, this approximation indeed captures the idea that the indirect
contribution is not due to direct pair interactions. Other, more technical motivations for the PY closure
can also be given, e.g. in terms of ignoring some subclasses of diagrams in the diagramatic expansion of
c(r), but this is beyond the present goals.

The OZ equation (3.47) with the PY closure (3.51) constitutes two independent equations that can be
solved for the two unknown functions h(r) and c(r), at least in principle. In practise this can often only
be done numerically, but for the important case of the hard-sphere potential (3.9) analytic results have
been found. Independently from each other Wertheim and Thiele showed, in 1963, that the PY closure
to the OZ equation of a hard sphere fluid (diameter σ) at the dimensionless density η = (π/6)ρσ3 (i.e.
the packing fraction) yields for the direct correlation function

c(r) =











−(1 + 2η)2 + 6η
(

1 + 1
2η

)2
( r

σ

)

− 1
2η

(

1 + 2η
)2

( r

σ

)3

(1 − η)4
r < σ

0 r > σ

(3.52)

This can be analytically Fourier transformed, from which the structure factor follows using Eq.(3.50).
Unfortunately g(r) cannot be written down analytically, but a numerical Fourier transform of S(q) is
straightforward, and from Eq.(3.38) g(r) follows. The result is in very good agreement with computer
simulations of g(r) of hard spheres for 0 < η <' 0.5. This is illustrated in Fig.3.7. Since the hard-sphere
fluid freezes at η ≈ 0.494, the PY closure is accurate in the whole fluid regime of hard spheres. In one
of the problems we will calculate that the explicit form (3.52) for c(r) leads to the pressure pc via the
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compressibility route (3.37), and to pv via the virial route (3.35), where

pc

ρkT
=

1 + η + η2

(1 − η)3

pv

ρkT
=

1 + 2η + 3η2

(1 − η)2
.

(3.53)

The difference between these two expressions increases with increasing η, but both give good account
of the pressure that results from simulations. The (slight) inconsistency that results from the different
routes is due to the PY approximation; an exact theory would lead to fully consistent thermodynamics.
It turns out that the linear combination pCS = (2pc +pv)/3, which is named after Carnahan and Starling,
is indistinguishable from the simulations up to η = 0.5,

pCS

ρkT
=

1 + η + η2 − η3

(1 − η)3
. (3.54)

In one of the problems it will be worked out that the Helmholtz free energy, FCS , that follows from pCS

reads

FCS

NkT
= log ρΛ3 − 1 +

4η − 3η2

(1 − η)2
, (3.55)

where the first two terms are ideal gas terms (see Eq.(2.52)), and the last one the excess term due to the
hard-sphere interactions.

Because a typical triple point density, ρtr, of a simple fluid like argon satisfies ρtrσ
3 ≈ 1, it is interesting

to compare the triple-point structure with that of hard spheres at ρσ3 ' 1, i.e η ' 0.5. Fig.3.8 shows

Figure 3.8: Structure factor of a Lennard-Jones fluid close to its triple point (ρσ3 = 0.844, kT/ε = 0.72, and
that of a hard-sphere fluid close to freezing (η = 0.495), as obtained from computer simulations.

such a comparison: the structure of a real dense fluid is qualitatively, and actually almost quantitatively,
identical to that of a dense hard-sphere fluid! This implies that the fluid structure is mainly determined
by the short-ranged repulsions, while the attractions hardly affect the high-density structure1. This is
further illustrated in Fig.3.9, where the liquid structure factor (close to the triple point) of Argon is
shown. The similarity with Fig.3.7 for g(r) of hard spheres is striking.

This notion is a crucial ingredient of the perturbation theory to be discussed in the next paragraph.

1The attractions are important for the structure of a dilute gas, see e.g. Eq.(3.42).

-45-



26 CHAPTER 3. SIMPLE FLUIDS

Figure 3.9: Radial distribution function of triple-point liquid Argon as measured by neutron scattering. The
ripples at small r are artefacts of the data analysis.

3.5 Thermodynamic perturbation theory

We have seen that ensemble theory provides a formal framework to calculate thermodynamic properties
starting from a microscopic Hamiltonian. Such a calculation always involves, in one way or another,
the explicit calculation of the partition function, which is usually intractable analytically. Low-density
expansion are possible, but these are not applicable in the regime of dense fluids. Here we present a
method that does allow for realistic calculations of the Helmholtz free energy F (N,V, T ), and hence the
full thermodynamics, of dense fluids.

We consider a Hamiltonian of the form (2.1), and decompose the interaction part Φ, formally, into
a reference part Φ0 and a perturbation Φ1. At this stage the decomposition is arbitrary, but a typical
one would be to include the repulsions into Φ0 and the attractions into Φ1. We define the auxiliary
Hamiltonian

Hλ(Γ) =
N

∑

i=1

p2
i

2m
+ Φ0(r

N ) + λΦ1(r
N ) ≡ H0(Γ) + λΦ1(r

N ), (3.56)

where H0 is the reference Hamiltonian, and λ ∈ [0, 1] a coupling constant or a switching parameter that
switches Hλ from the reference Hamiltonian at λ = 0 to the Hamiltonian of interest at λ = 1. The
Helmholtz free energy Fλ of the system with Hamiltonian Hλ can be written as

exp[−βFλ(N,V, T )] =
1

N !h3N

∫

dΓ exp[−βHλ(Γ)]

=
1

N !Λ3N

∫

drN exp[−βΦ0(r
N ) − βλΦ1(r

N )].

(3.57)

Taking the derivative with respect to λ on both sides of Eq.(3.57), and rearranging terms gives

∂Fλ(N,V, T )

∂λ
=

∫

drN exp[−β(Φ0 + λΦ1)]Φ1(r
N )

∫

drN exp[−β(Φ0 + λΦ1)]

≡ 〈Φ1〉λ, (3.58)

where the angular brackets 〈·〉λ denote the canonical ensemble average of systems with Hamiltonian Hλ.
The Helmholtz free energy of interest can with Eq.(3.58) be written as

F (N,V, T ) = F0(N,V, T ) +

∫ 1

0

dλ〈Φ1〉λ, (3.59)
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with F0 the free energy of the reference system. Note that Eq.(3.59) is an exact result. Thermodynamic
perturbation theory is based on a λ-expansion of the integrand of Eq.(3.59) about λ = 0. It follows from
Eq.(3.58) that

〈Φ1〉λ =

∫

drN exp[−βΦ0](1 − βλΦ1 +
1

2
β2λ2Φ2

1 + · · ·)Φ1

∫

drN exp[−βΦ0](1 − βλΦ1 +
1

2
β2λ2Φ2

1 + · · ·)

=
〈Φ1〉0 − λβ〈Φ2

1〉0 + 1
2λ2β2〈Φ3

1〉0 + · · ·
1 − λβ〈Φ1〉0 + 1

2λ2β2〈Φ2
1〉0 + · · ·

= 〈Φ1〉0 − λβ
(

〈Φ2
1〉0 − 〈Φ1〉20

)

+
λ2

2
β2〈

(

Φ1 − 〈Φ1〉0
)3〉0

+O(λ3), (3.60)

where 〈·〉0 is a canonical average over the ensemble of reference systems. Using Eq.(3.59) we have

βF (N,V, T ) = βF0(N,V, T ) + β〈Φ1〉0 −
β2

2
〈
(

Φ1 − 〈Φ1〉0
)2〉0

+O
(

(βΦ1)
3
)

. (3.61)

This is often called the high-temperature expansion. This name is not entirely appropriate, since β does
not only appear explicitly in the prefactors of the successive terms, but also implicitly in the average of
the reference system.

Let us now focus on the case that Φ(rN ) can be written as a sum of pair potentials, with

Φ0(r
N ) =

N
∑

i<j

φ0(rij)

Φ1(r
N ) =

N
∑

i<j

φ1(rij), (3.62)

i.e. the pair potential of interest is φ(r) = φ0(r) + φ1(r). Then

〈Φ1〉λ
(3.58)
=

N(N − 1)

2

∫

dr1dr2φ1(r12)dr3 · · · drN exp[−β(Φ0 + λΦ1)]
∫

drN exp[−β(Φ0 + λΦ1)]

(3.32)
=

1

2

∫

dr1dr2ρ
(2)
λ (r1, r2)φ1(r12)

(3.34)
=

V

2
ρ2

∫

drgλ(r)φ1(r), (3.63)

where the last step only holds for uniform, isotropic systems in the thermodynamic limit. The Helmholtz
free energy is

F (N,V, T ) = F0(N,V, T ) +
V ρ2

2

∫ 1

0

dλ

∫

drgλ(r)φ1(r)

= F0(N,V, T ) +
V ρ2

2

∫ 1

0

dλ

∫

dr
[

g0(r) + λg′0(r) + · · ·
]

φ1(r)

= F0(N,V, T ) +
V ρ2

2

∫

dr
[

g0(r) +
1

2
g′0(r) + · · ·

]

φ1(r),

(3.64)

where g′0(r) = (∂gλ(r)/∂λ)λ=0.
The crucial point of the perturbation theory for a dense liquid like triple point Argon, e.g. a liquid de-

scribed by a pair potential of the form shown in Fig.3.4, is that its radial distribution function g(r) hardly
differs from that of the corresponding hard-sphere fluid, see Fig.3.8. This implies that the decomposition

φ0(r) = φHS(r) ; φ1(r) = φ(r) − φHS(r) (3.65)
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is such that g′0(r) (and also higher order derivatives with respect to λ) is small. Consequently the free
energy is given accurately by first order perturbation theory about the hard-sphere reference fluid, viz.

F (N,V, T ) = FHS(N,V, T ) +
V ρ2

2

∫

drgHS(r)
(

φ(r) − φHS(r)
)

= FHS(N,V, T ) +
V ρ2

2

∫

r>σHS

drgHS(r)φ(r), (3.66)

where we used that gHS(r) = 0 for r < σHS , the hard-sphere diameter. One can now use the Carnahan-
Starling free energy of Eq.(3.55) as a very accurate representation of FHS , and the PY radial distribution
for gHS(r), to describe the thermodynamics of dense fluids quantitatively correctly. Note that there is
some freedom to choose σHS .

3.6 Van der Waals theory

We can simplify the thermodynamic perturbation theory in order to recover Van der Waals’ theory for
gas-liquid coexistence. In his thesis of 1873 Van der Waals proposed two corrections to the ideal-gas
law p = NkT/V . Firstly, he argued that the actual volume available to a molecule is smaller than the
total volume V of the container because the finite diameter (or volume) of each molecule excludes some
volume, say b, to all the others. Secondly, he argued that the attractions between the molecules reduce
the pressure p by an amount −aρ2, where a > 0 is a measure of the strength of the attractions. So Van
der Waals wrote

p =
NkT

V − Nb
− aρ2 =

ρkT

1 − ρb
− aρ2 =

kT

v − b
− a

v2
, (3.67)

with volume per particle v = 1/ρ = V/N and phenomenological parameters a and b. Note that the very
existence of molecules was not generally accepted in Van der Waals’ days, let alone that their interactions
were understood (it actually takes quantummechanics to understand them as we have seen). Yet van
der Waals did get the essential features of short-ranged repulsions (giving the excluded volume b) and
the long-ranged attractions (parameterised by a) right. Moreover, his splitting of these two effects into
two separate contributions is fully consistent with the perturbation theory about a hard-sphere reference
fluid as we will see.

Fig.3.10 shows a plot of the pressure as a function of density at several temperatures that follows
from Van der Waals’ expression (3.67). At high enough temperatures, T > Tc, the pressure increases
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Figure 3.10: Van der Waals’ pressure p∗, in arbitrary units, as a function of the density for temperatures T
above, at, and below the critical temperature Tc.

monotonically with density, whereas at low enough temperatures, T < Tc, there is a density regime
with (∂p/∂ρ)T < 0. The critical isotherm, at temperature Tc, separates these two regimes, and shows a
point of inflection with zero slope at the critical density ρc. The critical point (ρc, Tc) follows from the
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conditions
(

∂p
∂ρ

)

Tc

= 0
(

∂2p
∂ρ2

)

Tc

= 0











=⇒ ρcb =
1

3
kTc = 8a

27b
.

(3.68)

This result will be worked out in detail in one of the exercises.

A negative slope in the isotherm p(ρ), i.e. a negative compressibility, is unphysical, and signifies a
thermodynamic instability. It is a consequence of the implicit assumption in the calculation that the fluid
is homogeneous, with the density equal to the imposed density ρ = N/V . We will show now, following Van
der Waals, that the system can reduce its total free energy by splitting into two subsystems (the gas and
the liquid), if the temperature is below Tc. The starting point of this analysis is the Helmholtz free energy
FV dW that underlies Van der Waals equation of state (3.67). From p = −(∂F/∂V ) = −f + ρ(∂f/∂ρ)T ,
with f = F/V the free energy density, it follows from a straightforward integration that

fV dW ≡ FV dW

V
= ρkT

(

log
ρΛ3

1 − bρ
− 1

)

− aρ2, (3.69)

where the integration constant is chosen such that the ideal-gas free energy is obtained in the limit ρ → 0.
A plot of fvdW , in arbitrary units, is shown in Fig.3.11. The convexity of these curves is directly related
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Figure 3.11: Van der Waals’ free energy density f ∗, in arbitrary units, as a function of the density for temperatures
T above, at, and below the critical temperature Tc.

to the slopes of the equation of state in Fig.(3.10) since

(

∂p

∂ρ

)

T

=
∂

∂ρ

(

−f + ρ
(∂f

∂ρ

)

T

)

T

= ρ

(

∂2f

∂ρ2

)

T

. (3.70)

A negative compressibility is therefore equivalent to a concave part in f(ρ). The set of points ρ(T ) for
which (∂2f/∂ρ2)T = 0 is called the spinodal. The spinodal densities at T = 0.85Tc are indicated by the
arrows in Fig.3.11.

We will now show that the existence of a spinodal at some fixed temperature allows the system to
lower its total free energy in some density regime by means of phase separation into a phase that is dilute
(the gas phase, density ρ1, occupied volume V1) and a phase that is dense (the liquid phase, density ρ2,
occupied volume V2) compared to the overall density ρ = N/V of the system. Of course the constraints
V = V1 + V2 and ρV = ρ1V1 + ρ2V2 must be satisfied, which implies that the relative volume occupied
by the liquid is given by

V2

V
=

ρ − ρ1

ρ2 − ρ1
. (3.71)

Clearly this expression only makes sense if ρ1 ≤ ρ ≤ ρ2. The total Helmholtz free energy of the phase-
separated system is given by FM = V fM = V1f(ρ1) + V2f(ρ2), where surface terms have been ignored,
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and where the index “M” stands for “Maxwell”. From the constraints and from Eq.(3.71) it then follows
that the free energy density is, still at a fixed temperature,

fM (ρ) = f(ρ1) +

(

ρ − ρ1

ρ2 − ρ1

)

(

f(ρ2) − f(ρ1)
)

, ρ ∈ [ρ1, ρ2], (3.72)

i.e. a function that linearly interpolates between f(ρ1) and f(ρ2). If f(ρ) is convex, i.e. if T > Tc, then
fM (ρ) > f(ρ) for any choice of ρ1 and ρ2. This implies that the free energy would increase upon phase
separation, and hence the homogeneous phase at the imposed density ρ has the lowest free energy: no

gas-liquid separation occurs for T > Tc. If, however, f(ρ) is not entirely convex, i.e. T < Tc, then there
is a density regime where fM (ρ) < f(ρ) for suitable values of ρ1 and ρ2. The system can then reduce
its total free energy by a phase separation into a dilute and a dense phase. The values of ρ1 and ρ2 are
determined by the requirement that the total free energy of the system be minimised. It is seen from the
geometry in Fig.3.11 that the lowest possible fM (ρ) is obtained if ρ1 and ρ2 satisfy the conditions

∂f

∂ρ

∣

∣

∣

ρ1

=
∂f

∂ρ

∣

∣

∣

ρ2

=
f(ρ2) − f(ρ1)

ρ2 − ρ1
. (3.73)

The first equality implies that the chemical potential in the gas, µ(ρ1), and that in the liquid phase,
µ(ρ2), are the same, since µ = (∂F/∂N)V,T = (∂f/∂ρ)T . Combination of µ(ρ1) = µ(ρ2) ≡ µ12 with the
second equality then yields that the pressures in the two phases are the same, since

p(ρ1) − p(ρ2) = −
(

f(ρ1) − f(ρ2)
)

+ ρ1µ(ρ1) − ρ2µ(ρ2)

= (ρ1 − ρ2)
(

µ12 −
f(ρ2) − f(ρ1)

ρ2 − ρ1

)

= 0. (3.74)

This lowest possible fM and the corresponding coexistence densities ρ1 and ρ2 are indicated by the dashed
lines in Fig.3.11. The total free energy density of the system, at temperatures T < Tc, is therefore given
by f(ρ) if ρ < ρ1 and ρ > ρ2, and by fM (ρ) for ρ1 ≤ ρ ≤ ρ2. The system is in the pure gas phase for
ρ < ρ1, in the pure liquid state for ρ > ρ2, and in gas-liquid coexistence for ρ1 ≤ ρ ≤ ρ2. The set of points
ρ1(T ) is the gas branche of the coexistence curve, and the set ρ2(T ) the liquid branche. The coexistence
curve is also called the binodal. At the critical temperature the binodal and spinodal coalesce into the
critical point. The reconstruction of the original free energy density f by fM is known as the “common
tangent construction” or the “Maxwell construction”. Note that such a construction is impossible if f(ρ)
is entirely convex; for T > Tc there is no gas-liquid coexistence.

The parameters a and b in Van der Waals’ theory provide a phenomenological description of the
attractions and repulsions between molecules. Since the perturbation theory we discussed before is also
based on a separation of the interactions into attractions and repulsions, we can obtain (approximate)
microscopic expressions for a and b by comparing fV dW in Eq.(3.69) with the first order perturbation
result given in Eq.(3.66). The last term in both expressions accounts for the attractions, the other terms
for the (hard-sphere) repulsions. Using the low-density result gHS(r) = 1 + O(ρ) for r > σHS (see
Eqs.(3.41) and (3.42)) we can identify

a = −
∫

r>σHS

drφ(r), (3.75)

i.e. a is the negative of the spatially-integrated strength of the attractive interactions, and hence a > 0
is indeed a measure for the attraction strength. The parameter b can be obtained by comparing the
low-density expansion of FHS/V with that of the first term of fV dW . Both expressions reduce to the
ideal-gas limit as ρ → 0, and their O(ρ2) terms are equal provided

b = B2
(3.24)
=

2πσ3
HS

3
. (3.76)

With these identifications it is not surprising that the predictions that follow from the perturbation theory,
Eq.(3.66), are merely more accurate than those of Van der Waals in comparison with experiments and
simulations, but the essential physics of gas-liquid coexistence is contained within Van der Waals’ theory.
An exception is the critical point, where both Van der Waals and perturbation theory fail dramatically.
A detailed study of critical phenomena is beyond the scope of this course, but a few remarks can be made.
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First, it follows from Eq.(2.65) that upon approach of the critical point the fluctuations in the number of
particles diverge2. These critical density fluctuations show up experimentally in the enhancement (and
in fact divergence) of small-angle scattering experiments, since from Eqs.(3.37) and (3.39)

lim
q→0

S(q) = kT

(

∂ρ

∂p

)

T

→ ∞ at the critical point. (3.77)

2In a canonical system with fixed N and V the overall density cannot fluctuate, but it can (and does) fluctuate in
macroscopic subvolumes
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4.1. Introduction 
Scattering techniques form an important class of tools for the study of soft condensed 

matter. Most laboratories have equipment for doing light scattering measurements, and many 
commercial instruments (in electrophoresis or particle sizing equipment) use light scattering 
internally. A light source is used to illuminate the sample and the scattered light is measured 
as a function of the angle between the incident beam and the detector. Light scattering is a 
suitable technique for soft condensed matter because the typical length scales (the particle size 
or the average distance between particles) is on the order of the wavelength of visible light.  A 
few other types of radiation are also used, namely neutrons and X-rays. These scattering 
techniques are analogous to light scattering, but the wavelength is typically much shorter (0.1 
– 10 nm). This makes these techniques useful for systems containing small particles. Even 
when the particles are not small, however, X-rays and neutrons are still useful when the 
samples scatter light too strongly (think of milk for example). As we shall see later, the 
information in this case is contained at small scattering angles (up to a few degrees), and the 
techniques are called small-angle X-ray or neutron scattering, or SAXS and SANS in short.  

Wave scattering is a general phenomenon that occurs whenever the medium through 
which the wave propagates is inhomogeneous. Sound waves scatter if the medium contains 
objects with a different sound velocity, X-rays scatter from inhomogeneities in electron 
density, and light scatters from inhomogeneities in the refractive index. In this chapter we will 
concentrate on scattering of light, but scattering of other types of waves is almost completely 
analogous so that the theory we will develop applies equally well to those other types of 
radiation. 

Suppose that an electromagnetic wave is incident on an object. Matter is composed of 
discrete electric charges, electrons and protons. They are set into oscillatory motion by the 
electric field of the incident electromagnetic wave. From electrodynamics it is known that the 
accelerated electric charges must radiate waves in all directions. This secondary radiation is 
called the radiation scattered by the object. Apart from scattering, part of the incident wave 
may also be converted to other forms of energy, such as heat. This process is called 
absorption. Both scattering and absorption remove light energy from the primary beam, 
which is thereby attenuated. Together, they are called extinction. 

The light scattered by a particle in an otherwise homogeneous medium consists of the 
sum of wavelets scattered by all the subvolumes making up the particle. It is the interference 
between all these wavelets that leads to a characteristic angular dependence of the scattered 
light. This is the reason that light scattering can be used to measure the properties (size and 
shape) of colloidal particles. If there are other particles near the first particle then the waves 
scattered by different particles will also interfere with each other. Then the angular 
dependence also contains information on the average interparticle distances. As we shall see 
later, this angular dependence is directly proportional to the structure factor of the dispersion. 
Because of thermal motion the positions of the scattering particles relative to each other 
fluctuates continuously. By measuring the time dependence of the scattered light (Dynamic 
Light Scattering) we can obtain information on the dynamics of the scattering particles. 

 Why doesn’t light scatter when it propagates through a homogeneous medium like, say, 
glass or water? Surely, the charges in these materials also start oscillating and must radiate in 
all directions! In fact they do, but it should be remembered that the scattered wave seen by an 
observer is the sum of wavelets originating from every little subvolume illuminated by the 
light beam. In a homogeneous medium there always exists a second subvolume, about half a 
wavelength away, which scatters exactly out of phase with a given subvolume. This leads to 
complete cancellation in all directions but the forward direction. Only when the medium is 
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inhomogeneous this cancellation does not take place, because half a wavelength away there is 
a different material. This means that some light is now scattered away from the forward 
direction. Of course, no medium except vacuum is truly homogeneous. Glass, water and air 
all consist of atoms and molecules, and therefore even these media scatter light, albeit only 
very weakly. 

We now know that light scattered by a particle depends on the incident wave. In 
practice, scattering media contain many particles. Thus, the light incident on a given particle 
is the sum of the primary wave and the waves scattered by all the other particles. This seems 
like a hopeless problem, but we can simplify it if the total amount of scattered light is small 
enough so that it does not contribute significantly to the wave seen by the scattering particles. 
This is called single scattering, because a light wave scattered by a single particle does not 
scatter again from any of the other particles. The assumption is valid if the distance between 
the particles is large enough or if the amplitude of the scattered wave is very small compared 
to that of the incident wave. Multiple scattering takes place in systems in which this condition 
is not met. Examples are milk and clouds. 

In the cases we shall consider the scattered light has a frequency equal to that of the 
incident wave. This is called elastic scattering. The angle-dependence gives information on 
the spatial structure of the sample. In inelastic scattering the frequencies of the scattered 
waves are measured in addition to the angle dependence. This gives information on dynamic 
processes, such as diffusion or relaxation. Many forms of inelastic scattering exist, such as 
Brillouin scattering and Raman scattering in which the scattered light contains both higher 
and lower frequencies. And in X-ray scattering the so-called Compton modified scattering is 
lowered in frequency. In dynamic light scattering the frequency changes are only very small 
(but not strictly zero), so it is sometimes also called quasi-elastic light scattering. 

4.2. Measures of scattered light 
In light scattering experiments the sample, containing particles suspended in a medium, 

is irradiated with a beam of light and light scattered at different angles is measured. We will 
call the direction of the incident beam the z-direction. Scattered light is measured by simply 
placing the detector on a rotation stage. In general, there are two angles to be varied, θ  and φ, 
but in most instruments only θ is varied (see Figure 4.1). The yz-plane is defined to be the 
plane containing the incident beam and the detector and is called the scattering plane. A 
special scattering angle is zero degrees, where one measures the sum of the incident wave and 
the forward scattered wave. This is what one would measure in a normal transmission 
spectrophotometer. But what are the measured quantities? The intensity of the light, of course. 
(Or, to be more precise: the irradiance, the units are J.m−2.s−1.) But to completely characterize 
the scattered light the polarization state and the phase are also needed. Phases cannot be 
directly measured, but the polarization state must be carefully characterized by placing 
polarizers in the incident beam and/or in front of the detector1. 

First, let us consider a sample with only one particle. If we describe the angle 
dependence of the scattered intensity Is with the function ( , )F θ ϕ  then the intensity measured 
by a detector placed at a large distance r from the sample can be written as 

 ( ) ( )0

2 2

,
,s

I F
I

k r

θ ϕ
θ ϕ =  (4.1) 

                                                 
1 A complete discussion of polarization dependent scattering would complicate the discussion 

considerably. However, in most (but not all) cases relevant for soft condensed matter experiments the two 
polarization components shown in Figure 4.1 are independent. This is the case when the particles scatter light 
only weakly. Since this is already a requirement for single scattering it does not impose extra restrictions. 
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I0 is the intensity of the incident beam. The factor 21 r  arises because the total scattered 

intensity over the surface of a sphere must be independent of its radius2. Further, 2k π λ=  is 

the length of the wave vector of the light (measured in the medium). The factor 21 k  is 
included to make F a dimensionless function. If we integrate (4.1) over the surface of a sphere 
with radius r we get the total power of scattered light Ps. The scattered power per unit incident 
intensity has units of area and is called the scattering cross section of the particle: 

 ( )2
0 4

1
,s

sca

P
C F

I k π

θ ϕ d= = ∫ Ω

d

 (4.2) 

where sind dθ θ ϕΩ =  is shorthand for the infinitesimal element of solid angle. What is the 
physical significance of Csca? Conservation of energy dictates that the power removed from 
the incident beam must equal the total scattered power (if there is no absorption). Therefore 
the power in the light beam is lowered by an amount CscaI0. This is just as if the particle “casts 
a shadow” of area Csca on a detector placed in the transmitted beam. If there is also absorption 
then the power received by the transmission detector is reduced by a further CabsI0. The total 
reduction of the light power must be the sum of scattering and absorption, and is given by the 
extinction cross section: 

 ext sca absC C C= +  (4.3) 

Now consider a sample containing many identical particles at number density ρ. Every 
particle in the beam reduces the power in the beam further. Assuming only single scattering as 
usual, it is clear that every particle reduces the power by the amount CextI(z), and that a thin 
slab of thickness dz reduces it by CextI(z)ρAdz, with A the cross sectional area of the beam. 
Therefore, 

 ( )extdI C I z dzρ= − . 

Integrating from 0 to L, the thickness of the sample, we see that the transmitted intensity is 
given by 

 . (4.4) 0
extC L

tI I e ρ−=
If there is no absorption and the number density of particles is known then their scattering 
cross section can be measured with a transmission measurement, using (4.4). 

                                                 
2 This assumes that the medium is nonabsorbing. 

 
Figure 4.1.  The scattering geometry. 
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A small detector placed not in the transmitted beam, but at an angular position ( ),θ ϕ  

sees an intensity per particle given by (4.1). If the detector intercepts light coming from a 
sample volume Vs (the scattering volume) then the quantity that is often used to measure the 
scattered light is the Rayleigh ratio, defined as 

 ( ) ( ) (
2

2
0

,
, s

s

r I
R

V I k

θ ϕ ρ ),Fθ ϕ ≡ = θ ϕ  (4.5) 

Another quantity that is often encountered in the literature is the differential scattering cross 
section scadC dΩ : 

 
( ) (

2

2
0

, 1
,ssca

r IdC
F

d NI k

θ ϕ )θ ϕ≡ =
Ω

, (4.6) 

where sN Vρ=  is the number of scattering particles. It is called this way because (compare 

with (4.2)) it is the power received by the detector per unit incident intensity and per unit solid 
angle, but the notation should not be interpreted as the derivative of a function scaC . 

4.3. Light scattering by single particles 
We will now consider scattering by a single particle placed at the origin and embedded 

in a homogeneous medium. It is illuminated with a monochromatic plane wave with angular 
frequency ω. The situation is again shown in Figure 4.1. The angle θ is the angle between the 
incident beam and the direction of the detector. We start with a particle that has a size much 
smaller than the wavelength in the medium λ. This means that the particle behaves 
approximately like a point dipole. The incident wave is denoted in complex notation3 by its 
electric field vector 

 ( ), i it e tω⋅ −= k r
0E r E . (4.7) 

The wave vector k points in the direction of propagation of the wave and has length 
2k π λ= =k . The velocity of the wave in the medium is /c kω= . We will take the particle 

to be in the origin. The electric field of the incident beam will give rise to an induced dipole 
moment α=p E  with α the polarizability of the particle. Far from the particle, at a distance r, 
the electric field of the wave radiated by this oscillating dipole is (see for example Griffiths, 
page 457): 

 ( )2

1
ˆ ˆ ( / )

4s
m

t r v
c rπε

⎡ ⎤= × × −⎣ ⎦E r r p�� . 

Here  is a unit vector in the direction of the detector. The two dots on p mean the second 
time derivative, which should be evaluated at time 

r̂
t r c− . Thus, we obtain 

 ( )
2

ˆ ˆ
4

ikr i t
s

m

k
e

r
ωα

πε
−⎡ ⎤= − × ×⎣ ⎦0E r r E , (4.8) 

where we have used ckω = . We decompose the electric field in components perpendicular 
and parallel to the scattering plane (see Figure 4.1). The result is then 

 
2

0

0

cos

4
s ikr i t

ms

E Ek
e

rE E
ω θ

α
πε

−

⊥

⎛ ⎞ ⎛
=⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝

& &

⊥

⎞
⎟⎟
⎠

                                                

 (4.9) 

 
3 In complex notation the real electric field is the real part of the complex electric field, 

Re( ) cos( )
r

tω= = ⋅ −
0

E E E k r . The intensity of the wave is proportional to the square of the modulus of the 

complex electric field: 
2 *= ⋅E E E . 
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This describes a spherical wave: in every direction it is looks like a plane wave with an 
amplitude that falls like 1/r. Also note that at 90 degrees the scattered light has complete 
perpendicular polarization. At this angle the dipole has a vanishing component in the sE&  

direction. 
The polarizability for a particle with volume Vp and permittivity εp in a medium with 

permittivity εm (both linear and isotropic) is given by the Clausius-Mosotti (or Lorentz-
Lorenz) relation 

 
2

2

3
2

1
3 with  

2

p m
m p

p m

p
m p

m

V

nm
V m

m n

ε ε
α ε

ε ε

ε

−
=

+

−
= =

+

. (4.10) 

m is the ratio of the refractive indices of the particle and the medium. In general, α depends 
on the frequency; at frequencies where the particle absorbs it becomes a complex number. 

The scattered intensity is 
2

sI sE∼ so that for unpolarized incident light  

 

( ) ( )

( )

4
2 2

0 2 2 2

22 2
2 2

0 4 2 2

1 cos
32

9 1
1 cos

2 2

s
m

p

k
I I

r

m
I V

r m

θ α
π ε

π

θ

θ
λ

= +

−
= +

+

. (4.11) 

This result was derived by Rayleigh, and scattering by particles much smaller than the 
wavelength is therefore called Rayleigh scattering. Two things about (4.11) are important to 
notice. Firstly, the scattered intensity depends on the inverse fourth power of the wavelength. 
This means that short wavelengths are scattered much more strongly than long wavelengths. 
Molecules in the air scatter only slightly, but they scatter blue much more strongly than red. 
This is why the sky looks blue. The setting sun looks red because a good deal of the blue light 
has scattered out of the rays by the time they reach your eyes. (Why doesn’t the sun look red 
during most of the day?) Another important thing about (4.11) is that the scattered intensity 
increases with the square of the volume, i.e. the sixth power of the diameter of a particle! 
Finally, if a particle and its environment have the same refractive index (m=1) then the 
scattered intensity vanishes. In this case the particle is said to be index matched. 

Now we move on to consider light scattering by particles that are not small compared to 
the wavelength. When the plane wave (4.7) is incident upon such a particle every volume 
element becomes an oscillating dipole with the same frequency ω. But since the dipoles are at 
different positions they each carry a different phase. The scattered wave seen by a detector is 
the superposition of the dipole fields radiated by all the dipoles. At this point we have to make 
an approximation. Each dipole responds to the field incident upon it according to (4.8). Since 
the field incident on a volume element is the superposition of the primary beam with the fields 
coming from all the other dipoles, the problem becomes extremely complicated. Only for a 
few types of particles exactly solving the complete Maxwell equations can solve the problem. 
(For spherical particles this is called Mie theory, after the person who first solved this in 1908. 
The solution is in the form of infinite series that must be evaluated using a computer.) The 
approximation that we will make is that the field incident on a volume element can be 
approximated by the field of the primary beam. The fields from the other dipoles are 
neglected. In quantum mechanical scattering problems this is called the 1st order Born 
approximation; in light scattering the Rayleigh-Gans-Debye theory. The conditions for 
validity are the following: 
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Figure 4.2.  Waves scattered by volume elements separated by a distance r differ in phase by 
an amount of ( )− ⋅0k k r . 
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where d is a characteristic linear dimension of the particles. The first condition means that the 
scattering is weak so that the intensity of the incident beam is hardly attenuated inside the 
particles. This way, all dipoles experience the same incident field and radiate only a little. The 
second condition means that the phase fronts do not become distorted on passage through the 
particle. 

With this approximation we can sum the waves of equation (4.9) over all volume 
elements in the particle. Figure 4.2 shows how to take the phase differences into account. The 
incident wave is characterized by a wave vector k0. Two volume elements dr are shown. One 
sits in the origin, the other at position r. Each scatters a wave with wave vector k towards the 
detector, which is at a large distance R. The phase difference between these two waves is 

 ( )
φΔ = − ⋅ + ⋅

= − − ⋅

≡ − ⋅

0

0

k r k r

k k r

q r

 (4.13) 

We call q=k-k0 the scattering vector. It is the difference between the scattered and incident 
wave vectors. Since we are considering elastic scattering these both have length 2π λ . It is 
then easy to show that  

 (4
sin 2q )π θ

λ
= =q  (4.14) 

Remember that λ is the wavelength in the medium, not in vacuum! 
The field scattered by the element at r, as seen by the detector, is then 

 ( )
2

0( ) 1
2

ikR i i t
s

k
dE m E e d

R
ω

π
⊥ ⊥= − q rr − ⋅ − r . (4.15) 

Since m is close to unity we have simplified 2 2 2
3( 1) /( 2) ( 1)m m m− + ≈ − . We also allow that 

the particle is inhomogeneous, so m can depend on position. The parallel component of the 
field has an extra factor cosθ . This must be integrated over the volume of the particle Vp to 
get the total field scattered in the direction of k: 

 ( )
2

02
ikR i t

s

k
E E e f

R
ω

π
⊥ ⊥ −= q  (4.16) 

with 
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 ( ) ( )( ) 1
p

i

V

f m e− ⋅= −∫ q rq r dr . (4.17) 

We have separated the interesting part f(q) from the boring constants. It can be interpreted as 
the amplitude of the wave scattered at wave vector q by the particle as a whole. Finally, the 
square of the modulus gives us the scattered intensity. After a bit of rearranging we find 

 ( )(
24 2

2
0 2 2

1
1 cos

8
p

s

k V m
I I P

R
)θπ

−
= q +  (4.18) 

with 

 ( ) ( )
( )

( )

( )

2

2 ( ) 1

( ) 1
p

p

i

V

V

m e d
f

P
f m d

− ⋅−

= =
−

∫

∫

q rr r
q

q
0 r r

 (4.19) 

Here m  is the value of m averaged over the volume of the particle. The prefactor in the 
formula gives the absolute scattered intensity and has just the same properties as in the 
Rayleigh formula. The part that interests us more is the form factor ( )P q  of the particle, 

which describes the angular dependence of the scattering4. The form factor is determined only 
by the size and shape of the particle and is normalized in the forward direction (where q=0). 
By measuring the angular dependence of the scattered light we can immediately obtain the 
form factor and learn about the particle properties. We must then compare this with a model. 

The simplest model is of course the sphere. For a sphere with radius a the form factor can 
be calculated by choosing the z-axis along q and first integrating over the angles. The result is 

 ( ) ( ) ( )
( )

2

3

sin cos
3

qa qa qa
P q

qa

⎡ ⎤−
= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (4.20) 

This function is shown in Figure 4.3. Note that the form factor depends only on the product 
qa, so there is in principle no limit to the number of oscillations. Of course, q can never be 
larger than 4π λ , so the number of oscillations in the range of scattering angles between 0 

and 180° is a sensitive function of the particle radius. This can be used to measure the size of 

                                                 
4 In the crystallography literature it is often the function f(q) which is called the form factor. 
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Figure 4.3.  (Left) Form factor of a spherical particle.  (Right) Intensity scattered by silica 
spheres in ethanol with radii of 40 nm (triangles), 264 nm (circles), and 435 nm (squares). The 

wavelength was 633 nm. 
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spheres. If the particles are monodisperse the minima and maxima can be observed in the 
scattered intensity, as is also shown in Figure 4.3. Also note the strong forward scattering for 
large particles. 

Equations (4.18) and (4.19) as they stand describe scattering by a single particle with a 
fixed and given orientation in space. In practice we almost always measure the light scattered 
by a large number of particles which each have a different (and constantly fluctuating) 
orientation. In a dilute suspension all the particles scatter incoherently so that we can add the 
intensities scattered by each particle. The scattered intensity thus becomes N times larger and 
the form factor must be averaged over the orientations of the particles. Results are known for 
a number of particle shapes, such as ellipsoids, rods and disks. These formulas can be found 
in the scattering literature. 

We will not study all the consequences of particle anisotropy, but just consider the case 
of small particles. This is a useful case because many particles are much smaller than the 
wavelength of the light used to study them, for example most polymers, proteins, nanocrystals 
and micelles. In this case  is small so that we can only measure the initial part of the form 
factor. What we get in return is that the particles are allowed to be nonspherical and 
polydisperse. First, we must decide on an origin for an irregularly shaped particle. (Since only 
differences in phase are important this choice should not influence the result.) The easiest 
choice is the center of mass: 

⋅q r

 
1

p

cm
p V

d
V

= =∫R r r 0  

We can now expand the exponent in the form factor (4.19) in a Taylor series. The first order 
term is zero due to our choice of the origin. This leads to 

 ( )
( )( )

( )

( )

( )

2
2 2 2 21 1

1
1 1

2 1 1
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V V
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m d m q r
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m d m d

θ− ⋅ −

= − + ≈ −
− −

∫ ∫

∫ ∫

q r r r

q
r r

…

cos d

 

The angled brackets "  indicate an average over the ensemble of particles. Since the 

particles have random orientations 2cos 1 3θ = . The result is the Guinier approximation: 

 ( ) 2 21
1

3 gP q q R= − +…  (4.21) 

with the radius of gyration defined as 

 

( )

( )

2

2

1

1
p

p

V

g

V

m r d

R
m d

−

=
−

∫

∫

r

r
. (4.22) 

Note that this is still a volume integral and that r is the distance of a volume element to the 

particle’s center of mass. For spheres it is easy to derive that 3 5gR a= , but the result is 

most useful for irregularly shaped particles, because it provides a uniquely defined particle 
size that is directly measurable and which can be compared to a model. For example, a rodlike 

particle with length L has / 12gR L=  and a Gaussian polymer coil of n random chain (or 

Kuhn) segments of length l has / 6gR l n= . 
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4.4. Light scattering by an ensemble of particles 
Next, we consider scattering by a more concentrated suspension. This means that many 

particles in the scattering volume Vs contribute to the wave scattered towards the detector. To 
do this we take exactly the same approach as in the case of the not-so-small particle. We again 
assume that every volume element scatters a dipole field, and that the field incident on a given 
particle can be approximated by the external field. The waves scattered by the other particles 
are neglected. This is the same as saying that there is only single scattering. If a concentrated 
suspension is measured the scattered intensity per particle must be very small. This is the case 
for very small particles or if . The latter condition can sometimes be satisfied if the 
refractive index of the medium is adjusted so that it almost equals that of the particles (index-
matching).  

1m ≈

Assuming that the single scattering assumption is satisfied we again refer to Figure 4.2. 
This time, imagine that the large circle is the entire scattering volume Vs, which contains a 
large number of particles N. The volume elements dr can lie either in a particle or in the 
medium. The waves scattered towards the distant detector are once more summed, taking their 
phases into account: 

 ( )( )
2

0 1
2

s

ikR i t i
s

V

k
E E e m e d

R
ω

π
⊥ ⊥ − −= ∫ q rr ⋅− r  (4.23) 

Only volume elements lying in the particles have a nonzero 1m −  and contribute to the 
integral. We can thus separate the integral into contributions coming from each particle: 

 ( )
2

0
1

( ) 1
2

j

N
ikR i t i

s
j V

k
E E e m e d

R
ω

π
⊥ ⊥ − −

=

= ∑ ∫ q rr ⋅− r  (4.24) 

where Vj is the volume occupied by particle j. Let rj denote the position of the center of 
particle j. The integration variable r can then be written as j ′= +r r r . The new integration 

variable  ranges over the volume of the particle with its center translated to the origin. 
Equation 

′r
(4.24) now becomes 

 ( )
2

0
12

j

N
iikR i t

s
j

k
E E e f e

R
ω

π j
− ⋅⊥ ⊥ −

=

= ∑ q rq . (4.25) 

We have recognized the integral appearing in (4.17). It describes the interference of waves 
scattered by one particle. The exponential functions containing the position coordinates rj 
describe interference of light scattered by different particles. Because the particles move 
continuously the latter kind of interference leads to rapid fluctuations in the scattered light 
(typically to μs to ms). What is measured in a static light scattering experiment is the light 
scattered from a large sample volume containing very many particles, and averaged over 
times of the order of 1 s. In other words the measured quantity is the ensemble averaged 

intensity *
s s sI ⋅E E∼ . We will assume that all N particles are identical5. Remembering that 

the parallel field component has a factor cosθ  we obtain  

 ( ) ( ) ( )(
24 2

2
0 2 2

1
1 cos

8
p

s

Nk V m
I I P S

R
)θπ

−
=q q q +

                                                

, (4.26) 

with 

 
5 The expression can be generalized for a mixture of nonidentical particles, but the result can no longer be 
separated into the product of a form factor and a structure factor. This also the case for nonspherical particles. In 
that case, identical particles with different orientations also have different fj ’s. 
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Figure 4.4.  Structure factors of 80 nm diameter polystyrene spheres in water measured with 
light scattering. The particles surfaces carry ionizable −SO3H groups. The concentration was 

1.8×1018 particles/m3. (a) 3.1 μmol/L NaOH added; (b) 3.1 μmol/L NaCl added. The drawn 
lines are fits using the rescaled mean spherical approximation (RMSA). From: Härtl and 

Versmold, Langmuir 8, 2885 (1992).  

 ( ) ( )

1 1

1 k j
N N

i

j k

S e
N

⋅ −

= =

= ∑∑ q r r
q . (4.27) 

This is the structure factor from Chapter 4. 
This result means that the structure factor can be measured in a scattering experiment as 

follows. The scattered intensity of the sample under study, which has particle number density 
ρ, is measured as a function of angle. Then a small amount is diluted to ρdil by a large factor, 
say 100 times, so that its structure factor becomes equal to unity. The scattered intensity is 
again measured. Call this Idil. The structure factor of the original sample is then found from 

 
( )
( )

dil

dil

( ) sI
S

I

ρ
ρ

=
q

q
q

. (4.28) 

Some examples of measured structure factors are given in Figure 4.4. The large 
oscillations imply strong liquid-like ordering. Remember that a peak in the structure factor at 
wave vector q implies that there exists a (sinusoidal) density fluctuation with wavelength 

 
Figure 4.5.  Structure factors measured with SANS of 16 nm radius polystyrene spheres in 
water containing 10-4 mol/L NaCl. Particle volume fractions were 0.01, 0.04, 0.08, and 0.13. 

From: Goodwin et al. Makromol. Chem. Suppl. 10/11, 499 (1985). 
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Figure 4.6.  The left panel shows structure factors of 75 nm diameter, negatively charged 

polystyrene spheres in deionized water measured with light scattering. Particle 
concentrations were (from left to right curve) 2.9×1018, 4.4×1018, 9.0×1018, and 22.6×1018 m-3. 
The curves are fits with the RMSA theory. The right panel shows the corresponding radial 

distribution functions, which were obtained by inverting the fitted theoretical curves. From: 
Härtl and Versmold, J. Chem. Phys. 88, 7157 (1988). 

2 qπ . The particles in this experiment were negatively charged. Addition of NaOH ionizes 
all the sulfonate groups on the surfaces, but does not reduce the Debye length because the H+ 
counterions are merely replaced by Na+. Addition of an equal concentration of NaCl, on the 
other hand, reduces the Debye length making the liquid-like structure less pronounced. The 
dependence of the structure factor on the particle concentration is demonstrated in Figure 4.5 
for charged polystyrene spheres with more salt added. It is clear that as the concentration is 
increased the liquid-like structure becomes much more pronounced. Also the first peak shifts 
to larger q, corresponding to smaller average interparticle distances. 

In principle, it should be possible to Fourier invert the structure factor and obtain the 
radial distribution function. In practice, however, this turns out to be very difficult. The reason 
is that S(q) can only be measured over a limited range of q, and the data become more noisy at 
larger q. Instead one therefore often finds a suitable fit of the structure factor with an 
appropriate theory and one then inverts the theoretical curve. This is done in Figure 4.6. 
Again, the increase in particle concentration leads to a shift of the structure factor peak to 
larger q, while the primary peak in g(r) moves to smaller r. In this case the height of the peaks 
does not increase very much with concentration. This is because in a deionized dispersion 
most ions present in the system are the ions dissociated from the particle surfaces. As the 
particle concentration is increased the ionic strength of the solvent is also increased leading to 
more effective screening. 

As an example of the relation between scattering and thermodynamics we show in 
Figure 4.7 measurements of the value of S(q=0) for a colloidal dispersion of particles that 
behave like hard spheres. According to the well-known compressibility equation (Chapter 4) 
this must be proportional to the osmotic compressibility of the system: 

 ( )0
T

S q kT
ρ∂⎛ ⎞= = ⎜ ⎟∂Π⎝ ⎠

 (4.29) 

The data are described correctly by the Percus-Yevick equation. This has been an important 
test of this theory, and demonstrated at the same time that silica spheres coated with stearyl 
alcohol and dispersed in cyclohexane behave like true hard spheres. The values of S(q=0) are 
extrapolated from a plot of S(q) versus q2. Great care should be taken to ensure that the 
measurements are not affected by the presence of dust or clusters of particles, which 
contribute mainly to the scattering at low q. 
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Figure 4.7.  Scattering measurements of the structure factor extrapolated to zero wave vector 
on a system of stearyl alcohol coated silica spheres dispersed in cyclohexane. These particles 

behave like hard spheres. The data agree with the Percus-Yevick expression for the 
compressibility (drawn line). Triangles are light scattering data on particles with radius 35 

nm, squares are SANS measurements on the same particles. Circles are light scattering data 
on spheres with a radius of 22 nm. From: De Kruif, Jansen, and Vrij, In: “Physics of 

Complex and Supramolecular Fluids”, Wiley, New York, 1987. 

In many cases, for example molecular weight determinations in polymers or the 
measurement of particle sizes in association colloids, one is not so much interested in the 
form of the structure factor but instead treats it as a correction of the scattering for the finite 
concentration of the sample. In such cases a range of weight concentrations c is prepared and 
each sample measured over a range of q. The scattered intensity at low q and low ρ can be 
approximated as: 

 
( ) (2 2

2

1
1 1 2

3 g

K
R q B

I q

ρ )ρ⎛ ⎞≈ + +⎜ ⎟
⎝ ⎠

. (4.30) 

Zimm has proposed a method to perform the double extrapolation in a so-called Zimm-plot, 
and thus to obtain the radius of gyration and the second virial coefficient from the slopes. 
Since avcN Mρ =  the molecular weight M can be determined from the intercept provided all 

the constants in the factor K are correctly accounted for. 

4.5. Scattering by crystals 
As a special case we consider the structure factor of a crystalline array of particles. This 

is usually called diffraction. You may recognize the equations that we shall derive from the 
theory of X-rays diffraction by molecular crystals. In the previous paragraph we have seen 
that the peaks in the structure factor become sharper when the particles are forced to occupy a 
smaller volume. This reflects the tendency of the particles to order in order to use space more 
efficiently. It is therefore not hard to imagine that when the system starts to develop periodic 
order the structure factor peaks become very high and narrow, while it is zero in between the 
peaks. Of course, this transition cannot be truly continuous because a first order phase 
transition takes place during the process. The peaks in the structure factor are the Bragg spots 
that appear in the diffraction pattern. Two examples are shown in Figure 4.8: one made with 
light scattering, the other with small-angle x-ray diffraction. 

By definition a crystal has translational symmetry along three independent axes. The 
basis vectors describing these translations are denoted a1, a2, and a3. Together they define the 
unit cell, which when translated makes up the whole crystal. We will assume that the crystal 
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Figure 4.8. Diffraction patterns from colloidal crystals. (Left) Small-angle x-ray diffraction on 

an fcc crystal of silica spheres in water, (Right) Laser light diffraction on a body-centered 
tetragonal crystal of silica spheres in a water/DMSO mixture. Thee black square and circle are 

beam stops that block the transmitted beam. 

is finite, extending a number of M1, M2, and M3 unit cells along the three basis vectors, 
respectively. It therefore has the shape of a parallelepiped. Since each unit cell is identical we 
can write the location of a particle i sitting at position Rp relative to the origin of a unit cell as 

, with the m’s integer numbers. For simplicity, we will again 

assume that all particles are identical, but it is easy to generalize to unit cells with more than 
one particle. Expression 

1 1 2 2 3 3i p m m m= + + +r R a a a

(4.27) tells us to take the sum of exp( )ii− ⋅q r  over all particles, and 

then multiply the result by its complex conjugate and divide it by the total number of 
particles. So, first we write down the sum, as follows: 

  (4.31) 
31 2

3 31 2

1 2 3

11 1

1 1 0 0 0

pi

MM MN n
ii im im

i p m m m

e e e e e
−− −

− ⋅− ⋅ − ⋅− ⋅ − ⋅

= = = = =

=∑ ∑ ∑ ∑ ∑1 2
q Rq r q aq a q a im

The sum over p runs over all the n particles in a single unit cell. The other sums run over all 
the unit cells. So the total number of particles is nM1M2M3. Notice that each of the sums over 
the m’s have the form of a geometric progression 

 
1

0

1

1

MM
m

m

x
x

x

−

=

−
=

−∑ . 

where x is of the form . We might as well multiply this by its complex conjugate 
at once. The result is 

exp( )i− ⋅q a

 
2 1

2
2 1

2

sin ( )1 exp( ) 1 exp( ) 2 2cos( )

1 exp( ) 1 exp( ) 2 2cos( ) sin ( )

MiM iM M

i i

⋅− − ⋅ − ⋅ − ⋅
⋅ = =
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q aq a q a q a

q a q a q a q a
 

We do this for all the factors so that 

 ( ) ( ) ( )
( )

( )
( )

( )
( )

2 2 21 1 1
1 1 2 2 3 32 2 2

2 2 21 1 1
1 2 3 1 2 32 2 2

sin sin sin1

sin sin sin

M M M
S F

M M M

⋅ ⋅ ⋅
=

⋅ ⋅ ⋅
q a q a q a

q q
q a q a q a

 (4.32) 

with  
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Figure 4.9.  The function 2 21
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2
⋅ ⋅q a q a  for M=5 (dashed) and M=10 (solid). 
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=

= ∑ q Rq  (4.33) 

Note that the function F(q) is just the structure factor of the unit cell6. 
Let us interpret this result by first taking a look at the function ( ) ( )2 21 1

2 2sin sinMx x . It 

is plotted in Figure 4.9 for M=5 and M=10. It is seen that this function is sharply peaked 
around x values of an integer times 2π. The height of the peaks is M2 and their width is 2π/M. 
This means that for a crystal with more than a few unit cells the scattered intensity is always 
zero except for those values of q which satisfy the following conditions simultaneously: 

 
1

2

3

2

2

2

h

k

l

π
π
π

⋅ =
⋅ =
⋅ =

q a

q a

q a

 (4.34) 

Here h, k, and l must be integers. These equations are called the Laue equations. They are 
equivalent to the Bragg law, which we will show later. For a given crystal with basis vectors 
ai they determine the angles where diffraction is observed. The physical basis for this result is 
that because all unit cells scatter equivalently they must all scatter in phase if there is to be 
diffraction. Otherwise, even the smallest phase difference will cause complete cancellation of 
the wave sum, due to the large number of cells. “Fortuitous” constructive interference only 
occurs at very special angles, which are characteristic for the crystal. This of course forms the 
basis for structure identification in crystallography. For small crystallites some light also ends 
up in a small angular range around the peaks, so that the width of the peaks can sometimes be 
used to estimate the size of the crystals. 

We now understand why only particular diffraction peaks are seen in crystals. But note 
that equation (4.32) also contains the factor F(q), describing interference between the 
particles within the unit cell. If this cell contains only a single particle then it is equal to unity. 
                                                 

6 In the crystallography literature it is the complex function 
1

exp( )
n

p p

p

f i
=

− ⋅∑ q R  that is called the structure 

factor. But in expressions for the diffracted intensity only its modulus squared appears. 
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Figure 4.10.  A two-dimensional representation of the Ewald construction. Diffraction 

maxima appear for reciprocal lattice points that fall on the surface of the Ewald sphere. 

But if it contains two or more particles then F determines the relative strengths of the 
diffraction peaks. It could even equal zero at a q value which otherwise satisfies (4.34). In this 
case a diffraction, which is allowed by the periodicity of the lattice, disappears because it is 
not allowed by the symmetry of the unit cell. One speaks of systematic vanishings. It may 
seem unlikely that the few q values allowed by (4.34) would happen to coincide exactly with 
a zero in F(q), but it is in fact a common occurrence in many lattice types, as we will 
demonstrate shortly in the example of a face centered cubic lattice. Systematic vanishings are 
an important aid for crystallographers in recognizing the lattice type. 

From crystallography we know that with every crystal lattice we can associate a 
reciprocal lattice. The basis vectors of the reciprocal lattice are cunningly defined as7

 2 3
1

1 2 3

2π ×
=

⋅ ×
a a

b
a a a

, 3 1
2

1 2 3

2π ×
=

⋅ ×
a a

b
a a a

, 1 2
3

1 2 3

2π ×
=

⋅ ×
a a

b
a a a

, (4.35) 

so that we have 
 2i j ijπδ⋅ =a b . (4.36) 

In other words, the each reciprocal lattice vectors is orthogonal to two of the basis vectors of 
the direct lattice. Every vector in reciprocal space, such as the q belonging to a particular 
diffraction peak, can now be represented by the linear combination 

 1 1 2 2 3 3p p p= + +q b b b . 

The p’s are the components of q along the three axes. By virtue of (4.36) they can be 
determined by taking the dot product with the basis vectors of the real lattice, for example 

 1 12 pπ⋅ =q a . 
Comparing this with the Laue conditions we see that for diffraction to occur we must have 

1p h= , and similarly for p2 and p3. Thus, we find that 

 1 2 3 hklh k l= + + ≡q b b b G . (4.37) 

The integers hkl are called the Miller indices belonging to the particular diffraction. Every 
reciprocal lattice point is labeled by a set of Miller indices. Thus, equation (4.37) tells us that 
the scattering vector q must precisely coincide with a reciprocal lattice vector G. This is the 

                                                 
7 Contrary to what is common practice in solid state physics most crystallographers define the reciprocal lattice 
vectors without the factor 2π. 
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Figure 4.11.  Real space representation of the crystallographic planes hkl. 

basis for the Ewald construction (see Figure 4.10), which says that if we place the incident 
wave vector k0 with its head pointing at the origin of reciprocal space and draw a sphere 
around it, then diffracted waves k occur wherever this sphere intersects with a reciprocal 
lattice point. By rotating the crystal with respect to the incident beam we can scan (a part of) 
reciprocal space in search of diffractions. 

The real space interpretation of the Miller indices is that of a set of parallel equidistant 
planes, one of which passes through the origin, and the next nearest intercepts the a1 axis at 
a1/h, the a2 axis at a2/k, and the a3 axis at a3/l (see Figure 4.11). These planes are 
perpendicular to Ghkl, because so are two independent vectors in the planes: a1/h−a2/k and 
a2/k−a3/l. (To see this, take the dot product of each of these vectors with Ghkl as given by 
(4.37)). A normal vector to the lattice planes is then /hkl hklG G . The distance between two 

planes of the set dhkl can thus be found from 

 1 2hkl
hkl

hkl hkl

d
h

π
= ⋅ =

Ga

G G
. (4.38) 

Using this result in (4.37) and (4.14) we finally obtain the familiar Bragg law: 
 ( )2 sin 2hkld θ λ= . (4.39) 

The factor ½ in the sine probably appears unfamiliar, but that is only because 
crystallographers define their scattering angle as 2θ instead of θ.  

We conclude this section with an example: diffraction by a face centered cubic (fcc) 
lattice. This type of lattice is common in colloidal crystals. The unit cell contains 4 particles. 
The basis vectors of this cubic lattice are simply 

 . (4.40) 1 2 3ˆ ˆ,   ,   a a= = =a x a y a ˆaz

Using (4.35) the reciprocal lattice vectors are found to be 

 1 2 3

2 2
ˆ ˆ,   ,   

a a a

2
ˆ

π π π
= = =b x b y b z . (4.41) 

The diffraction condition (4.37) tells us that diffraction peaks may be expected at scattering 
vectors q that are linear combinations of integer multiples of these three vectors. The 
corresponding diffraction angles can be found by taking the modulus squared on both sides of 
(4.37), and using (4.14) and (4.41): 

 
( ) 2

2 2

2

2sin 2 h k l

a

θ
λ

⎛ ⎞ 2+ +
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⎝ ⎠
. (4.42) 
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So we may expect a large number of diffraction peaks. But it turns out that many of them are 
missing due to systematic vanishings. This can be seen by calculating the structure factor 
using Eq. (4.33). The position of a particle in its unit cell can be written as 

1 2 3x y z= + +R a a a , and q is given by the diffraction condition (4.37). Then for a diffraction 

hkl we have 
 ( )2 hx ky lzπ⋅ = + +q R . (4.43) 

If one particle is located at (x,y,z)=(0,0,0) then other particles are present at (½,½,0), (½,0,½) 
and (0,½,½). The structure factor (4.33) is then 
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(

2( ) ( ) ( )

2

1
1

4
1

1 ( 1) ( 1) ( 1)
4
4     all even or all odd

0    otherwise

i k l i h l i h k

k l h l h k

F e e e

hkl

π π π− + − + − +

+ + +

= + + +

= + − + − + −

⎧
= ⎨
⎩

q

)  (4.44) 

We see that not all combinations of hkl give rise to diffraction. Hence, the fcc lattice can be 
recognized by the fact that all diffractions with one odd or one even Miller index vanish 
systematically. If we are dealing with an unknown crystal we list 2(2sin( / 2) / )θ λ  of the 
various diffractions and look for a common divisor (1/a) that produces small integers. These 
integers equal  if the crystal is cubic. The missing hkl values tell us whether the 
structure is really fcc

2 2h k l+ + 2

                                                

8. 
The reason for the fact that systematic vanishings are not so unlikely at all is seen to lie 

in the special position of the particles within the unit cell. In fact, only unit cells with special 
positions of the particles can be repeated periodically to fill all space. These crystal lattices 
are called the Bravais lattices, and there exist only 14 of them. 

 

4.6. Dynamic light scattering 
In the previous sections it was mentioned in passing that the particles in soft matter systems 
are in constant thermal motion (Brownian motion). In principle this may be expected to lead 
to fluctuations in the scattered intensity. In dynamic light scattering (DLS)9 these fluctuations 
are measured. This provides information on the dynamics of particles in solution. In dilute 
suspensions DLS has become a standard technique for the characterization of particle size and 
polydispersity. Also, the dynamics of internal degrees of freedom can be studied, such as 
chain fluctuations in polymers and shape fluctuations of microemulsion droplets. When 
applied to concentrated suspensions DLS provides information on the length and time scale 
dependent dynamics of particles.  

4.6.1. Fluctuations in the scattered intensity 
In static light scattering a wide beam is used (typically a few mm) which illuminates very 
many particles. This leads to the ensemble average in Eqs. (4.26) and (4.27). Since the 
structure factor describes interference of waves scattered by different particles and these 
particles are constantly moving it is clear that the there must also be fluctuations in the 
scattered intensity. In dynamic light scattering a much smaller beam of coherent radiation is 
used: about 0.1 mm, but still containing many particles. The fluctuations are then readily 

 
8 In crystallography comparing the relative intensities of the diffraction peaks with their calculated values must 
then further validate the proposed structure. 
9 Other names are Photon Correlation Spectroscopy (PCS) and Quasi-Elastic Light Scattering (QELS). 
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Figure 4.12.  Left: fluctuating intensity of a speckle measured in DLS.  Right: Normalized 

IACF measured at various angles. The curve with the slowest decay corresponds to the data 
in the left graph. The inset shows the q-dependence of the decay rate. The sample was a dilute 

suspension of R=435 nm silica spheres in ethanol. 

visible to the naked eye: If we use a white screen as the detector we see a field containing 
many bright spots in a dark background. This is known as (laser) speckle. The origin of the 
speckle pattern can be understood as follows: Each particle scatters a spherical wave toward 
the screen with a phase that depends sensitively on its position, shape, and orientation. At 
each point on the screen the intensity is determined by the sum of all these scattered waves: 

  (4.45) ( ) ( ) ( )(
1

, exp
N

s j j
j

E t f t i t
=

= −∑ q q r )⋅

At some points the waves happen to cancel each other, while at others they reinforce each 
other. Particles only need to move over about one wavelength to let individual speckles blink 
on and off. The idea of dynamic light scattering is now to measure the (average) rate at which 
the speckles blink, and relate this to the rate with which particles change their relative 
positions. This is done by making the detector also very small, by placing a pinhole in front of 
it, such that it collects light in only a single speckle. 

The angular size (in radians) of a speckle is determined only by the ratio of the 
wavelength and the apparent diameter sind θ  of the scattering volume as seen by the 
detector: 

 
sinspeckle

appd d

λ λθ
θ

Δ ≈ =  (4.46) 

This is the same as the width of the primary diffraction maximum of a slit. For wavelengths in 
the visible and a scattering volume of 0.5 mm this is ~10-3 rad, or 0.05°. With a detector 
placed at a distance of 20 cm the pinhole size should be about 200 μm. Incidentally, we now 
see that the fact that fluctuations are small in static light scattering lies not in the larger 
number of illuminated particles, but in the larger number of (very small) speckles collected by 
the detector. In SLS we can therefore also get away with using an incoherent light source 
(though monochromatic). In fact, this even improves the speckle averaging. In DLS the use of 
a coherent light source is required. 

Mathematical functions that are used for studying fluctuating quantities are so-called 
correlation functions. In the case of DLS we measure the intensity autocorrelation function, or 
IACF: 
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 ( ) ( ) ( ), , ,Ig I t I tτ τ=q q q +  (4.47) 

This means that the intensity measured at a fixed time t is multiplied with the intensity 
measured a time τ later. This is repeated for a large number of speckles and averaged to form 
the ensemble average, as indicated by the angled brackets. In practice, of course, instead of 
moving the detector to a different speckle a great number of times (while keeping q almost 
constant!), we prefer to keep the detector fixed and to take a time average10. The 
measurement in Figure 4.12 illustrates how this works. The intensity looks completely 
random, but there is a characteristic time scale associated with the fluctuations: The intensity 
never jumps from a maximum to a minimum in an instant, but this takes a finite amount of 
time. At very short times τ , when the particles have not had enough time to move much, the 

intensity is unchanged, so that 2(0)Ig = I . After a somewhat longer time the particles have 

moved enough to let the intensity change and the IACF begins to decay. After a sufficiently 
long time a speckle’s intensity has changed so much that it has become completely 
uncorrelated with its initial value. The average of the product in (4.47) is then equal to the 

product of the averages, making 
2

( )g τ →∞ = I . It is clear that 
22I I≥ . In fact, if only a 

single speckle is measured it can be shown that 
22 2I I= . In other words, after one 

correlation time the speckle has become a different speckle. The ensemble average is obtained 
by measuring during a time interval equal to many times (>104) this correlation time. 

4.6.2. Brownian diffusion 
Fluctuations in the scattered light are primarily caused by random displacements of the 

particles resulting from the constant bombardment by solvent molecules, known as Brownian 
motion (but in general also by rotations or shape fluctuations). We will now make a short 
detour and derive a few results to describe Brownian displacements, which we need to 
calculate the IACF. We will follow the ingenious and simple argument used by Einstein 
(1905).  

Consider an equilibrium system of non-interacting particles suspended in a liquid. A 
steady external force K derivable from a potential ( )Φ r  acts on the particles and drives them 

to an impermeable boundary. (Think of the force of gravity driving the particle to the bottom 
of the container.) The velocity imparted to the particles by this force will be γK where γ is 
called the friction factor. Random movements due to thermal agitation drive the particles 
away from the boundary. In this state of thermal equilibrium the probability density for the 
position of the particles is given by the Boltzmann distribution as 

 ( ) ( )0 exp /P P k= −Φr T , (4.48) 

where P0 is a normalization constant. In equilibrium the particle flux caused by the external 
force, P γK , must be balanced by the flux due to Brownian diffusion at every position in the 
system: 

 ( ) 0 0P D Pγ− ∇Φ − ∇ = . (4.49) 

Substitution of (4.48) then shows that the diffusion coefficient must have the value 

 0

kT
D

γ
= , (4.50) 

                                                 
10 This assumes that the system is ergodic, so that time averages and ensemble averages are equal. For 
nonergodic systems we have no choice but to measure different speckles, although tricks exist to make this 
process more efficient. 
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which is known as the Einstein relation. For spherical objects the hydrodynamic friction 
factor γ was calculated by Stokes: 

 0 6

kT
D

aπη
= . (4.51) 

Here η is the shear viscosity of the solvent. 
It is interesting to note that the particle flux caused by Brownian motion is the same as 

if a steady force acted on the particles opposite to the external force. In view of (4.49) this so-
called Brownian, or thermodynamic, force is equal to 

 Br lnkT P= − ∇F  (4.52) 

This does not mean, of course, that the collisions of solvent molecules really cause the 
exertion of a steady force on the particle. It just means that when the probability density is 
non-uniform the mean Brownian displacement is such as to cause a diffusive flux equal to that 
caused by a steady external force FBr.  

The above arguments are equally valid for particles on which no external force is acting. 
If a suspension is non-uniform initially then the only particle flux is the diffusive flux 

. Particle conservation demands that its divergence must be equal to the (negative) 
rate of change of the local density, as expressed by the continuity equation  

D P= − ∇J

 
P

t

∂
= −∇⋅

∂
J . (4.53) 

Combining this with the diffusive flux results in the diffusion equation 

 2
0

P
D P

t

∂
= ∇

∂
. (4.54) 

In one of the problems you will be asked to solve this equation subject to the initial condition 
that the particles all start diffusing from the origin. (It would be wise, however, not to attempt 
this until after reading the next paragraph.)  An important and characteristic property of the 
solution is that the mean-square displacement of the particles increases linearly with time: 

 2
06r DΔ = t . (4.55) 

4.6.3. Dilute suspensions 
We will now make the discussion a little more precise and derive the form of the IACF 

for a suspension of independent, but identical particles. Particles are independent if they do 
not interact with each other. This is the case if a suspension is sufficiently dilute. We will also 
assume that the particles have orientational degrees of freedom. If (4.45) is then substituted in 
(4.47) we get 

 ( ) ( ) ( ) ( ) ( )( )4

, , , 1

exp 0 0
N

I j k l
j k l m

g f iτ τ
=

m τ⎡ ⎤= − ⋅ − − +⎣ ⎦∑ q r r r r . (4.56) 

When particles are independent the average of a product is equal to the product of the 
averages. So, if only one of the numbers jklm is different from any of the others the IACF will 

contain a factor of the form ( )( )exp ji τ− ⋅q r . This average is zero, since the particles are 

distributed randomly so that the phase is a random quantity (except in the uninteresting case 
q=0). As a result, only three kinds of terms survive: (i) N2 terms for which j=k, l=m , (ii) 
N2−N terms for which j=m, k=l, j≠k, and (iii) N2−N terms for which j=l, k=m, j≠k. In case (i) 
the terms equal unity. Terms of type (ii) give 

 ( ) ( )( ) ( ) ( )( )exp 0 exp 0j j k ki iτ τ⎡ ⎤ ⎡ ⎤⋅ + − ⋅ +⎣ ⎦⎣ ⎦q r r q r r . 

Both these averages are zero for the same reason as before: their phase depends on the 
absolute position of the particle, which is random. Finally, terms of type (iii) give 
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 ( ) ( )( ) ( ) ( )( )exp 0 exp 0j j k ki iτ τ⎡ ⎤ ⎡ ⎤⋅ − − ⋅ −⎣ ⎦⎣ ⎦q r r q r r . 

These terms are not zero, because they depend on particle displacements, which are small for 
small τ and large for large τ. Taking these things together we obtain 

 ( ) ( ) ( )( )
2

2 4 2 4 expIg N f N N f iτ = + − ⋅Δq rj τ ,  

where .  Because ( ) ( ) ( )0j j jτ τΔ = −r r r 2I Nf=  and  we finally get for the IACF: 2N � N

 ( ) ( )( )
22

1 expIg I iτ j τ
⎡ ⎤= + ⋅Δ⎢ ⎥⎣ ⎦

q r . (4.57) 

We now need to evaluate the ensemble average in (4.57) for particles in Brownian 
motion. Let  be the probability of finding that a given particle has undergone a 

displacement Δr in a time t. The equation of motion for this process is the diffusion equation 

( ,P tΔr )

(4.54) with the initial condition that the particle has not moved at time 0t = : 

 
( ) ( )

( ) ( )

2
0

,
,

, 0

P t
D P t

t
P t δ

⎧∂ Δ
= ∇ Δ⎪

∂⎨
⎪ Δ = = Δ⎩

r
r

r r

 (4.58) 

We first recognize that the average we want to calculate is 

 ( ) ( ) ( ) ( )exp , expi P t i d− ⋅Δ = Δ − ⋅Δ Δ∫q r r q r r . 

But this is just the Fourier transform of P with respect to Δr. Thus, we Fourier transform Eq. 
(4.58), giving 

 
( ) ( )

( )

2
0

,
,

, 0 1

P t
q D P t

t
P t

⎧∂
= −⎪

∂⎨
⎪ = =⎩

q
q

q

,  

with the simple solution 

 ( ) ( )2
0, expP t q D t= −q . 

Substitution into Eq. (4.57) then yields the result 

 ( ) ( )2 2
01 exp 2Ig I q Dτ t⎡ ⎤= + −⎣ ⎦ . (4.59) 

This result tells us that the IACF of particles in (independent) Brownian motion is an 
exponential with a characteristic time 2

01 2q D . This is the behavior seen in the experiment of 

Figure 4.12. The IACF will decay faster if the particles diffuse faster, as expected. There is 
also a strong q-dependence (slow decay at small angles). This is because q−1 can be seen as 
the distance over which particles need to diffuse in order to cause the IACF to decay. Since in 
a diffusion process mean-square displacements are proportional to time this leads to a q−2 
dependence. 

Equation (4.59) is often used to measure the diffusion coefficient of particles in a dilute 
solution. This value is then related to an (average) particle radius, using (4.51). The radius 
obtained from this equation is usually called the hydrodynamic radius, because it is the 
hydrodynamic friction on the sphere that determines its diffusion coefficient. If a layer of 
solvent close to the particle is entrained the hydrodynamic radius may be somewhat larger 
than the actual radius. This can be significant if the particles are rough, or if they contain a 
stabilizing coating of long polymer molecules. Non-spherical particles have of course a more 
complicated relation between D0 and R. Results have been derived for different geometric 
shapes. 
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An important application of DLS is the measurement of the particle size distribution of 
polydisperse suspensions. In essence, the decay of the IACF becomes multi-exponential due 
to the presence of particle with different sizes. It can be inverted using numerical methods to 
obtain the size distribution, which is used routinely on all commercial instruments. 

4.6.4. Concentrated suspensions 

In concentrated suspensions the particles are no longer independent and the average in Eq. 
(4.56) cannot be factorized so easily. Nevertheless, it is possible to derive some general 
results. We will state the most important results and refer to the literature cited at the end of 
this chapter for details and derivations. It can be shown that under certain general assumptions 
the Siegert relation is valid: 

( ) ( ) 22

Ig I gEτ τ= + , (4.60) 

where the electric field autocorrelation function (EACF) gE is defined by 

( ) ( ) ( )*
E s sg E t E tτ τ= + . (4.61) 

The assumptions are that (i) the scattering volume contains a large number of particles, (ii) the 
scattering volume is much larger than the range over which the particles are correlated, and 
(iii) the system is ergodic. For most systems these assumptions are easily satisfied11. By 
inserting Eq. (4.45) it is seen that 

( ) ( ) ( )( )
, 1

1
exp 0

N

E j
j k

g I i
N

τ
=

k τ⎡ ⎤= ⋅ −⎣ ⎦∑ q r r . (4.62) 

The factor between angled brackets is called the dynamic structure factor (or intermediate 
scattering function). Notice that it equals the (static) structure factor, Eq. (4.27), at 0τ = . Also 
notice that for independent particles the only nonzero terms are those with j=k, so that we 
obtain (4.57) again. 

The analysis of the measured IACF is much more complicated than in the dilute case. 
Particle correlations affect both the decay rate and the q-dependence of the IACF. This is 
described phenomenologically with an equation similar to (4.59) but with a q and t dependent 
collective diffusion coefficient Dc: 

( ) ( )( )2 21 exp 2 ,Ig I q D q tτ c t⎡ ⎤= + −⎣ ⎦  (4.63)  

Note that this does not mean that the IACF still decays according to a single exponential. 
Also, there is no longer a pure q-2 dependence. How then should the collective diffusion 
coefficient be interpreted? Remember that thermal motion of particles constantly creates and 
dissipates small fluctuations in the particle number density. These fluctuations have a 
(Fourier) spectrum of wavelengths. The collective diffusion coefficient can be interpreted as 
describing the relaxation of a sinusoidal density wave with a wavelength 2 qπ . Dc is also 
time dependent because at short times particles move only a small distance relative to each 
other (much less than a particle diameter). But on longer time scales particles must 
increasingly ‘pass each other’ in order to make progress. Thus, the diffusion coefficient 
relevant to mean-square displacements at longer times is decreased. 

                                                 
11 The electric field seen by the detector is then a Gaussian random variable. 
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As an illustration of these ideas we will conclude this section with a few examples, 
namely that of concentrated suspensions of spherical colloids. Figure 4.13 shows a number of 
dynamic structure factors (curves 1-3) of charged spheres measured at different q. It is clear 
that the decay is not single-exponential (curve 2), contrary to what is measured at low volume 
fractions (curve 4). However, in the limit of short times a single exponential can still describe 
the initial decay. The inverse of the ‘short-time’ diffusion coefficients assigned to the data in 
this way are also shown in Figure 4.13 together with the static structure factor. It is seen that 
the shape of the 1 (c )D q -curve looks similar to that of the structure factor. Apparently, 

density fluctuations with a length scale similar to the mean interparticle spacing relax slowly 
(at short times). Diffusion on shorter and longer length scales is more rapid. Although DLS 
results from various kinds of soft matter can be quite different this same behavior is generally 
found: diffusion on length scales with strong particle ordering is slow and vice versa. 

The collective diffusion coefficient tells us how particles move collectively to dissipate 
spontaneous density fluctuations. It can be much more insightful to consider the motion of 
individual particles in the suspension. This is described by the self-diffusion coefficient. It can 
be measured with DLS by adding a small number of strongly scattering ‘tracer’ particles to a 
suspension containing a large number of index-matched ‘host’ particles. Because the tracers 
are the only particles that scatter light the only nonzero terms in (4.62) are those for which j 
and k both refer to a tracer particle. Since the tracers are very small in number they behave 
independently (i.e. they almost never interact with each other). Thus, the averages of terms 
with j≠k separate into products, producing zero as before. Only terms with j=k survive, and 
these lead to  

( )( )expEg I i τ= ⋅Δq r . (4.64)  

Accordingly, we can write 

( ) ( )( )2 21 exp 2Ig I q D tτ s
⎡ ⎤= + −⎣ ⎦ , (4.65)  

      
Figure 4.13.  DLS measurements on a suspension of charged silica spheres (q=K). 

Left graph: Decay of the dynamic structure factor at different wave vectors at a volume 
fraction of 0.10 (curves 1,2,3), and 0.001 (curve 4).  Right graph: D /D  (open symbols) c0

and S(q) (closed symbols) measured at volume fractions of 0.10 (circles) and 0.043 
(triangles). From: A. P. Philipse and A. Vrij, J. Chem. Phys. 88, 6459 (1988). 
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Figure 4.14. Mean square displacements of tracer spheres (silica) in a suspension of hard 

sphere colloids (pmma), measured with DLS. The particles had a radius of 330 nm and were 
suspended in a mixture of CS  and decalin, which index-matched the pmma spheres. The 2

particle volume fractions are shown on the graphs. From: W. van Megen and S. M. 
Underwood, J. Chem. Phys. 91, 552 (1989). 

where Ds is the self-diffusion coefficient. It does not depend on q because distances between 
the independent tracers do not play a role. Ds is time dependent, however, because the tracer 
particles do still feel their nonscattering neighbors. Some experimental results are shown in 
Figure 4.14 for concentrated suspensions of hard sphere colloids. They are presented in terms 
of mean square displacements (msd) as a function of time. It can be seen that at low volume 
fractions the msd increases linearly with time, as expected for normal diffusion. But at higher 
volume fractions there is a crossover from a short-time to a slower long-time regime. In the 
crossover regime the tracer particles start feeling the presence of their neighbors, which slow 
down their progress. On very long time scales these particle interactions have averaged out 
and the msd increases linearly with time again, but much more slowly. One therefore speaks 
of short-time and long-time self-diffusion coefficients, equal to one-sixth the slope of the 
msd. 

In the experiments shown effort was taken to make the interactions between the tracer 
and host particles identical, so that it may be assumed that the motion of the tracers is 
identical to that of the host particles. This is not necessary, however. Similar experiments are 
performed in a wide variety of systems. For example, tracers can be added to polymer 
solutions, or attached to cell membranes. The dynamics of the tracers then provides 
information about the properties of the host material, such as the local viscosity or elasticity. 

4.7. Scattering of other types of radiation 
As mentioned before not only light can be used to obtain information on the structure of 

matter, but in principle type of information is obtained with other types of radiation. Of these, 
X-rays and neutrons are routinely used in the study of soft condensed matter and, indeed, in 
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the study of all kinds of condensed matter. We discuss some of the differences and advantages 
compared to light scattering. 

4.7.1. X-rays 

The wavelength of X-rays is typically on the order of 0.1 nm, which places us in the 
large q limit. Information on the structure of larger particles therefore appears at small angles, 
on the order of 1º. This application of X-rays is therefore called small-angle X-ray scattering, 
or SAXS. To reach such small angles the detector is placed at large distance from the sample, 
typically ~10 m. Smaller length scales such as polymer segments and intramicellar structure 
are studied at wider angles (WAXS). Length scales that can therefore be probed with X-ray 
scattering range from 0.01 to 103 nm. Since the refractive index of most materials at these 
short wavelengths is very close to unity (to within 10-6 to 10-4) multiple scattering is absent 
even in samples that strongly scatter light. Since X-rays are electromagnetic radiation they are 
scattered by charged particles, usually electrons. Because of there short wavelength the 
scattering strength is related not to the polarizability of bulk matter but to the scattering 
strength of an electron. For an individual electron which oscillates in the e.m. field the 
scattered intensity is again a dipole field (Thomson scattering): 

22 2

0 2
0

1 cos

4 2s
e

e
I I

m c R

θ
πε

⎛ ⎞ +
= ⎜ ⎟

⎝ ⎠
 . (4.66) 

Here me and e are the electron mass and charge, and c the speed of light. To calculate 
scattering by larger objects such as atoms, polymer molecules or colloidal particles we sum 
the fields scattered by the electrons taking into account the proper phase differences, as 
explained before. It is clear that the resulting formulas will be completely analogous to those 
for visible light. Because heavy elements contain many more electrons than light elements 
scattering by the former dominates the measured intensity. This may make it difficult to 
measure light elements in a sample. 

Classically, X-rays are produced in X-ray tubes, in which a metal foil is bombarded 
with electrons. The resulting X-rays have a well-defined wavelength and can be used to 
irradiate samples. Since X-rays are hard to focus and reflect from mirrors a collimated beam 
must be produced with a narrow slit. This seriously limits the available power. Stronger X-ray 
beams are available from modern synchrotrons in which magnetic bending or undulation of a 
relativistic electron beam produces an almost collimated beam containing a “white” spectrum 
of wavelengths (typically 0.05 to 0.2 nm). The extremely high irradiance makes it possible to 
study weakly scattering samples, even after monochromation and collimation. Worldwide a 
growing number of synchrotrons is available at national or international facilities. European 
synchrotrons with international access are in Grenoble (“European Synchrotron Radiation 
Facility”), Daresbury (“Daresbury Synchrotron Radiation Source”), Hamburg (“Hamburger 
Synchrotronstrahlungslabor”), Villigen (“Swiss Light Source”), and Aarhus (“Institute for 
Storage Ring Facilities”). 

Although the X-rays produced in synchrotrons (like those from tubes) are incoherent the 
beams are so intense that a small pinhole can be placed in the beam to produce a nearly 
coherent source. In this way Dynamic X-ray Scattering (DXS) has become possible in recent 
years. 

4.7.2. Neutrons 

Neutrons interact with matter mainly through two types of interaction. The magnetic 
dipole of the neutron interacts with the magnetic field of unpaired electrons. Although this is 
very important in the study of magnetic materials it does not usually play a role in soft 
condensed matter systems. The other interaction is the strong nuclear interaction between the 
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neutron and the atomic nuclei. Despite the word “strong” the scattering cross sections of 
atoms (i.e. of their nuclei) are very small, so neutrons have a high penetrating power and 
multiple scattering is of no concern. Neutrons are produced in nuclear reactors. Some of the 
neutrons are needed to continue the nuclear fission process, while others need to be 
transported out. In reactors used for scientific research these neutrons are channeled into 
relatively well-collimated beams. Neutrons are described as a matter wave with De Broglie 
wave vector  

1
2 nk m=

=
E . (4.67) 

E is the kinetic energy of the neutrons and  Planck’s constant divided by 2π= . This energy 
depends on the reactor and is often given in terms of the neutron temperature, as 3

2E k= T . In 

many reactors the neutrons have undergone many collisions with the nuclei present in the 
moderator and will have “thermalized” upon leaving the reactor, so that their temperature is 
about 300 K. These neutrons have a wavelength of 0.2 nm. (By using a cooled moderator 
wavelengths of up to 2 nm are accessible.) This is the same order of magnitude as that of X-
rays, so that neutron scattering provides information on the same length scales. 
Correspondingly, small angle neutron scattering is called SANS. 

Since the strong interaction is very short range the atomic nuclei can be considered 
point scatterers for neutrons at room temperature or below. Thus the neutron waves scattered 
by each atomic nucleus has a form similar to the oscillating dipole in light and X-ray 
scattering. Scattering by larger objects follows by summing over all nuclei including the 
correct phase, just like before. The strength of scattering is expressed as a scattering length, 
which depends on the number of protons and neutrons in the nucleus, but not in a systematic 
way. This has the advantage that light elements may scatter as much as heavy elements. Even 
different isotopes of the same element may have completely different scattering lengths. Since 
the isotopes will be distributed randomly through the sample, and their nuclear spins normally 
have a random orientation, the scattered intensity contains an often-large background of so-
called incoherent scattering. An important difference with electromagnetic scattering is that 
neutron scattering lengths for some elements, most notably 1H, are negative. The analogous 
thing in light scattering would be to have a negative fj in equation (4.25) for certain 
components of the sample. By mixing normal solvents with deuterated solvents (2H has a 
positive scattering length) the scattering contribution from selected parts of the sample can be 
made to vanish while minimally affecting the chemical composition. This process is called 
contrast variation and is an important technique in neutron scattering. In light scattering 
contrast variation is only possible by replacing the solvent by one with a refractive index 
equal to that of the selected part of the sample. (In equation  the f(4.25) j of this part would 
become zero.) But this always comes at the price of changing the chemical makeup of the 
system under study, which is almost certain to lead to other, unwanted, changes.  

Several nuclear reactors provide beamlines for scientific research. In the Netherlands 
test reactors offering neutron beamlines to researchers are located in Delft (“Interfacultair 
Reactor Instituut”) and in Petten (“Energieonderzoek Centrum Nederland”). More powerful 
neutron sources open to European researchers are in Jülich (“Forschungszentrum Jülich”) and 
in Grenoble (“Institut Laue-Langevin”). 

 

4.8. More reading  
The derivation of the field radiated by an oscillating dipole can be found in: 
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• Griffiths, D. J., Introduction to Electrodynamics (3rd ed., Prentice Hall, Upper Saddle 
River, 1999). 

 
or in most other textbooks on electrodynamics. 
 
Famous books on light scattering and absorption by individual particles are: 
 
• H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957) 
• M. Kerker, The scattering of light and other electromagnetic radiation (Academic Press, 

New York, 1969). 
• C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles 

(John Wiley & Sons, New York, 1983). 
 
Note that these books only treat scattering by single particles. For discussions of structure 
factors we refer to textbooks on soft condensed matter, which are listed elsewhere in this 
syllabus. 
 
A classic text on dynamic light scattering is 
 
• B. J. Berne and R. Pecora, Dynamic Light Scattering – With applications to chemistry, 

biology, and physics (Wiley, New York, 1976). 
 

 4-28
-80-



5-1

5. Phase Behaviour

Marjolein Dijkstra
Soft Condensed Matter, Debye Institute

Utrecht University

-81-



5-2 CONTENTS

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5.2 Steric stabilised colloidal suspensions . . . . . . . . . . . . . 4
5.3 Charge-stabilised Colloidal Suspensions . . . . . . . . . . . 8

5.3.1 Free energy calculation of the solid phase . . . . . . 10
5.3.2 Free energy calculation of the fluid phase . . . . . . 11
5.3.3 Kofke integration method . . . . . . . . . . . . . . . 12
5.3.4 Phase diagram . . . . . . . . . . . . . . . . . . . . . 13

5.4 Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5 Colloid-Polymer Mixtures . . . . . . . . . . . . . . . . . . . 16
5.6 Binary hard sphere mixtures . . . . . . . . . . . . . . . . . 19

-82-



5.1. INTRODUCTION 5-3

5.1 Introduction

Colloidal suspensions are complex fluids that consist of mesoscopic particles
suspended in a solvent (e.g. water). The colloidal particles are significantly
larger than the solvent molecules, but small enough to show Brownian
motion. In the case that the linear dimension R of the colloids is in the
regime of 10 nm < R < 1000 nm, no significant sedimentation occurs
in Earth’s gravity. Examples of colloidal particles are viruses, proteins,
synthetic polymeric particles (latex, PMMA), micelles, etc. Suspensions of
these particles play an important role in biology, e.g. blood, but also many
industrial products are essentially colloidal suspensions, e.g. paints, inks,
food, detergents, cosmetics.

Due to fluctuating dipole moments, an attractive ‘dispersion’ force, or
Van der Waals force, acts between every pair of atoms separated by a dis-
tance r. Summing over all pairs of atoms in two colloidal particles gives rise
to a strong Van der Waals attraction between the colloids, which can be
larger by orders of magnitude than the thermal energy kBT . This may lead
to irreversible aggregation of the colloids. In order to stabilise a colloidal
suspension against irreversible aggregation two mechanisms are common:
charge and steric stabilisation. In the case of charge stabilisation, the col-
loidal particles have ionisable groups on their surfaces, which dissociate
when the particles are suspended in a polar liquid. The colloidal parti-
cles then acquire a net surface charge Ze, with e the elementary charge
and Z the charge number typically in the range 102 < |Z| < 105. The
released counterions form a diffuse layer of thickness κ−1 around each col-
loidal particle, where κ−1 is the Debye screening length. The approach
of two charged colloids leads to overlap of these so-called electric double
layers, and causes a repulsive force that can stabilise the particles against
aggregation [1]. In the case of steric stabilisation the colloidal particles are
coated with a polymer layer. When two coated colloidal particles approach
each other sufficiently closely, the polymer layers interpenetrate and over-
lap, which leads to a reduction of the polymer entropy, and hence to an
effective repulsive force between the colloids. This repulsion leads again to
stabilisation of the particles against aggregation.

Often other components, such as salt ions, polymers or smaller colloids,
are present in suspension as well. In the case of charged colloids, the addi-
tion of electrolyte or salt changes the Debye screening length κ−1. On the
other hand, the addition of free polymer coils or smaller colloids to a steric
stabilised colloidal suspension induces a depletion interaction between col-
loids which is mainly attractive and of a range of the size of the depletant
[2, 3]. The concentration of added salt, or the size and concentration of
added free polymers or smaller colloids, can therefore be used as control
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parameters with which the effective interactions between the colloids can
be taylored. The possibility of tayloring the effective interactions enriches
the physics of colloidal systems compared to simple (atomic) fluids, and
leads to a wide range of practical applications.

Most theoretical treatments of soft matter systems are based on a coarse-
grained view in which the solvent is regarded as an inert, structureless
continuum characterised by a density and a dielectric constant. In this
approach, the colloids are described by effective interparticle potentials
and classical statistical physics, combined with standard theories devel-
oped for simple liquids and solids, can then be used to calculate the phase
behaviour and structure of such a suspension. In Section 12.2, we first
discuss steric stabilised colloidal suspensions, in which the particles inter-
act via hard-sphere like pair potentials. Computer simulations have shown
a well-defined freezing transition in a system of pure hard spheres. We
explain this freezing transition with a simple theory and we discuss some
experiments on colloidal hard spheres that exhibit indeed this freezing tran-
sition. In Section 12.3, we discuss the phase behaviour of charge-stabilised
colloidal suspensions using an effective one-component description of the
suspension. A model system that is well-studied experimentally and theo-
retically is the hard-sphere system.

In Section 12.5 we show explicitly that the effective interactions between
colloidal particles can change due to the addition of polymer coils. The ad-
dition of polymer can lead to a phase separation into a phase which is dilute
in colloids (gas-like) and a phase which is dense in colloids (liquid-like). The
mechanism of this phase separation is due to the so-called depletion mech-
anism, which leads to attractive effective interactions between the colloids.
This phenomena has many practical applications, e.g. creaming of rubber
latex, isolating virus particles, creaming of oil droplets, etc. Finally, in Sec-
tion 12.6, the phase behaviour of binary mixtures of large and small steric
stabilised colloidal suspensions are discussed.

5.2 Steric stabilised colloidal suspensions

In the case of steric stabilisation, the colloidal particles are coated with
a polymer layer, which leads to a steep repulsive interaction between the
colloids when they approach each other; the colloidal pair potential can
therefore be regarded as hard-sphere like. The hard-sphere system has been
studied in great detail. The first computer simulations were performed by
Alder and Wainwright and Wood and Jacobson in 1957 [4]. They showed,
using this new technique for studying many-body systems, that a system
with purely repulsive hard spheres has a well-defined freezing point. How-
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ever, both the computer simulations as a new tool as well as the freezing
transition in hard spheres were disputed for a long time. Even after a long
discussion of 17 eminent physicists with several Noble Prize laureates, the
situation was still unsettled as many people found it hard to believe that a
crystalline phase can appear without any attraction. Nowadays, it is gen-
erally accepted that a hard-sphere system has a fluid-solid transition and
indeed colloidal particles that interact with hard-sphere potentials show
a clear fluid-solid transition. Below we show that this fluid-solid transi-
tion can be explained using the Carnahan-Starling expressions for the fluid
phase and a cell theory for the solid phase. The Carnahan-Starling expres-
sion for the Helmholtz free energy of a fluid of hard spheres with diameter
σ is given by:

fCS(η) =
FCSπσ3

6V
= kT

[
η log(

6ηΛ3

πσ3
)− η +

4η2 − 3η3

(1− η)2

]
(5.1)

where we define the packing fraction η = πσ3N/6V . The chemical potential
and pressure can easily be obtained from the Helmholtz free energy:

µ(η) =
∂f

∂η
p(η) =

−6
πσ3

(f(η)− η
∂f

∂η
) (5.2)

and the Carnahan-Starling expressions for the chemical potential and the
pressure read

µCS(η) = kT

[
log(

6ηΛ3

πσ3
) +

8η − 9η2 + 3η3

(1− η)3

]
(5.3)

pCS(η) = kT
6

πσ3

[
η(1 + η + η2 − η3)

(1− η)3

]
(5.4)

We already mentioned in Chapter 3 that the Carnahan-Starling equation
of state is indistinguishable from simulation results up to η = 0.5. Fig.5.1
shows that also the equation of state derived experimentally by Piazza et
al. from equilibrium sedimentation profiles of colloidal hard spheres shows
good agreement with the Carnahan-Starling equation of state. The good
agreement found with simulations and experiments justifies the use of the
Carnahan-Starling expressions for the fluid phase.

For the solid phase we can employ a simple cell theory. In this theory
for solids, the particles are localised around given lattice sites. We assume
that the particles are confined to cells centered at lattice sites. In a FCC
solid with a lattice constant a, the particles are confined to dodecahedral
cells with a volume v = a3/

√
2 = V/N . At close packing the volume of

the dodecahedral cell is given by vcp = σ3/
√

2. The canonical partition
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Figure 5.1: The pressure Π/NkBT versus the packing fraction Φ obtained exper-
imentally from the sedimentation profile of colloidal hard spheres (Piazza et al.,
Phys. Rev. Lett. 71, 4267 (1993)). The solid line denotes the Carnahan-Starling
equation of state for the fluid phase and an empirical fit to simulation data for
the solid phase.

function (2.38) reads

Zcell =
N !

N !Λ3N

∫

v1

dr1 · · ·
∫

vN

drN exp[−β
N∑

i<j

φ(rij)]

'
(vfree

Λ3

)N

(5.5)

where N ! in the numerator equals the number of distinct ways that N
colloids can be distributed over N cells and where vfree is the volume in
which the colloid can move freely, i.e.

vfree =
(a− σ)3√

2

=
(

πσ3

6η

) (
1−

(
η

ηcp

)1/3
)3

(5.6)
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The Helmholtz free energy reads

fcell =
πσ3Fcell

6V
= −πσ3kT log Zcell

6V

= ηkT log


6ηΛ3

πσ3

(
1−

(
η

ηcp

)1/3
)−3


 (5.7)

Using Eq. (5.2) we find that the chemical potential and pressure for the
solid are given by

µcell(η) =
kT

1−
(

η
ηcp

)1/3

+ kT log


6ηΛ3

πσ3

(
1−

(
η

ηcp

)1/3
)−3


 (5.8)

pcell(η) =
6η

πσ3

kT

1−
(

η
ηcp

)1/3
(5.9)

Fig. 5.2 shows the free energy for the fluid phase fCS(η) and the solid phase
fcell(η) as a function of η. A fluid phase and a solid phase with packing
fractions ηf and ηs are in thermodynamic equilibrium at fixed temperature
T if

pCS(ηf ) = pcell(ηs) (5.10)
µCS(ηf ) = µcell(ηs) (5.11)

Combining Eq. (5.2) with Eq. (5.10) and (5.11) we find that

fcell(ηs)− fCS(ηf )
ηs − ηf

=
(

∂fCS

∂η

) ∣∣∣∣η=ηf
=

(
∂fcell

∂η

)∣∣∣∣
η=ηs

(5.12)

which is equivalent to the common tangent construction. The common
tangent construction in Fig. 5.2 shows that there is a coexistence between
a fluid phase with ηf = 0.609 and a solid phase with ηs = 0.661 at a pressure
βpσ3 = 17.84. A more accurate equation of state for the solid phase due
to computer simulations give a freezing transition at βpσ3 = 11.69 with
coexisting densities ηf = 0.494 and ηs = 0.545 for the fluid and solid phase,
respectively. Indeed, experiments by Pusey and Van Megen (Nature 320,
340 (1986).) on colloidal hard spheres show a homogeneous fluid phase for
packing fractions η < 0.494 and a homogeneous solid phase for packing

-87-



5-8 CONTENTS

0 0.2 0.4 0.6 0.8
η

−1

1

3

5

7

βf(η)

Cell theory

CS

Figure 5.2: The Helmholtz free energy for the fluid phase (Carnahan-Starling)
and the solid phase (Cell theory) as a function of the packing fraction η.

fractions η > 0.545. For packing fractions 0.494 < η < 0.545, the samples
show coexistence between a fluid and a solid phase with a clear meniscus
between the crystalline phase at the bottom of the test tube and the fluid
phase on top. For packing fractions η > 0.58, a colloidal glass is found.
However, this glass transition is absent in microgravity experiments by
NASA of colloidal hard spheres in a space shuttle (J.X. Zhu et al., Nature
387, 883 (1997).) . Fig. 5.3 summarises the phase behaviour of purely
repulsive hard spheres.

5.3 Charge-stabilised Colloidal Suspensions

Charge-stabilised colloidal suspensions consist of (spherical or anisotropic)
mesoscopic colloidal particles suspended in a polar solvent with co- and
counterions. The radius of the co- and counterions is comparable to that of
the solvent molecules, i.e. of the order of 0.1-0.3 nm. A statistical mechanics
description of these highly asymmetric multicomponent fluids represent a
major challenge as very different length and time scales are involved for the
various species. This is the reason why attempts to treat the mesoscopic
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η0.5450.494
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Solid

0.58
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Figure 5.3: The phase diagram of purely repulsive hard spheres.

colloids and the microscopic salt and solvent particles on an equal footing
usually fail. It is therefore not surprising that the present understanding of
these systems is based on simplified models, in which the degrees of freedom
of the microscopic particles have been integrated out, and the mesoscopic
particles interact with an effective (usually pairwise) potential resulting in a
coarse-grained effective one-component description of the suspension. The
standard and very successful effective one-component description of charged
colloidal suspensions dates back to the 1940’s and is due to Derjaguin-
Landau-Verwey-Overbeek (DLVO) [1]. The DLVO theory is the corner
stone of colloid science; it not only describes the diffuse double layer of
thickness κ−1 of co- and counterions surrounding the charge surfaces of
colloidal particles, but it also predicts effective screened Coulomb repulsions
(or Yukawa repulsions), with decay length κ−1, between pairs of colloids:

βu(r) = βuhs(r) + βuyuk(r) (5.13)

where the hard-sphere pair potential reads

βuhs(r) =
{ ∞, r < σ

0, r > σ
, (5.14)

and where the Yukawa pair potential is given by

βuyuk(r) =

{
0, r < σ

βε exp[−κσ(r/σ−1)]
r/σ , r > σ

, (5.15)

βε is the value of the pair potential at contact per kBT , and σ is the hard-
core diameter of the colloids. The contact value βε reads

βε =
Z2

(1 + κσ/2)2
λB

σ
, (5.16)
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where Z is the charge of the colloids and λB = βe2/εs is the Bjerrum length
of the solvent with dielectric constant εs [1]. The total potential energy of
N particles is given by the sum over all pairs i.e.,

U(rN ) =
N∑

i<j

u(rij) (5.17)

where rij = |ri − rj|. The phase diagram consists of stable regions of fluid,
bcc and fcc phases that are bounded by coexistence regions between any
two phases. Therefore, the determination of the phase diagram reduces to
the calculation of the coexistence lines. Points on the coexistence line can
be determined by calculating, for each phase, the Helmholtz free energy per
volume as a function of density and using the common tangent construction
to obtain the densities of the coexisting phases.

5.3.1 Free energy calculation of the solid phase

As the free energy can not be measured directly in a Monte Carlo (MC)
simulation, we used thermodynamic integration to relate the free energy
of the system interacting with a potential energy function given by Eq.
(5.17) to that of a reference system at the same density. The Helmholtz
free energy of the solid phases is calculated using the Frenkel-Ladd method
[5]. To this end we introduce the auxiliary potential energy function.

Usolid(rN ) =
N∑

i<j

u(rij) + λ
N∑

i=1

(ri − r0,i)2/σ2. (5.18)

where r0,i is the lattice position of particle i, and λ the dimensionless switch-
ing parameter. In Eq. (5.18), particles are coupled to their lattice sites with
harmonic springs: for λ = 0 we recover the system of interest, while for a
sufficiently high value of λ, say λ = λm, the particles do not feel each
other and the system reduces to that of a noninteracting Einstein solid
with Madelung energy U(r0), i.e., the potential energy of a crystal with all
particles at their lattice positions. It is a standard result that [34,36]

βFsolid(N, V, T ) = βFCM
Ein (N, V, T, λm) + βFcorr(N, V, T )

−
∫ λm

0

dλ

〈
N∑

i=1

(ri − r0,i)2/σ2

〉CM

λ

, (5.19)

where the superscript CM on the ensemble average denotes that it is calcu-
lated for a crystal with fixed center of mass. The free energy of an Einstein
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crystal with fixed center of mass is given by.

βFCM
Ein (N, V, T, λm) = βU(rN

0 )− 3(N − 1)
2

ln
[

π

λm

]

+ (N − 1) ln
[
Λ3

σ3

]
, (5.20)

where Λ is the de Broglie waavelength. The correction term Fcorr arises
when the constraint on the center of masses is released, i.e., the Helmholtz
free energy difference between the unconstrained and constrained crystal:

βFcorr(N,V, T ) = ln
[

Λ3

V N1/2

]
(5.21)

5.3.2 Free energy calculation of the fluid phase

The Helmholtz free energy of the fluid phase is calculated using the λ
integration with the hard-sphere fluid as a reference state [5]. To this end,
we introduce an auxiliary potential energy function

Uλ
fluid(rN ) =

N∑

i<j

uhs(rij) + λ
N∑

i<j

uyuk(rij), (5.22)

where 0 ≤ λ ≤ 1 is the coupling parameter: at λ = 0 the interaction reduces
to that of a fluid of N hard spheres, while at λ = 1 it is the potential energy
function of interest (for fixed V). The Helmholtz free energy is

Ffluid(N,V, T ) = Fhs
fluid(N, V, T ) +

∫ 1

0

〈
N∑

i<j

uyuk(rij)

〉

λ

dλ, (5.23)

where Fhs
fluid is the free energy of a hard-sphere fluid, for which we use the

Carnahan-Starling expression [6]

βFhs
fluid
N

= ln
[
NΛ3

V

]
− 1 +

η(4− 3η)
(1− η)2

. (5.24)

where η = πσ3N/6V .
In most experiments on charge-stabilized colloidal suspensions, one makes

several assumptions for charge Z and the inverse Debye screening length
κσ. Charge Z is often replaced by a so-called renormalized or saturated
charge that depends both on κσ and on the packing fraction η [7, 8]. Fur-
thermore, one often considers a κσ that depends on Z, η, and on the added
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salt concentration [9]. This means that the relationship between βε, κσ, and
η is complicated. However, an η and Z independent κσ can be realized by
coupling the system to a salt reservoir and considering κσ to be that of the
reservoir. In addition, we take the value of βε to be fixed, which can later
be related to experimental system parameters through Eq. (5.16). In this
way, βε and κσ are independent variables, i.e., independent of each other
and of the colloid packing fraction η, and we calculate the phase behavior
in the three dimensional space (βε,κσ,η) spanned by them. This means
that two phases in coexistence have, as usual, equal pressure p and equal
chemical potential µ, but have also equal κσ and equal βε, while η is differ-
ent. For a given βε and κσ, coexistence can be determined by calculating,
the Helmholtz free energy for many different η for the fluid, bcc, and fcc
phase and employing the common tangent construction.

5.3.3 Kofke integration method

In principle this could be repeated for every κσ to obtain a smooth coex-
istence line. However, this would be computationally very demanding and,
as it turns out, not even necessary. The reason for this is that once one
point on the coexistence line is known, the rest of the line can be calcu-
lated without performing additional free energy calculations. This can be
achieved by employing a numerical method first proposed by Kofke [10].
We are interested in calculating phase coexistence lines in the (η, κσ) plane
for a fixed βε. In this case, the Kofke’s method amounts to integrating

dp = − 〈βU ′/N〉1 − 〈βU ′/N〉2
〈V/Nσ3〉1 − 〈V/Nσ3〉2 d(κσ), (5.25)

(for the derivation see Ref. [11]) from a known starting point (p, κσ). Note
that the two phases in coexistence have the same p, βε and κσ but different
η. In Eq. (5.25), p = βPσ3 is the dimensionless pressure, 〈· · ·〉i denotes
ensemble average of the ith phase (i = 1, 2) and U ′ is the partial derivative
of the total potential energy with respect to κσ. In practice Eq. (5.25) is
integrated as follows. The differentials dp and d(κσ) are replaced by finite
differences ∆p and ∆(κσ). Starting from a known coexistence point with p
and κσ, Monte Carlo (MC) simulations [5] are performed for both phases in
the NPT -ensemble to calculate the ensemble averages in Eq. (5.25). This
gives us a prediction for the slope in the coexistence line in the (p, κσ)
plane. Changing κσ to κσ + ∆(κσ) we perform MC simulations for both
phases at pressure p + ∆p predicted by Eq. (5.25) and we calculate again
the ensemble averages in Eq. (5.25). Continuing in this manner gives us a
series of points {pj , (κσ)j} that lie on the coexistence line. At each point

-92-



5.4. SEDIMENTATION 5-13

the packing fractions of the two phases are determined using the ensemble
averages ηi = π

6 σ3N/〈V 〉i, obtained from the NPT -simulations.

5.3.4 Phase diagram

Using the methods described above, the phase behavior of hard-core Yukawa
particles is determined. The phase diagrams are calculated for fixed contact
values βε and they are given in the ( η, 1/κσ) representation. We calculate
the phase diagram for four contact values, βε = 8, 20, 39, and 81, and the
results are given in Fig. 12.4. In all the four phase diagrams the gray
areas bounded by the solid lines give the coexistence regions (tie lines are
horizontal), while the dashed lines give the point Yukawa phase boundaries
of Ref. [12]. In Fig. 12.5 we summarize the results from Figs. 12.4 by
plotting all the phase diagrams in one figure. We observe from Fig. 12.5
that the low 1/κσ triple point moves to lower η and higher 1/κσ with in-
creasing contact value βε. Another observation is that the region of stable
bcc phase broadens, mainly because the fluid-bcc coexistence line moves
to lower packing fractions, while the bcc-fcc coexistence line moves only
slightly to higher η and seems to saturate around η ' 0.5.

5.4 Sedimentation

Suspensions of colloidal particles are spatially inhomogenous in an external
field, e.g. gravity. The spatial inhomogeneity is characterized by a density
profile ρ(x, y, z). The potential energy of a particle in a gravitational field
at height z is given by V (z) = mBgz, where mB is the buoyant mass of
a particle, kBT the thermal energy, and g the acceleration due to gravity.
The buoyant mass of a spherical colloid with diameter σ is according to
Archimedes’ principle

mB = M − (πσ3/6)ρsolvent (5.26)

where M is the bare mass of the colloid and ρsolvent the mass density of
the solvent.

The gravitational length ξ = kBT/mBg can be tuned by changing g, e.g.
space shuttle experiments or centrifugation, of by changing the density of
the solvent (density-matching). The gravitational lengths in experiments
of hard spheres by Pusey and Van Megen are of order micrometers on
earth, and of order meters in space shuttle experiments by Zhu et al.. In a
gravitational field, a colloidal suspension experiences a competition between
minimal potential energy, which favors the particles to be at the bottom of
the container, and maximal entropy, i.e. a homogeneous distribution of the
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Figure 5.4: Phase diagram for a system in which the particles interact via a hard-
core repulsive Yukawa pair potential Eq.5.13 with βε = 8 (upper left), 20 (upper
right), 39 (bottom left), 80 (bottom right), presented in the (packing fraction η,
Debye screening length 1/κσ) plane. In charge-stabilized colloidal suspensions,
the lower part of the diagram (1/κσ = 0) is a high salt regime and the upper
part (1/κσ = 0.5) is a low salt regime. The solid lines are coexistence lines
obtained by using the Kofke integration and the gray areas denote the coexistence
regions. The tie lines are horizontal. We find a stable fluid phase at low η, a
stable face-centered-cubic (fcc) solid at high η, and in between, a stable body-
centered-cubic (bcc) solid. The dashed lines are the phase boundaries of the point
Yukawa particles by Hamaguchi, Farouki, and Dubin [12]. The squares mark the
starting points for the Kofke integration and the circles are checkup points for the
coexistence that were obtained using free energy calculations. (Phase diagrams
are from A.P. Hynninen and M. Dijkstra, Phys. Rev. E 68, 021407 (2003)).
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Figure 5.5: Phase diagrams of Fig. 12.4 plotted in one figure. The dashed line
gives the line of triple points predicted by the point Yukawa results of Hamaguchi,
Farouki, and Dubin [12], the diamonds highlight the triple points at βε = 8, 20, 39,
and 81, and the squares mark the position of the triple points used in our calcu-
lations.(Phase diagrams are from A.P. Hynninen and M. Dijkstra, Phys. Rev. E
68, 021407 (2003)).

particles. Macroscopically, the density profile ρ(z), which depends on only
the z-coordinate in a gravity field, obeys the hydrostatic equilibrium:

dP (z)
dz

= −mBgρ(z) (5.27)

The determination of density profiles of suspensions with vitreous spheres
allowed Jean Perrin in 1910 to measure Boltzmann’s constant and, hence,
Avogadro’s number. He was awarded the Nobel Prize in Physics in 1926
“for his work on the discontinuous structure of matter, and especially for
his discovery of sedimentation equilibrium”. Under isothermal conditions,
the pressure P depends only on the local density ρ(z), so that Eq. (5.27)
can be written as a nonlinear differential equation for ρ(z):

dρ(z)
dz

= −χT βmgρ(z) (5.28)

where χT = (∂βP/∂ρ)−1
T is the compressibility of the suspension at density

ρ. The integration constant is obtained from the normalization condition
∫ z=∞

z=0

ρ(z)dz = ns (5.29)

where ns = N/A is the number of particles per unit area. If the pressure
is known as a function of the density of the bulk fluid, direct integration of
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Eq. (5.27) between z = 0 and z = ∞ (where the pressure vanishes) and
use of the normalization condition gives the following implicit equation for
the wall-contact value ρ0 = ρ(z = 0) of the density profile

P (ρ0) = mBgns (5.30)

For a sufficiently dilute fluid, for which the ideal-gas equation of state βP =
ρ holds, Eq. (5.28) yields the well-known barometric height formula

ρ(z) = ρ0 exp(−z/ξ) (5.31)

where ρ0 = ns/ξ is the wall contact value of the density. On the other hand,
Equation 5.27 can be used to obtain the equation of state by integrating
a known density profile ρ(z). This route was followed by Piazza et al. to
obtain the equation of state of colloidal hard spheres from an experimentally
determined sedimentation profile.

5.5 Colloid-Polymer Mixtures

In this section we show that the addition of polymer can lead to effective
attractive interactions between the colloids. We consider a binary mixture
of colloids and polymers suspended in a solvent. The solvent is regarded
as a continuum inert medium that gives rise to effective interactions be-
tween the colloids and polymers. The colloids are treated as hard spheres
with diameter σc and the interpenetrable, non-interacting polymer coils
are treated as point particles but which are excluded from the colloids to
a centre-of-mass distance of (σc + σp)/2, where σp is the diameter of the
polymer coil. The pairwise potentials in this simple model are given by:

φcc(Rij) = ∞ for Rij < σc

= 0 otherwise

φcp(Ri − rj) = ∞ for |Ri − rj | < 1
2
(σc + σp) (5.32)

= 0 otherwise
φpp(rij) = 0

Here Ri and rj are the positions of the centres of the colloids and the
polymer coils, respectively, while Rij = |Ri −Rj | and rij = |ri − rj |.

We now determine the effective interactions between two colloids due to
the presence of the polymer. It is convenient to treat the polymer grand-
canonically as at phase coexistence the chemical potential of the polymer
should be equal in the coexisting phases. Fig. 5.6 shows two colloidal
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Figure 5.6: Two colloidal particles with diameter σc at distance Rij immersed
in a sea of ideal polymer with diameter σp and fugacity zp.

particles immersed in a ’sea’ of ideal polymers with a fugacity zp. When
the two colloids are close to each other, i.e. σc < Rij < (σc + σp), there is
an unbalanced force as no polymer coils are present between the colloids.
The unbalanced force is given by

F (Rij) = −
∫ θ=θ0

θ=0

∫ φ=2π

φ=0

P cos θA2 sin θdθdφ

= −πA2P

(
1− R2

ij

4A2

)
σc ≤ Rij ≤ σc + σp (5.33)

with

θ0 = arccos
(

Rij/2
A

)

A =
σc + σp

2
(5.34)

and P the pressure of the ’sea’ of ideal polymer, i.e. βP = zp = ρp.
It is worth noting that the unbalanced force is zero for colloid distances
Rij > σc + σp, while colloid distances Rij < σc are non-existent due to the
hard-sphere potential of the colloids. The unbalanced force gives rise to an
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Figure 5.7: The effective pairpotential (5.36) between two colloids due to the
presence of polymer in a mixture of colloid and polymers for size ratio q = σp/σc =
0.1 and 0.6 and varying polymer reservoir packing fraction.

effective attractive potential, which is called depletion potential

βφdep(Rij) = −
∫ R′ij=Rij

R′
ij

=σc+σp

βF (R′ij)dR′ij

= −4
3
zpπA3

[
1− 3

4
Rij

A
+

1
16

(
Rij

A

)3
]

for σc ≤ Rij ≤ σc + σp (5.35)

Fig. 5.7 shows examples of the effective pair interaction of two colloidal
hard spheres in a sea of ideal polymer. This effective pair interaction con-
sists of the hard-sphere repulsion between the colloids themselves and the
depletion potential due to the presence of the polymer:

βφeff(Rij) = βφcc(Rij) + βφdep(Rij) (5.36)

Note that the range of the attraction becomes longer-ranged when the size
ratio q = σp/σc is larger and the well-depth becomes deeper upon increas-
ing the polymer fugacities, while the temperature is irrelevant. In these
systems, the polymer fugacity or packing fraction of the polymer in the
reservoir ηr

p ≡ πσ3
pzp/6 with which the system of interest is in contact

plays the role of temperature. It is therefore convenient to represent the
phase diagram of colloid-polymer mixtures in the ηr

p − ηc plane, instead of
the T − ρ plane.

We can now use the effective pair interaction (5.36) in a Van der Waals
theory using Eqs. (3.75) and (3.76). It is straightforward to derive the Van
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der Waals parameters

a =
8π2zp

3

(
A6

3
− σ3

cA3

3
+

3σ4
cA2

16
− σ6

c

96

)

b =
2πσ3

c

3
(5.37)

Using Eq. (3.68), we find that the critical point is located at

η∗c =
πσ3

cρ∗c
6

=
1
12

ηr∗
p =

πσ3
pz∗p
6

=
27σ3

pσ3
c

64A6 − 64σ3
cA3 + 36σ4

cA2 − 2σ6
c

(5.38)

and this explains qualitatively a demixing transition in a phase, which is
dilute in colloids and a phase, which is dense in colloids upon addition of
polymer.

In Fig. 5.8, we show ‘exact’ results for the phase behaviour of colloid-
polymer mixtures obtained from simulations in the ηc−ηr

p representation for
varying size ratios q = σp/σp using the effective pair potential of Eq. 5.36.
For all q, we find at ηr

p = 0, i.e. no polymer, the freezing transition of pure
hard spheres. However, when we add more and more polymer, we find for
q ' 0.6 a phase separation into a phase which is dilute in colloids and a
phase which is dense in colloids, i.e. colloidal gas-liquid phase transition.
For q ≤ 0.4, the colloids interact with a short-ranged effective attraction.
We do find a colloidal gas-liquid transition, but this transition is metastable
with respect to a very broad freezing transition.

5.6 Binary hard sphere mixtures

In the case of mixtures of large and small steric stabilised colloidal particles,
the system can be regarded as a binary hard-sphere mixture. In the last
decade, it was found that binary hard-sphere mixtures show extremely rich
phase behaviour. Spindle, azeotropic, and eutectic type of phase diagrams
and complex crystalline superlattice structures are found in theory, simu-
lation, and experiments, when the size ratio q ≡ σ2/σ1 > 0.4. Published
work in this size ratio regime is reviewed in Ref. [13]. The diameters of the
large and small spheres are, respectively, σ1 and σ2. When the size ratio
is more asymmetric, the addition of the second component leads to the so-
called depletion effect. Understanding the structure and phase equilibria of
very asymmetric binary hard-sphere mixtures is a long-standing problem
in liquid state physics. These idealized systems provide a natural reference
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Figure 5.8: Phase diagram of colloid-polymer mixtures with size ratios q =
σp/σc = 0.1 (upper left) q = 0.4 (upper right), q = 0.6 (bottom left), and q = 0.8
(bottom right) as a function of the colloid packing fraction ηc and the ideal
polymer coil reservoir packing fraction ηr

p as obtained from simulations using the
effective pair potential. F and S denote the stable fluid and solid (fcc) phase.
F+S, F+F , and S+S denote, respectively, the stable fluid-solid, the (meta)stable
fluid-fluid and the metastable solid-solid coexistence region. (M. Dijkstra, J.M.
Brader, and R. Evans, J. Phys.: Cond. Matt. 11, 10079 (1999).
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system for determining the properties of more realistic models of mixtures
of simple (atomic) fluids, of colloids and polymers, and of other colloidal
systems. A contentious issue, which attracts much attention, is whether
fluid-fluid phase separation occurs in this model system. A classic study
of Lebowitz and Rowlinson, based on the Percus- Yevick approximation,
showed that hard spheres mix at all state points, for any ratio of diameters
[14]. In 1991, improved integral equation studies by Biben and Hansen
provided evidence for a spinodal instability when q < 0.2 [15]. The main
reason for the subsequent interest resides in the fact that any mechanism
for a demixing transition in hardsphere systems must be purely entropic.
In Ref. [15] the depletion effect was identified as the mechanism behind the
possible instability. The weakness of the integral equation theories lies in
the sensitivity of the existence and location of the spinodal instability to
fine details of the theory. Moreover, experimental work on colloidal systems
indicates that any demixing is strongly coupled to the freezing transition,
whereas these theories are not designed to deal with solid phases. Direct
simulations of highly asymmetric binary mixtures are prohibited by slow
equilibration when the packing fraction of the small spheres becomes sub-
stantial.

Therefore, a different strategy is often followed, in which advantage is
taken of the large size asymmetry. In this approach the binary mixture
is formally mapped onto an effective one-component system by integrating
out the degrees of freedom of the small species in the partition function. An
effective Hamiltonian is then obtained for the larger ones, which consists of
zero-body, one-body, two-body and higher-body interactions. The effective
two-body interactions or depletion potentials have been calculated within
hypernetted-chain-based approximations, in simulations, using a virial ex-
pansion, integral equation theory, and density functional theory. Depletion
potentials have also been measured experimentally. Using this approach
and ignoring three-body and higher-body interactions, simulations show
the existence of a fluid-fluid demixing transition for size ratios of 1:10 or
more extreme. However, this fluid-fluid transition is metastable with re-
spect to the fluid-solid transition that turns out to occur at strikingly low
values of the packing fraction of the large spheres. More surprisingly, also
an isostructural solid-solid transition at high packing fractions of the large
spheres is found. This transition becomes stable for a size ratio q < 0.05.
Good agreement is found with direct simulations of the true binary hard-
sphere mixture, thereby justifying the depletion potential picture.
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Figure 5.9: Phase diagram of binary hard-sphere mixtures with size ratios (a)
q = 0.2, (b) q = 0.1, and (c) q = 0.05 as a function of the large-sphere packing
fraction η1 and the small-sphere reservoir packing fraction ηr

2 . F and S denote
the stable fluid and solid (fcc) phase. F+S, F+F, and S+S denote, respectively,
the stable fluid-solid, the metastable fluid-fluid, and the (meta)stable solid-solid
coexistence regions. The solid and dashed lines are the effective one-component
results; the squares and the asterisks (joined by lines to guide the eye) denote,
respectively, the fluid-solid and the solid-solid transition obtained from direct
simulations of the true binary mixture.(M. Dijkstra, R. van Roij, and R. Evans,
Phys. Rev. E 59, 5744 (1999).
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Chapter 1

Interfaces & adsorption

1.1 Thermodynamic description of interfaces

Consider two bulk phases α and β, that are separated by an interface. The bulk
phases may be a simple liquid coexisting with a gas phase, but may also be im-
miscible liquids such as oil and water. Atoms or molecules that are close to the
interface will experience interactions with their surrounding that is different from
the situation in the bulk-phases. The resulting excess (free) energy per unit area at
the interface is referred to as the interfacial tension γ. Hence, we have to account for
an additional work term in the thermodynamic description of a two-phase system.
In order to increase the surface area σ between the two phases by dσ, we have to
add γ of (free) energy per unit area. The reversible work therefore reads

dwinterface = γdσ. (1.1)

Comparison with the general expression for reversibele work, dwrev = Fdx (‘work
equals force times distance’), reveals that interfacial tension also is a force per unit
length.

a

b

s

Figure 1.1: Two bulk phases α and β are separated by an interface σ.

Using Eq. 1.1, the change of the Helmholtz free energy of the total system can
be written as

dA = −SdT − PdV +
∑

i

μidNi + γdσ. (1.2)

The change of the Helmholtz free energy of either bulk phases b = α, β can be
written in its common form

2
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(b)

(a)

b

a

Figure 1.2: The number of attractive interactions is larger in bulk (a) than at the interface (b).

dAb = −SbdT − PdV b +
∑

i

μidN b
i , (1.3)

where Sb is the entropy of the respective bulk phases, V b the volume of the
phases, and N b

i the number of particles of species i in the two phases. In thermal
(equal temperatures T ), mechanical (equal bulk pressures P ), and chemical (equal
chemical potentials μi) equilibrium of both bulk phases α and β, the change of the
Helmholtz free energy of the interface follows from Eq. 1.2 and Eq. 1.3 as

dAσ = dA − dAα − dAβ = −SσdT +
∑

i

μidNσ
i + γdσ. (1.4)

Here Sσ is the interfacial entropy and Nσ
i the total number of particles of species

i at the interface. We have made use of the fact that Helmholtz free energy and the
volume are extensive state variables, that is

A = Aα + Aβ + Aσ, V = V α + V β. (1.5)

Consequently, in this thermodynamic descriprion the interface has no volume but
has to be considered as a (mathematical) plane. This can also be seen from com-
parison of the expression of the Helmholtz free energy of the bulk phases, Eq. 1.3,
to that of the interface, Eq. 1.4. The interfacial work, Eq. 1.1, is a two-dimensional
analogue of the volume work, dwvolume = −PdV b, in either of the bulk phases.

1.2 Molecular origin of the interfacial tension

Let us consider how the interactions change when transferring a particle from the
bulk (a) to the interface (b) in order to provide an estimate of the order of magnitude
of the interfacial tension. Since the interactions in bulk are more attractive than
at the interface, as shown schematically in Fig 1.2, there is a (free) energy penalty
for such a move. To bring a molecule from (a) to (b) we have to perform work
against an attractive internal pressure, Patt, over a distance d, being typically on
the order of a molecular size. The work to increase the interface per unit area
roughly amounts to

γ ∼ −Pattd (1.6)

We assume that the pressure is given by the van der Waals equation of state.
This equation provides two corrections to the ideal gas law. The first one is an

3
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repulsion
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w(r)

d

attraction

�

Figure 1.3: The total molecular interaction as a function of distance according to van der Waals.
Up to the hard-sphere diameter d the repulsion is infinte, after that the attraction goes as w(r) =
−ε
(

d
r

)6

excluded volume term, b, and the second correction is due to particles experiencing
an average attractive interaction, a, with surrounding particles.

PVdW = Phs + Patt =
NkBT

V − Nb
− a

(
N

V

)2

, (1.7)

where N is the number of particles, kB Boltzmann’s constant and

a = −1

2

∫ ∞

d

w(r)4πr2dr. (1.8)

The intermolecular potential w(r) has an infinite repulsion up to the hard-sphere
diameter d, i.e., as long as r ≤ d, w(r) = ∞ . If r > d, the intermolecular

potential w(r) = −ε
(

d
r

)6
, where ε is the value of w(r) at closest approach, shown

schematically in Fig 1.3.
From the van der Waals expression for the attractive pressure of Eq. 1.7, we find

as an estimate for the interfacial tension, using Eq. 1.6 and Eq. 1.8 with w(r) =

−ε
(

d
r

)6
,

γ ∼ a

(
N

V

)2

d ∼ εd3

(
1

d3

)2

d =
ε

d2
. (1.9)

This result can be interpreted as follows. By moving a molecule from bulk to
the interface, approximately d2 interfacial area is created for each intermolecular
contact with energy ε that is lost in the bulk. The required (free) energy to create
interface is therefore roughly γ ∼ ε/d2. Substitution of experimentally obtained ε
and d yields an estimate for the interfacial tension of 10 - 100 mN/m that is typical
for simple liquids.

4
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Example: interfacial tension of liquid Argon with its vapour

It follows from the Lennard-Jones potential of Argon that ε = 1.71 · 10−21 J, d =
0.342 nm. Substitution in Eq. 1.9 gives as an estimate for the interfacial tension:

γ ≈ 1.65 · 10−21

(0.34 · 10−9)2 = 14.6
mN

m

The value at the melting point of Argon at 1 atm (Tm = 83,78 K) experimentally
observed is γm = 13.4 mN/m. The estimate and the experimental values for the
interfacial tension at the melting point, γm, for some other substances are given
below .

ε/kB d ε/d2 γm Tm

[K] [nm] [mN/m] [mN/m] [K]
Argon Ar 124 0.342 14.6 13.4 83.78
Benzene C6H6 440 0.527 21.9 30.7 278.6
Bromine Br2 520 0.427 39.4 46.1 265.8
Helium He2 10.2 0.258 2.1 0.36 0.8
Nitrogen N2 91.5 0.368 9.3 12.1 63.29
Tetra CCl4 327 0.588 13.1 32.1 250.2
Hydrogen H2 33.3 0.297 5.2 3.0 14.01
Xenon Xe 229 0.406 19.2 19.0 161.2
Oxygen O2 113 0.343 13.3 21.8 54.8

Table 1.1: The interfacial tension of some liquids with their vapour (γLG) and water (γSL) at
20◦C in mN/m.

γLG γSL γLG γSL

acetone 23.7 - hexane 18.4 51.1
benzene 28.9 35.0 hexanol 24.8 6.8
cyclohexane 25 51 mercury 458 375
cyclohexanol 32 4 octane 21.8 50.8
ethanol 22.3 - octanol 27.5 8.5
ethylether 17.01 10.7 tetra 26.8 45.1

water 72.8 -

1.3 Position of the Gibbs dividing plane

In Section 1.1 we considered a two-phase system as two bulk volumes separated by
a mathematical plane. In reality, however, there will be a smooth transition from
concentrations cα

i in one bulk phase to concentrations cβ
i in the other. A possible

concentration profile is given in Fig. 1.4. We now have todefine a mathematical
plane separating the bulk phases. Bulk properties (such as concentrations) are ex-
trapolated up to this chosen plane. In this way we assign an excess amount or dificit
to the respective bulk phases. For instance, by extrapolating the concentration cα

1

5
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Figure 1.4: The concentration c1 smoothly changes through the system. The Gibbs plane is
assigned where there is no net adsorption at the interface of solvent ‘1’; the hatched areas are
equal.

in Fig. 1.4 up to a certain plane, we assign the hatched area on the left as a surplus
to phase α. Analogously, we endow phase β the right hatched area too little. The
net excess at the interface is:

Nσ
i = Ni −

(
V αcα

i + V βcβ
i

)
. (1.10)

The excess amounts of all components at the interface are established once a
plane has been chosen and by that the volumes V α and V β are defined. A reasonable
choice for the position of the interface is where the excess amount of the solvent
vanishes. That is, denoting the solvent as ‘1’, where Nσ

1 = 0. Consequently, from
Fig. 1.10 it follows that V α and V β are given by:

N1 = V αcα
i + V βcβ

i = Nα
1 + Nβ

1 .

This position where there is no excess amount of solvent is the so-called Gibbs
dividing plane. 1 The Gibbs dividing plane is graphically found where the hatched
areas in Fig. 1.4 equal.

Using this choice for the position of the interface the adsorbed amounts Nσ
i of the

components i = 2, 3, . . . are found from Eq. 1.10. This can also be done graphically,
as shown by the hatched areas in Fig. 1.5. If component i accumulates at the
interface, positive adsorption is found, i.e. Nσ

i > 0. If a component prefers to reside
in the solvent and depletes from the interface, we will have that Nσ

i < 0. This is
referred to as negative adsorption.

1.4 Van der Waals theory of interfaces

The spatial dependence of the density profile between a gas and a liquid phase of
a single component has first been described by Van der Waals2, although its full
impact has been acknowledged by Cahn and Hilliard only 65 year later3 for the
interface in a phase-separated binary system. Below the critical temperature the

1First published in On the Equilibrium of Heterogeneous Substances, the basis of modern physiscal chemistry,
in: J.W. Gibbs, Trans Conn Acad III, 108–248 (1876), 343–524 (1878). Reprint in The Scientific Papers, Vol. 1
(OxBow Press, Woodbridge, 1993)

2J.D. van der Waals, Verh K Ned Akad Wet Afd Natuurk 1, 8 (1893)
3J.W. Cahn en J.E. Hilliard, J Chem Phys 28, 258 (1958)
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Figure 1.5: The concentration ci changes smoothly through the system. By extrapolation of
the bulk concentrations up to the Gibbs dividing plane, excess amounts of components i can be
determined from the hatched areas. Thus we may find (a) positive adsorption (nσ

i > 0) and (b)
negative adsorption (nσ

i < 0).

Helmholtz free energy per unit volume, A/V = −P (ρ, T )+μ(ρ, T )ρ, displays a loop
as a function of density ρ ≡ N/V . At a given temperature, the loop has a common
tangent that connects two of its points. Thermodynamically this implies that these
two point possess one common pressure (the intercept) and a common chemical
potential (the slope), as indicated in Fig. 1.6a. That is, there is an equilibrium
between a phase of a low density (ρg; gas) with a phase of a high density (ρl;
liquid).

W

�
�

g
�

l

0

�

A/V

W(�)

�
g

�
l

-P
ev

�
ev

(a) (b)

Figure 1.6: (a) The solid curve displays the Helmholtz free energy per unit volume as a function
of density. From a common tangent (dashed line) the equilibrium between a gas (ρg) and a liquid
(ρl) phase is found. The enclosed grey area is a measure of the interfacial tension. (b) The full
curve is given by the difference W (ρ) between the Helmholtz free-energy curve and the common
tangent as a function of density. The dashed line follows from the model expression, Eq. 1.15.

As indicated in Fig. 1.6a, free energy per unit volume equal to W (ρ) is gained
when a system of density ρg < ρ < ρl separates into a gas and liquid with densities
ρg and ρl, respectively. An example of such a free energy gain at a given density is
denoted by an arrow in Fig. 1.6a. The gain as a function of the density is given in
Fig. 1.6b by the solid line.
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The above is still bulk thermodynamics. Let us now pass through the interface
between the gas and liquid phase. On every point z in the interface we have a
local density ρ(z). The local extra free energy density Ψ(z) of that piece of the
interface is not only given by the bulk term, W [ρ(z)], but must also account for
the inhomogeneity of the interface. Van der Waals did so by including a squared
gradient term of the density

Ψ(z) = W [ρ(z)] +
1

2
m

(
dρ(z)

dz

)2

. (1.11)

The density ρ(z), in a mechanical analogue, can be considered as ‘position’ and
the point z as ‘time’. Hence, the additional squared gradient term can be seen as
a ‘kinetic energy’ required to pass through the interface. In this analogue W is the
potential energy. A more formal derivation of the squared gradient term is possible
starting from the contribution of a single molecule to the internal energy. Note that
we applied a mean-field approximation since no correlations between the particles
have been accounted for in Eq. 1.11.

We have shown in section 1.3 that the Gibbs dividing plane is an obvious choice
for the interface in a one-component system, i.e., Nσ

i = 0. It then follows from
Eq. 1.4 that the total Helmholtz free energy of the interface is given by Aσ = γσ.
However, it may also be found by integrating the excess free enery density over
space: Aσ =

∫
Ψ(r)d3r. It is readily seen that

γ =

∫ ∞

−∞
Ψ(z)dz =

∫ ∞

−∞
W [ρ(z)] +

1

2
m

(
dρ(z)

dz

)2

dz. (1.12)

The grey area in Fig. 1.6a is therefore a measure for the interfacial tension.
The equilibrium situation is where the Helmholtz free energy, and by that the

interfacial work, is minimal. Hence, the equilibrium density profile ρ(z) is the profile
in Ψ(z), Eq. 1.11, that minimizes the integral of Eq. 1.12. To calculate that profile,
we consider how the interfacial tension responds to a small perturbation δρ(z) to
the profile ρ(z)

δγ =

∫ ∞

−∞
W [ρ + δρ] +

1

2
m

(
d

dz
(ρ + δρ)

)2

dz −
∫ ∞

−∞
W [ρ] +

1

2
m

(
dρ

dz

)2

dz.

We dropped the explicit z-dependence of the density for convenience.
Considering W [ρ] as a function of ρ rather than a functional, series expansion of

W [ρ + δρ] up to second order in δρ yields

δγ =

∫ ∞

−∞

{(
dW

dρ

)
δρ + m

(
dρ

dz

)(
dδρ

dz

)
+ O(δρ2)

}
dz.

The second term in the integral can be rewritten by integration by parts as∫ ∞

−∞

d

dz

((
dρ

dz

)
δρ

)
dz =

(
dρ

dz

)
δρ

∣∣∣∣
∞

−∞
= 0

=

∫ ∞

−∞

(
d2ρ

dz2

)
δρdz +

∫ ∞

−∞

(
dρ

dz

)(
dδρ

dz

)
dz,
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where we used the fact that the profile levels off in both phases (after all ρ(z) = ρl

and ρ(z) = ρg for z → ±∞), i.e. dρ/dz = 0. Substitution into the variance of the
interfacial tension gives

δγ ≈
∫ ∞

−∞

{(
dW

dρ

)
− m

(
d2ρ

dz2

)}
δρdz ≡

∫ ∞

−∞

(
δγ[ρ]

δρ

)
δρdz.

Here we introduced the functional derivative of the interfacial tension, (δγ[ρ]/δρ).
We are looking for the profile that minimizes the interfacial tension, i.e., the profile
with the property that the first (functional) derivative vanishes. Hence, the density
profile is found from the condition(

dW

dρ

)
= m

(
d2ρ

dz2

)
. (1.13)

The mechanical analogue of this Eq. is Newton’s law stating that the force equals
the derivative of the potential with respect to position.

Multiplying both sides of Eq. 1.13 by the density gradient yields(
dW

dρ

)(
dρ

dz

)
= m

(
d2ρ

dz2

)(
dρ

dz

)
⇔
(

dW

dz

)
=

1

2
m

d

dz

(
dρ

dz

)2

.

Since this is generally valid, the arguments of the differential operators must be
equal. Alternatively, intergrating using W [ρl] = W [ρg] =

(
dρ
dz

)
z→−∞ =

(
dρ
dz

)
z→∞ = 0

gives

W =
1

2
m

(
dρ

dz

)2

. (1.14)

Hence, the equilibrium profile is found when the ‘potential energy’ balances the de
‘kinetic energy’.

An explicit density profile can only be obtained from the differential equation
Eq. 1.14 if W is known. In general, the free energy density must display a loop below
the critical temperature, as illustrated in Fig. 1.6a. The distance to the common
tangent W vanishes by definition at the extremes ρg and ρl. A minimum should
always be present in between, as demonstrated by the solid line in Fig. 1.6b. To a
good approximation, W will be a fourth order polynomial around the equilibrium
densities

W (ρ) =
1

4
B (ρl − ρ)2 (ρ − ρg)

2 . (1.15)

The constant B determines the depth of the loop. The dashed line in Fig. 1.6b
shows that this is indeed a fair approximation to W . Upon approaching the critical
point B decreases and so does ρl − ρg.

Substitution of Eq. 1.15 into the equilibrium condition, Eq. 1.14, yields

dρ

dz
=

√
B

2m
(ρl − ρ) (ρ − ρg) .

Introducing the profile thickness ξ (verify this has the units of length)
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ξ ≡
√

2m

B

1

ρl − ρg
, (1.16)

we find after separation of variables

1

(ρl − ρ) (ρ − ρg)
dρ =

1

ξ (ρl − ρg)
dz.

integration gives
1

(ρl − ρg)
ln

ρ − ρg

ρl − ρ
=

z

ξ

1

(ρl − ρg)
+ C.

The integration constant C is found from symmetry considerations. At the Gibbs
dividing plane (z = 0) we are exactly in between both phases, i.e., ρ = (ρl + ρg) /2.
This boundary condition yields C = 0 and therefore

ln
ρ − ρg

ρl − ρ
=

z

ξ
. (1.17)

From Eq. 1.17 we know the position as a function of the density. Inverting this
Eq. gives

ρ =
ρle

z/ξ + ρg

1 + ez/ξ
.

Although the density is now known as a function of position, it is instructive to
rewrite the equation. To that end, we multiply both numerator and denominator
by e−z/2ξ to obtain

ρ =
ρle

z/2ξ + ρge
−z/2ξ

e−z/2ξ + ez/2ξ
=

1
2
(ρl + ρg)

(
ez/2ξ + e−z/2ξ

)
+ 1

2
(ρl − ρg)

(
ez/2ξ − e−z/2ξ

)
ez/2ξ + e−z/2ξ

.

The density at the interface (z = 0) is immediately recovered. Using tanh x ≡
(ex − e−x)/(ex + e−x), we finally arrive at

ρ(z) =
1

2
(ρl + ρg) +

1

2
(ρl − ρg) tanh

(
z

2ξ

)
. (1.18)

This is the famous van der Waals density-profile for two coexisting phases, where
ξ is a measure for the profile thickness. Far from the critical point the profile
thickness is typically on the order of a molecular diameter and may be determined
experimentally from ellipsometry. In the vicinity of the critical point the density
difference between gas and liquid becomes increasingly smaller and the free energy
loop flattens (ρl − ρg and B decrease). Hence, from Eq. 1.16 it follows that the
profile thickness increases and eventually diverges. A typical density profile is given
in Fig 1.7 for the system of Fig. 1.6.

1.5 Gibbs adsorption equation

In order to derive the Gibbs adsorption equation, we consider an infinitesimal change
in the excess internal energy dUσ,
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Figure 1.7: The van der Waals density-profiel ρ(z) from Eq. 1.18 for inhomogeneous systems, e.g.,
a gas and a liquid. The profile thickness is determined by ξ from Eq. 1.16.

dUσ = γdσ + TdSσ +
∑

i

μidNσ
i . (1.19)

We may also write Eq. 1.19 as

dU =

(
∂U

∂S

)
σ,{Ni}

dS +

(
∂U

∂σ

)
S,{Ni}

dσ +
∑

i

(
∂U

∂Ni

)
S,σ,{Nj �=i}

dNi. (1.20)

Where we dropped the superscripts σ for convenience. The Euler theorem for
homogeneous functions of the first degree reads

f(x1, x2, ..., xn) =

n∑
i=1

(
∂f

∂xi

)
{xj �=i}

xi, (1.21)

so it must be that U = TS + γσ +
∑

i μiNi, and

dU = TdS + SdT + γdσ + σdγ +
∑

i

μidNi +
∑

i

Nidμi. (1.22)

Comparing Eqs. 1.20 and 1.19 to Eq. 1.22 and putting the superscripts σ back where
appropriate leads to the Gibbs-Duhem equation for the surface

SσdT + σdγ +
∑

i

Nσ
i dμi = 0 (1.23)

By choosing the interface at the Gibbs dividing plane of the solvent (Nσ
1 = 0), we

may write Eq. 1.23 as

(dγ)T = −
∑
i>1

Γ
(1)
i dμi. (1.24)
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Figure 1.8: The measured interfacial tension of a water surface changes with (the logarithm of)
the concentration of alifatic alcohols A, B, C, D en E. The adsorption density can be determined
from the slope.

This is the Gibbs adsorption-equation4, where we implicitly defined the adsorption
density of component i as

Γ
(1)
i ≡ Nσ

i

σ
= −

(
∂γ

∂μi

)
T,μj �=i

. (1.25)

The superscript (1) indicates that the adsorption density is determined relative to
the Gibbs dividing plane defined by a vanishing adsorption density of component (1).
The last term in Eq. 1.25 is found from the total differential Eq. 1.24. According to
Eq. 1.25 the interfacial tension will decrease upon positive adsorption of component

i (Γ
(1)
i > 0). In the case of negative adsorption (Γ

(1)
i < 0) the interfacial tension

will increase.
For dilute ideal mixtures we may write for the dissolved component

μ2 = μ0
2 + RT ln c2.

Substitution into Eq. 1.25 yields(
∂γ

∂ ln c2

)
T

= −RTΓ
(1)
2 (1.26)

From this equation the adsorption density can be determined experimentally. This
is demonstrated in Fig. 1.8 for the measured interfacial tension of five different
alifatic alcohols on water against (the logarithm of) the concentration. For very low
concentrations the interfacial tension is equal to that of pure water γ0 = 72.8 mN/m.

For dilute systems the adsorption density will be proportional to the concentra-
tion of dissolved material

4J.W. Gibbs, Trans Conn Acad III, 108–248 (1876), 343–524 (1878)
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Figure 1.9: The positively adsorbed molecules lower the interfacial tension γ as compared to that
of the pure solvent, γ0. Consequently, a surface pressure Π = γ0 − γ acts on the movable barrier.

Γ
(1)
2 = Bc2. (1.27)

Substitution into Eq. 1.26 gives(
∂γ

∂c2

)
T

= −RTB.

Integration from zero adsorption (c2 = 0, γ = γ0) to finite adsorption leads to

γ − γ0 = −RTBc2 = −RTΓ
(1)
2 = −RT

Nσ
2

σ
. (1.28)

This eq. is the two-dimensional analogue of the ideal gas law P = RT
n

V
. Here

Π ≡ γ0 − γ is the surface pressure: the force per unit length, due to the adsorbed
molecules, that act on a barrier. This is shown schematically in Fig. 1.9.

For higher concentrations the adsorption density will no longer be proportional to
c2, as can be seen in Fig. 1.8. Higher adsorption densities often obey the Langmuir
adsorption equation

Γ
(1)
2 = Γm

Kc2

1 + Kc2
, (1.29)

where Γm is the maximal adsorption density at the surface and KΓm = B the pro-
portionality constant of Eq. 1.27. Upon substitution in Eq. 1.26 and integration
from (c2 = 0, γ = γ0) to (c2, γ), the surface pressure now reads

γ0 − γ = RTΓm ln(1 + Kc2) (1.30)

This equation was found empirically by Von Szyszkowski in 1908. Using the Lang-
muir adsorption equation, Eq. 1.29, this can be rewritten as

γ0 − γ = −RTΓm ln

(
1 − Γ

(1)
2

Γm

)
(1.31)
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This is the so-called Frumkin equation. The maximum adsorbtion density can
be found by measuring the surface tension as a function of concentration of the
dissolved material using the above equations.

Note that for low concentrations (Γ 	 Γm) series expansion gives ln

(
1 − Γ

(1)
2

Γm

)
≈

−Γ
(1)
2

Γm
. Substitution in the Frumkin equation, Eq. 1.31, recovers the two-dimensional

equivalent of the ideal gas law, Eq. 1.28.

1.6 Problems

1. Consider an intermolecular potential of the form w(r) = −ε
(

d
r

)n
. Show that for

n > 3, we always have γ ∼ ε
d2 . What happens if n ≤ 3?

2. Show that for a bulk, one-component system the Gibbs-Duhem relation reads
SdT − V dp + Ndμ = 0, and that (dp)T = ρ(dμ)T , with ρ = N/V .

3. Measuring the interfacial tensions at 20◦C of a series of aqueous solutions of
a surface-active agent A yields the following results

[A] [mol/dm3] 0 0.10 0.20 0.30 0.40 0.50
γ [mN/m] 72.8 70.2 67.7 65.1 62.5 59.5

a. Determine the adsorption density and surface pressure of the surface active agent
at the given concentrations.
b. Does the two-dimensional equivalent of the ideal gas law apply to the data?

4. Derive the Langmuir adsorption equation, Eq. 1.29 from equilibrium consid-
erations. To that end, note that the adsorption of (initially) dissolved molecules
B at the surface of a solvent A can be considered as an exchange equilibrium, rep-
resented as Aads + Bdis � Adis + Bads, and that the equilibrium constant for this
‘reaction’ can be written as

K =
Nσ

B

Nσ
AcB

=
ΓB

ΓAcB

. (1.32)

Further, consider a maximum adsorption density, i.e., if every position at the inter-
face is taken by either a solvent molecule A or a dissolved molecule B, the total or
maximum adsorption density reads

Γm = ΓA + ΓB. (1.33)

What are the assumptions / approximations made?

5. A simple way of looking at so-called hydrophobic interactions is by considering
objects with hydrophobic surfaces that float around in water. The surface tension
between the objects and water is γ.
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a. Prove that if two of these objects stick, the gain in free energy will be w ≈
−2γσoverlap. Here, σoverlap is the contact area between the objects, i.e., the surface
area shielded from water.

b. It is often found that the strength of the hydrophobic interactions increases with
temperature, i.e., w gets more negative upon increasing temperature. Assuming
that σoverlap is independent of temperature, identify the thermodynamic property of
the surface that is responsible for this remarkable temperature dependence. Hint:
expand γ around a reference temperature.
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Chapter 2

Surfactants and Micelles

2.1 Introduction: surfactants

An important type of molecules that adsorb positively at (water-air or water - oil)
interfaces are so-called surface-active agents or briefly surfactants. The common
characteristic of these materials is that their molecules consist of a polar ‘head’
(hydrophilic part) and a hydrocarbon ‘tail’ (hydrophobic part), as schematically
depicted in Fig. 2.1. The amphipolar nature of surfactants makes them adsorb
positively at relatively low surfactant concentrations.

head tail

Figure 2.1: The common characteristic of surface active agents, or briefly surfactants, is that they
consist of a polar ‘head’ and a hydrocarbon ‘tail’.

Depending on their chemical structure and properties of the head group, a sur-
factant is called anionic, cationic, amphoteric, or non-ionic.

Classical ’soaps’ are a well-known example of anionic surfactants. These soaps
are usually sodium or potassium salts of fatty acids (carboxylates) with a chain
length of typically 10 to 20 hydrocarbon groups; RCOO−M+, for instance sodium
lauraat, C11H23COO−Na+. With increasing tail length, the solubility in water
decreases and hence the surface activity increases.

In the case of cationic surfactants, the soap is a cation, i.e., the headgroup
is positively charged. Examples are tetra- alkyl ammonium salts such as cetyl-
trimethyl ammonium bromide (CETAB).

Surfactants containing head groups that have both positive and negative sites are
referred to as amphoteric. These surfactants are well-miscible with all other type
surfactants and less antagonizing for skin and eyes. Therefore they are frequently
encountered in cosmetics. Typical examples are the betaines.

The remaining approximately 21% of the total of surfactants are comprised by
non-ionic surfactants. The head group of this type does not contain charges but
has a propensity to forming hydrogen bonds. They are well-miscible with all other
types of surfactants.

16

-121-



An important class of non-ionic surfactants are the poly(glycol ethers), R −
O(C2H4O)nH , or CmEn. The hydrocarbon tail R is usually linear and is abbrevi-
ated as Cm. De ethylene oxide head-group is frequently denoted as En. For small
head-groups (n = 1− 6) these surfactants are frequently applied as oil/water emul-
sifiers. Intermediate ethylene oxide head-group (n = 6−15) are found in detergents,
whereas large head-groups (n > 15) in special emulsifiers.

Positive adsorption at interfaces decreases the interfacial tension as dictated by
the Gibbs adsorption equation. However, beyond a certain surfactant concentration,
the critical micelle concentration (cmc), the interfacial tension remains more or less
constant. The situation has been shown schematically in Fig. 2.2.

A

B

C

�

�
0

ln c
c.m.c.

micel

Figure 2.2: Charactistic change of the interfacial tension as a function of surfactant concentration.
The dashed vertical line indicates the critical micelle concentration, cmc.

2.2 Micelles: The critical micelle concentration (cmc)

In this treatment I will follow Debye, [1]. Forming a micelle containing n surfactant
monomers can be described as the equilibrium

nA � An (2.1)

In the above equilibrium, A stands for surfactant monomers and An for a sur-
factant aggregate (micelle) containing n surfactant molecules. Typically the value
of n is 50-100 for spherical micelles. Now Debye’s arguing goes as follows. Define
the equilibrium constant as

K =
xn

xn
1

(2.2)

where x1 is the concentration (molefraction) surfactant monomers, and xn the
concentration (molefraction) micelles. In general the dimension of the equilibrium
constant as defined by eq. 2.2 is concentration(1−n). We use this dimensional argu-
ment to define the concentration

x0 = K
1

1−n (2.3)
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Figure 2.3: Iterative solution of Eq. 2.5. The surfactant concentration y1 and the micelle concen-
tration nyn with n = 65 as a function of the total surfactant concentration, y, in the system, in
reduced units. Below the c.m.c. (y = 1) micelles are barely present, whereas above the c.m.c.
the monomer concentration is virtually constant. The dashed lines represent the limiting case for
n → ∞, given by Eq. 2.6

Now the total concentration of surfactant molecules in the system is the sum of
monomeric surfactant molecules, and surfactant molecules in the form of micelles.
In other words, the total surfactant concentration, x, follows by mass conservation

x = x1 + nxn (2.4)

Writing xn = xn
1K = xn

1/xn−1
0 , and defining the reduced concentrations y = x/x0,

y1 = x1/x0, and yn = xn/x0 eq. 2.4 becomes

y = y1 + nyn
1 (2.5)

with the typical values of n ∼ 50 − 100, Eq. 2.5 can only be solved iteratively.
It can be verified from eq. 2.5, that with typical values of n stated above, we have

y1

{
= y, if y < 1;

≈ 1, if y > 1.
, (2.6)

The results of a numerical calculation using n = 65 has been shown in Fig. 2.3.
The crossover from the behaviors described by eq. 2.6 occurs around y=1, as

can be seen in Fig. 2.3. The value of y=1, therefore, corresponds to a critical
point. y = 1 implies that x = x0. Therefore, x0 is defined as the critical micelle
concentration. As long as x < x0, all surfactant is present in the form of monomers.
But if x > x0, micelles are being formed; the monomer (x1) concentration remaining
(almost) constant.
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2.3 Thermodynamics of micelle formation

In section 2.2 we presented a phenomenological description: we presumed that mi-
celles of size n form, and subsequently studied their properties. We now address the
question: what is the thermodynamic condition for the formation of micelles of size
n? We return to eq. 2.1, but leave the value of n unspecified. We address the ques-
tion as to what the size distribution of micelles is, on the basis of thermodynamics.
The general thermodynamic condition for chemical equilibrium is∑

i

νiμi = 0, (2.7)

where νi are the stoichiometric coefficients and μi the chemical potentials. Ap-
plying eq. 2.7 to the equilibrium 2.1 we get

μn = nμ1 (2.8)

In this equation, the subscripts 1 and n again refer to surfactant monomers, and
micelles consisting of n surfactant molecules, respectively. As long as monomers
and micelles are dilute, we may write the chemical potentials as

μi = μ0
i + kT lnxi (2.9)

where μ0
i is the standard chemical potential (μi = μ0

i iff xi = 1), k and T are
Boltzmann’s constant and absolute temperature, and i in this case can be monomer
(i = 1) of micelle (nmer: i = n). Combining eqs. 2.8 and 2.9 leads to the distribution
of micelles of size n

xn = xn
1exp

(−(μ0
n − nμ0

1)

kT

)
(2.10)

First of all, note that the cmc is related to the above expression by (compare
with eqs. 2.2 and 2.3

x0 ≡ xcmc = K1/(1−n) = exp

(
μ0

n − nμ0
1

(n − 1)kT

)
(2.11)

In order for the system to have a cmc of x0 < 1 (note that x0 > 1 is unphysical ;
in that case there will be no cmc at all), it follows from Eq. 2.11 that there must
be a value of n, or a range of values, such that

μ0
n < nμ0

1 (2.12)

In other words, for micelles of size n to form, it follows from eq. 2.10 that the

function
μ0

n−nμ0
1

kT
should have a (deep) minimum at n.

2.4 Influence of molecular properties of the surfactant on

the cmc

First of all we write the argument of the exponent in Eq. 2.11 as
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μ0
n − nμ0

1

(n − 1)
≡ Δμθ =

(
Δμθ

)
head

+
(
Δμθ

)
tail

. (2.13)

In order to form micelles it is required that Δμθ < 0, as has been discussed below
Eq. 2.11. The head groups will be closely packed upon micelle formation, which
is in general unfavorable compared to the situation where surfactant molecules are
monomers. We may therefore expect

(
Δμθ

)
head

> 0. The packing will be favorable

for the hydrophobic tails and hence
(
Δμθ

)
tail

< 0. Since micelle formation requires

Δμθ < 0, we find
∣∣(Δμθ

)
tail

∣∣ > ∣∣(Δμθ
)
head

∣∣.
Despite the vast amount of literature on the calculation of Δμθ, we restrict

ourselves to observed trends in c.m.c. and the subsequent conclusions for
(
Δμθ

)
head

and
(
Δμθ

)
tail

.

2.4.1 Influence of chain length on cmc

Upon increasing chain length, it is expected that
(
Δμθ

)
tail

gets more negative and
the critical micelle concentration decreases. Experimental values in Table 2.1 con-
firm this expectation. The cmc is lowered by roughly a factor of 2 for each added
CH2-group in anionic surfactants. According Eq. 2.11 this implies that Δμθ de-
creases by (per mole!) RT ln 2 ≈ 1.72 kJ/mole per added CH2-group. The critical
micelle concentration decreases stronger for non-ionic surfactants for each addi-
tional CH2-group; rougly a factor of 3. This in turn implies that Δμθ decreases
approximately 2.72 kJ/mol for each additional CH2 tail-unit .

Table 2.1: The c.m.c. and Δμθ = RT ln xcmc of four types of surfactants as a function of the
number of C-atoms nC in the alkyl tail at 298 K.

R ccmc [mol/l] xcmc Δμθ [kJ/mol]
RCOO−Na+: C12 2.3 × 10−2 4.2 × 10−4 -19.3
Δμθ = 0.65 − 1.66nC kJ/mol C14 6.0 × 10−3 1.1 × 10−4 -22.5

C16 1.5 × 10−3 2.7 × 10−5 -26.0
C18 4.0 × 10−4 7.3 × 10−6 -29.2

ROSO−
3 Na+: C8 1.3 × 10−1 2.3 × 10−3 -15.0

Δμθ = −1.35 − 1.70nC kJ/mol C10 3.3 × 10−2 6.0 × 10−4 -18.3
C12 8.3 × 10−3 1.5 × 10−4 -21.7
C14 2.1 × 10−3 3.8 × 10−5 -25.2

R(CH3)3N+Br−: C10 6.5 × 10−2 1.1 × 10−3 -16.8
Δμθ = 0.59 − 1.74nC kJ/mol C12 1.6 × 10−2 2.9 × 10−4 -20.2

C16 9.2 × 10−4 1.7 × 10−5 -27.2
R. − .O(C2H4O)6.H (CnC E6): C8 7.6 × 10−3 1.4 × 10−4 -22.0
Δμθ = 0.40 − 2.80nC kJ/mol C10 8.0 × 10−4 1.4 × 10−5 -27.6

C12 8.3 × 10−5 1.5 × 10−6 -33.2
C14 8.7 × 10−6 1.6 × 10−7 -38.8

The change in standard chemical potential of a surfactant with tail length nc

can according to the experimental results be described emperically by the Klevens
equation [2]
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Δμθ = RT ln xcmc = A − Bnc (2.14)

The value of A is dominated by the nature of the head group. Generally one
finds −3.1 < A < +3.7 kJ/mol. B values are typically found in the range 1.5 <
B < 2.9 kJ/mol. The Klevens equation for some characteristic examples is given in
the left column of Table 2.1.

The Klevens equation, 2.14, only holds for nC � 16, presumably because for
larger tail lengths the alkyl tail will fold to prevent hydrophobic interactions. On
the other hand, nC � 8 to have enough thermodynamic driving force for micelle
formation, i.e.,

∣∣(Δμθ
)
tail

∣∣ > ∣∣(Δμθ
)
head

∣∣.
2.4.2 Effect of salt on the cmc

We expect
(
Δμθ

)
head

> 0 as a consequence of the interactions between charged or
polar head-groups. The charges of the head groups are screened by the addition of an
indifferent salt which decreases the interactions between the head groups. Therefore,
we expect

(
Δμθ

)
head

to decrease upon increasing elektrolyte concentration. From
Table 2.2 it is verified that this is indeed the case.

Table 2.2: The c.m.c. and Δμθ = RT ln xcmc of sodium octyl sulphate, H(CH2)8OSO−
3 Na+, as a

function of salt concentration at 298 K.
ccmc [mol/l] xcmc Δμθ [kJ/mol]

water 0.134 2.4 × 10−3 -14.9
water + 0.01 mol NaCl/l 0.121 2.2 × 10−3 -15.2
water + 0.03 mol NaCl/l 0.102 1.8 × 10−3 -15.6
water + 0.1 mol NaCl/l 0.069 1.2 × 10−3 -16.6
water + 0.3 mol NaCl/l 0.035 6.3 × 10−4 -18.3

The critical micelle concentration as a function of salt concentration generally
depends on the valence of the added ions, in particular that of the counter ions.
Addition of salt increases the sensitivity of the cmc with increasing tail-length.
That is, the cmc decreases steeper with longer carbon tails and, at very high ionic
strength, may even resemble the behaviour of non-ionic surfactants. There is almost
no influence of salt on the critical micelle concentration of non-ionic surfactants.

2.5 Geometry of surfactant molecules and micellar shape.

What is the physical origin of the minimum of the function Δμθ as a function of n
in eqs. 2.11, 2.13? Note that the quantity Δμθ equals the difference in Gibbs free
energy of a molecule inside a micelle containing n surfactant molecules, and a freely
moving surfactant monomer. Thus, the position of the minimum suggests that at
that particular value of n, the surfactant molecules are most comfortably packed in
a micelle. This suggests that the geometry of surfactant molecules the relative size
of their headgroups, the lengths of their hydrophobic tails, may have something to
do with it. Indeed, packing cones in the form of a sphere will naturally lead to a
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number of cones that are close packed in a sphere. Squeezing in more cones than
the number corresponding to close packing will lead to repulsion, and the function
Δμθ will rise with n. Other shapes of the surfactant molecules will lead to different
structures of the aggregates. See Fig 2.4, taken from Ref. [3]. Referring to this
Figure, we will now derive the geometrical conditions (on surfactant molecules) for
aggregate shapes.

Figure 2.4: Relation between surfactant parameter and micelle shape - from Ref [3]

The three geometrical parameters defined in Fig. 2.4 are the effective molecular
headgroup area a0, the effective length of the hydrophobic tail 
0, and the effective
volume of the surfactant molecule, v0. Note that these parameters are not fixed for
a certain surfactant molecule: they depend on conditions such as the ionic strength
and temperature. That particularly applies to a0: this quantity includes the effect
of the electrical double layer around the headgroup (if the headgroup is charged)
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We start with the condition for spherical micelles: In that case the volume Vm and
surface area Am of a micelle of radius R are

Vm =
4π

3
R3 = nv0 Am = 4πR2 = na0 (spherical micelle) (2.15)

From eq. 2.15 we may write n in two ways as

n =
4π

3v0

R3 =
4π

a0

R2 (spherical micelle) (2.16)

The above eq. is true iff

R =
3v0

a0
(spherical micelle) (2.17)

Since obviously, we also have that R ≤ 
0 , we arrive at the geometrical condition
for spherical micelles

v0

a0
0
<

1

3
(spherical micelle) (2.18)

The quantity v0

a0	0
is often referred to as the surfactant parameter. The number of

surfactant molecules in a micelle can now be estimated by n =
36πv2

0

a3
0

=
4π	30
3v0

. For the

surfactant sodium dodecyl sulfate (SDS), the values of 
0 and v0 are approximately
1.93 nm and 0.4 nm3, respectively [3], leading to n ≈ 75 being in fair agreement
with experiments.

Now lets investigate the condition for cylindrical micelles. For a cylinder of radius
R and length L we have

Vm = πR2L = nv0 Am = 2πRL = na0 (cylindrical micelle) (2.19)

By the same reasoning as in the case of spherical micelles we arrive at the con-
dition R = 2v0/a0. Using again that R ≤ 
0, we get v0

a0	0
< 1

2
. Combination with

the condition for spherical micelles, eq. 2.18 finally gives

1

3
<

v0

a0
0
<

1

2
(cylindrical micelle) (2.20)

Micelles also come in plate shapes; in that case we have, for plates with thickness
d and interfacial area A

Vm = Ad = nv0 Am = 2A = na0 (plates) (2.21)

So in case of plates we get d = 2v0/a0 < 2
0 , so that

1

2
<

v0

a0
0

< 1(plates) (2.22)

Finally, it is easy to see that the condition for inverse micelles is that v0

a0	0
> 1.
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2.6 Problems

1. Caloric experiments show that the cmc is almost independent of temperature
(typically

∣∣d ln xcmc

dT

∣∣ ≈ 10−3 K−1). Is micelle formation an enthalpically or entropi-
cally dominated process?
Hint: Make use of the relation between Δμθ and xcmc as well as Tables 2.1 and 2.2.
Use (and verify if it looks alien to you) the thermodynamic relation(

∂Δμθ/T

∂T

)
p

= −Δhθ

T 2
,

where Δhθ is the molar enthalpy of micelle-formation.

2. Consider the formation of dimers from single molecules via

2A � A2

Let the total mole fraction be x, the monomer mole fraction x1, and the dimer mole
fraction x2.
a. Show that at equilibrium, x2 = x2

1 exp(−Δμ0/kT ). Here, Δμ0 = μ0
2 − 2μ0

1, with
μ0

i the standard chemical potential of i ∈ {1, 2}.
b. Show that for small x (more specifically: xe−Δμ0/kT << 1 ), x1 = x. Also

show that for large x (more specifically: xe−Δμ0/kT >> 1 ), x1 ∝ √
x. Hint: use

mass conservation.
c. How does the behavior under b. compare to the the formation of surfactant
micelles?
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Chapter 3

Microemulsions

3.1 Introduction

Microemulsions are thermodynamically stable mixtures of oil and water. The sta-
bility is due to the presence of fairly large amounts (several %) of surfactants.
Microemulsions are often transparent, but scattering of light, X-rays, etc. indicate
that oil and water are not molecularly dispersed, but are more coarsely mixed. By
coarse in this case we mean that oil and water are present in domains of a few to
over a hundred nanometers in size. A schematic view of microemulsion droplets is
provided by Fig. 3.1.

Figure 3.1: Schematic view of water droplets in oil (left) and oil droplets in water (right). In this
case two types of surfactant molecules adsorb at the oil-water interface.

Microemulsions contain huge oil-water interfacial areas and to allow stability
the interfacial tension must be quite low, usually << 1mN/m. In that case the
entropy of mixing, although small on account of the coarseness of the mixture, may
be large enough to compensate the positive interfacial free energy and to give the
microemulsion a free energy lower than that of the unmixed components. A rough
estimate of the value of the interfacial tension, γ where spontaneous emulsification
occurs is by the condition 4πR2γ = kT , in other words the work to create a drop
of radius R should be on the order of the thermal energy kT .

Microemulsions can have various textures, such as oil droplets in water, water
droplets in oil, (random) bicontinuous mixtures, ordered droplets or lamellar mix-
tures with a wide range of phase equilibria amongst them and with excess oil and/or
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water phases. This great variety is governed by variations in the composition of the
whole system and in the structure of the interfacial layers. The situation for rela-
tively small surfactant concentrations and equal volumes of oil and water is shown
in Fig. 3.2, showing the transition from Winsor I (oil droplets in water coexisting
with excess oil) to Winsor III (bicontinuous structure with excess water and oil
phases) to Winsor II (water droplets in oil with excess water).

Qualitatively the thermodynamics of microemulsions is well understood as the
interplay between a small interfacial free energy and a small entropy of mixing.
However, because of these contributions being small, other small effects, such as
the influence of curvature on the interfacial tension, and the influence of fluctua-
tions, become important. In the following we will derive the generalized Laplace
equation to illustrate the consequence of curvature contributions to the (interfacial)
free energy. Subsequently, we introduce the curvature free energy put forward by
Helfrich. The curvature free energy is an important conceptual tool in understand-
ing the physics of (surfactant) monolayers and membranes. It will be used here to
explain the structural transitions of microemulsions as a function of temperature
and ionic strength. In the last part, we will estimate the value of the interfacial
tension of the flat interface between microemulsions and excess phase (see Fig. 3.2)
and compare it to the situation without surfactant.

3.2 Experimental facts

The situation for relatively small surfactant concentrations and equal volumes of oil
and water is shown in Fig. 3.2, showing the transition from Winsor I (oil droplets in
water coexisting with excess oil) to Winsor III (bicontinuous structure with excess
water and oil phases) to Winsor II (water droplets in oil with excess water).

Figure 3.2: A: Oil droplets in water with excess oil (Winsor I); (B) bicontinuous with excess oil
and water (Winsor III); (C) water droplets in oil with excess water (Winsor II). From A to C the
ionic strength in the system is being increased

At higher surfactant concentrations, the excess water and oil phases are taken
up by the microemulsion phase, ultimately leading to single-phase microemulsions.
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Upon further increase of surfactant concentrations, excluded volume effects become
important, leading to phase transitions to lamellar liquid crystals. The situation
for non-ionic surfactants is sketched in Fig. 3.3.

Figure 3.3: Experimental (Top) phase diagram of non-ionic surfactant at equal volumes of oil and
water and varying temperature (veritical axis) and surfactant concentration (horizontal axis). An
artistic impression of the situation has been shown at the bottom.

3.3 Generalized Laplace equation

Consider the formation of a liquid drop of radius R. It (hopefully) is well-known
that inside the drop the pressure is higher than it is outside. The pressure difference,
Δp, is referred to as the laplace pressure and is given by Δp = 2γ/R, with γ the
interfacial tension between the drop and its environment (e.g., gas, another liquid).

Now suppose interfacial tension depends on curvature, that is, the droplet radius.
Mechanical equilibrium requires that the pressure difference Δp times an infinites-
imal change in volume of the drop, dV , equals the change in interacial free energy
d(γA), with A the interfacial area of the drop. In other words, ΔpdV = d(γA)
= γdA + Adγ. For a spherical drop this leads to

Δp =
2γ

R
− 2c

R2
(3.1)

In this equation, the bending moment

c =
∂γ

∂2/R
(3.2)

Eqs 3.1 is the generalized Laplace equation. Obviously it reduces to the classical
Laplace equation if the absolute value of the second term is much smaller than the

27

-132-



first one, being the case if c/R << γ, implying small bending moment and/or large
value of R.

3.4 Curvature free energy

Helfrich [4] deduced the free energy associated with deformations around a flat
surface up to second order in the translational and rotational invariants. The result
is

Fc =

∫
A

[
κ

2
(c1 + c2 − 2c0)

2 + κ̄c1c2] dA. (3.3)

In this eq., c1 and c2 are the principle curvatures, c0 the preferred curvature, κ
the bending elastic modulus, and κ̄ the modulus associated with Gaussian curva-
ture. The last quantity often is referred to as ’Gaussian bending (elastic) modulus’.
For a sphere of radius R we have c1 = c2 = 1/R.

Eq. 3.3 often is written in terms of mean curvature H = (c1+c2)/2 and Gaussian
curvature K = c1c2, i.e.,

Fc =

∫
A

[2κ(H − c0)
2 + κ̄K] dA. (3.4)

The first term proportional to κ in Eqs. 3.3, 3.4 is analogous to the expression
of the potential energy of a harmonic spring. The second term is a topological
invariant. Without the second term, it can easly be verified that the curvature free
energy of, e.g., spheres and cylinders is degenerate. The Gauss-Bonnet theorem
states that ∫

A

K dA = 4π(1 − g) (3.5)

In this eq., g is the genus of a surface being defined by the number of holes. A
sphere has g = 0, a cylinder and torus have g = 1, while torus-like objects with N
holes have g = N .

The Gaussian modulus κ̄ can be smaller or larger than zero. Combination of the
result Eq. 3.5 with Eq. 3.4 reveals that the sign of κ̄ reflects the tendency of the
surface to form certain topologies: if κ̄ < 0, the second term in Eq. 3.4 is minimal if
g is as small as possible, which corresponds to spheres. On the other hand, if κ̄ > 0,
large g will minimize the second term. Of course the second term competes with
the first one in the curvature energy, and also with the configurational entropy of
the objects.

Let’s consider the situation where κ, κ̄ >> kT , so that the role of configurational
entropy is negligible, and c0 = 0. If κ̄ = 0, Eq. 3.4 implies that the curvature free
energy of a flat object with c1 = c2 = 0 equals the curvature free energy of objects
where at every point in space c1 = −c2. The last type of object has been sketched
in Fig. 3.4. It is referred to as the ’Schwartz minimal surface’ or the ’plumbers
nightmare’.
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Figure 3.4: Schwartz minimal surface of ’plumbers nightmare’. The surface can be surfactant
monolayers separating oil and water, or bilayers with water on both sides of the surface.

Now under the conditions described above, it is the sign of κ̄ that determines
whether plates are stable or the ’plumbers nightmare’. This is relevant for the
structure of the ’bicontinuous’ microemulsion, i.e., the middle phase in Fig. 3.2B
and schematically in the ’head of the fish’ in Fig. 3.3.

Away from the ’head of the fish’, at small surfactant concentrations, oil droplets
in water are stable or water droplets in oil, depending whether temperature is in-
creased or decreased. It is generally accepted that in nonionic surfactants, preferred
curvature depends on temperature. The microscopic reason is that temperature in-
fluences the level of hydration of the surfactant molecules on the water sides, thereby
influencing the sign and absolute value of preferred curvature.

In case of ionic surfactants, the value (and sign) of c0 is determined by the bal-
ance between excluded volume interactions between the surfactant chains on the oil
side of the surfactant layer, and the electrostatic (screened- Coulomb) interactions
between the charged ’heads’ of the surfactant molecules at the water side of the
surfactant monolayers. By increasing the ionic strength, as in Fig. 3.2, preferred
curvature will be more and more towards the water side of the oil-water interface.
The reason is that ions screen the electrostatic repulsion between the surfactant
headgroups. The values of the bending elastic moduli depend on surfactant chain-
length, charge density and ionic strength.

3.5 A microscopic model for curvature elasticity: incom-

pressible spring model

In this section a simple microscopic model will be analyzed that will allow some
physical insight into the meaning of the curvature elastic moduli. This part is based
on chapter 6 in [5]. We model the monolayer of adsorbed surfactant molecules
(Fig. 3.1) as springs with spring constant ks and equilibrium spring length 
s. The
actual stressed or compressed spring length is denoted by 
. The springs are sup-
posed to be incompressible and assume a fixed area per chain at the interface equal
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to Σ0. In reality, this value is determined by properties of the polar head group.
The constant value of Σ0 implies that interactions that act on the polar head group
are much stronger than the chain stretching energies. The (harmonic) energy per
chain is

f =
ks

2
(
 − 
s)

2, (3.6)

and the incompressibility of the chains implies a constant volume of the surfac-
tant layer. In case of a flat layer we have Σ0
 = v0, with v0 the molecular volume
(volume occupied per chain). In case of a curved layer, it can be shown that

v0 = Σ0
(1 + 
H +

2

3
K), (3.7)

We now impose the incompressibility condition: put Eq. 3.7 equal to the volume
per chain in a flat layer, i.e., v0 = Σ0
0, with 
0 the layer thickness of a flat layer.
Solving for 
 and expanding to third order in 
0 leads to


 = 
0 − 
2
0H + 2
3

0H
2 − l30

3
K, (3.8)

Note that in general, in the flat monolayer the chain stretching energy Eq. 3.6
is not minimal as 
0 
= 
s. Thus, in general, the flat layer will have a preferred
curvature related to the imposed 
0 and the preferred 
s. Plugging Eq. 3.8 into
Eq. 3.6 and keeping the lowest order terms leads to

f =
ks


4
0

2
[(H − c0)

2 − 2c0
0

3
K]. (3.9)

In this Eq., we defined

c0 =
1


0
(1 − 
s


0
) =

v0 − 
sΣ0

Σ0
2
0

. (3.10)

Eq. 3.9 is equivalent to the Helfrich form of the curvature free energy, Eq. 3.4.
The bending modulus (the coefficient of H2 in eq. 3.9) and the Gaussian modulus
(the coefficient of K) both increase as a power of the chain length. Obviously, the
spring constant ks also depends on the equilibrium spring length 
s. In polymers,
and in the limit of small curvatures we have ks ∼ 1/
s ≈ 1/
0. In that case the
bending modulus κ ∼ 
3

s. The result that the bending modulus varies with the cube
of the thickness also is characteristic for a bent solid elastic plate, see the textbook
of Landau and Lifshitz on elasticity theory, ref. [6].

There is a simple physical interpretation of c0 that emerges from the model,
eq. 3.10. Any deviation of that quantity from zero arises because of a mismatch of
the preferred length 
s and the imposed lenght 
0. The imposed length, in turn,
is set by the imposed head area Σ0 as compared to the ’optimal’ area v0/
s. If
Σ0 > v0/
s, preferred curvature is negative and the system prefers to pack with
the heads on the ’outside’. The free energy in that case is lower than that of the
flat interface: the system accomodates part of the strain induced by the mismatch
between the heads and the chains by bending.
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3.6 Interfacial tension between microemulsion- and excess

phase

In this section we calculate the interfacial tension, γ∞, of the macroscopic interface
between a droplet-type microemulsion and excess oil or water phase, see Fig. 3.2.
Obviously, that quantity is related to the tension of the droplet (of radius R) in-
terface, γR. It should also contain the work related to ’un-bending’ the drop into a
flat layer. In particular,

γ∞ = γR +

∫ 0

2/R

∂γ

∂(2/R)
d(2/R). (3.11)

Combination of Eqs. 3.2 and 3.3 leads to

∂γ

∂(2/R)
= c =

∂2Fc

∂A∂(2/R)
=

1

R
(2κ + κ̄) − 2κc0. (3.12)

The radius that minimizes the bending energy is

R = R0 (1 +
κ̄

2κ
), (3.13)

with R0 = 1/c0. Here it has been assumed that curvature contributions dominate
the total free energy of the system. That only is true if (2κ+κ̄) >> kT . In practice,
the values of the bending moduli are on the order of kT , and entropy effects are
significant. In case of dilute systems, this leads to contibutions to the free energy
that are logarithmic in the number density of the microemulsion droplet. For a
discussion see Ref. [7] and references therein. However, these contributions only
lead to corrections to eq. 3.13 (and the ones that follow) that are logarithmic in the
number density of the microemulsion droplets.

Carrying out the intergration eq. 3.11 and using eqs. 3.12, 3.13 leads to

γ∞ = γR +
2κ

R0R
= γR +

2κ + κ̄

R2
(3.14)

In general, it is expected that γ∞ >> γR so that γ∞ ∼ R−2. This is indeed
what is to be expected, see the brief discussion on the condition for spontaneous
emulsification in the Introduction. In case of liquid-gas interfaces, the interfacial
tension γ ∼ 1/d2 with d a molecular diameter. Interestingly, for microemulsion
the size of the emulsified objects sets the interfacial tension.

3.7 Problems

1. Show that for a sphere of radius R, the curvature free energy reads 4π(2κ+ κ̄)−
16πκc0R + 8πκc2

0R
2.

2. Prove Eq. 3.13.

3. Verify Eq. 3.5 for a sphere and for a cylinder.
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4. What sign of κ̄ stabilizes the ’plumbers nightmare’, Fig. 3.4?

5. Verify Eq. 3.7 by considering the volumes of a spherical and a cylindrical layer.

6. Derive Eq. 3.8 for a sphere of radius R. First verify that the (real) root of the in-
compressibility condition on Eq. 3.7 for a sphere is given by 
 → R [(3
0/R+1)1/3−1]
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1. INTRODUCTION 

As is well known polymers are long molecules consisting of simple building blocks, 
the monomers, generally connected through covalent bonds. A simple example is 
polyethene (figure 1) typically consisting of a 100 to 10000 ethene groups which after 
polymerization form single C-C bonds around which the polymer can more or less 
freely rotate. The thus formed chain is an example of a flexible polymer chain, which 
changes its direction on a length scale of 1 nm because of its rotational freedom 
around the G ... C bonds. Therefore, this polymer is not elongated in solution but it 
forms a kind of randomly curled coil. Another example is DNA with its double-helix 
structure, in which 2 DNA-strands are connected through hydrogen bonds (figure 
2). DNA can contain up to 1010 monomers, leading to a length of up to 1 m if it 
were to be completely stretched. This polymer is much stiffer, but it also changes its 
direction gradually (on a scale of 100 nm) through small fluctuations in bond angles 
and bond lenghts. At sufficient length stiff chains also form random coils (in absence 
of specific interactions, for instance with proteins which can induce very specific DNA 
conformations in vivo). 

(a) (b) 

Figure 1. (a) The atomic structure of a polyethene molecule. (b) A schematic 
representation of a complete molecule. There is rotational freedom around each C-C 

bond: the molecule forms a long, flexible chain. 
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1nm 

Figure 2.' A double helix of DNA in its right-handed B form. Both 
saccharide-phosphate chains are connected via H-bridges between complementary 

base pairs. 

Polymers can be found everywhere around us. The natural polymers comprise 
e.g. polysaccharides (like starch and cellulose), DNA and proteins (the last 2 also 
contain information through an alternation of different monomers; this may lead 
to very specific effects which we will not consider in these lecture notes). Semi­
synthetic polymers entered on the scene about a hundred years ago with viscose 
(chemically modified cellulose, which was used to produce fibres). Totally synthetic 
polymers were developed in particular after the acceptation of Staudinger's hypothesis 
(in the twenties and thirties) that polymers consisted of covalently bonded, linear 
chains of monomers (until then a common notion was that polymers were colloidal 
aggregates of monomers). Staudinger received the 1953 Nobel prize in Chemistry. 
During the second world war polymer chemistry became more and more important, 
an important project being the development of artificial rubber (necessary for some 
countries because they were cut off from the supply of natural rubber). After the war 
the production of polymers expanded more and more and now forms a very important 
part of chemical industry. 

Historically, physical chemistry played an important role in characterizing poly­
mers (e.g. through osmotic pressure and viscosity measurements, light scattering and 
sedimentation), which led to the acceptation of the hypothesis of linear chains, and the 
concomitant developments of theories. An important name in this context is P.J. Flory 
(1974 Nobel Prize in Chemistry). In more recent years theoretical developments are 
increasingly performed by physicists applying general concepts of theoretical physics; 
for this P.G. de Gennes obtained the 1991 Nobel Prize in Physics. 

In these lecture notes we aim at giving a universal description of simple linear 
flexible polymers. In contrast to synthetic chemists who consider polymers in a very 
specific way (viz. as built up from specific types of monomers coupled together with 
a specific type of chemical bond), within physical chemistry polymers are modelled 
with as few parameters as possible. An indispensable tool is statistical mechanics 
since one polymer chain consists of a very large number of units and already forms a 
statistical mechanical system in its own right. In many cases this leads to universal 
behaviour, which will be illustrated here with comparatively simple calculations. 

From statistical mechanics we will mainly use 2 formulas by Boltzmann. The first 
expresses the entropy of a system in terms of the total number of states ~V that the 
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system can assume (at fixed energy): 

s= kBlnW (1.1) 

and the second the probability Pi of a certain state i with energy Ei (at fixed 
temperature T): 

e-EdkBT 
Pi = ---::Z,,---

In this equation kB is Boltzmann's constant and Z the partition function: 

The formula can also be written as 

Z = L Gj e-Ej/kBT 

j 

(1.2) 

(1.3) 

where the sum now runs over the different energies instead of the different states 
and the degeneracy Gj represents the number of states of the same energy. The parti­
tion function Z forms the connection with thermodynamics through the (Helmholtz) 
free energy A: 

A = -kBTlnZ (1.4) 
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2. IDEAL CHAINS 

2.1. The freely jointed chain 

'When we want to study the universal properties of polymer chains it is useful to con­
sider a simplified model. Here, so-called segments (often point particles) are connected 
by " bonds" with certain properties. In the simplest possible model, the so-called freely 
jointed model (figure 3), segments are connected through bonds of fixed length b but 
with completely arbitrary mutual angles. 

R 

Figure 3. The freely jointed chain. 

We can now represent the chain as a sequence of N vectors ri, each with a length 
b. The total length of the (completely stretched) chain, also indicated as the contour 
length, is L = Nb. The vector connecting the endpoints of the conformation in space 
IS: 

From this we can derive the average value of R: 

N 

(R) = L (ri) = 0 
i=! 

Since every bond vector fi has an arbitrary direction, every average (fil = 0 and 
also the end-to-end vector R does not have a preferential direction. To characterize 
the size of the chain it is therefore more adequate to use the (square root of) the mean 
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square of R: 

N N N N 

(R2) = I: I: (ri . r J ) = I: (rn + I: I: (ri . rj) (2.1) 
i=1 j=1 i=1 

The last step is taking (r i . r j) = 0 if i =1= j, since the direction of each bond vector 
is completely independent of the direction of other bond vectors. Hence we end up 
with 

(2.2) 

The result of (2.2) is very important. The square root of (R2) forms a useful 
measure for the size of the chain. According to (2.2) the size is proportional to N 1/ 2 , 

whereas the contour length is proportional to N: the chain is strongly curled in space. 
Note that there is no restriction within this model to place two segments at the same 
position in space; this is a characteristic of a s(}-(:alied ideal chain. 

2.2. The Gaussian distribution 

The mean square end-to-€nd distance is only one property describing the conforma­
tion of a chain. It is possible to calculate the complete probability distribution of 
the end-to-€nd distance. Therefore we make use of the following equation for the 
probability P(R, N) to find an end-to-€nd vector R for a polymer of N segments: 

(2.3) 

This equation tells that the end-to-€nd distribution of a chain of N segments 
can be determined by stepping back one segment within the chain (in space a step 
r N) and averaging over all possible steps r N. In the appendix a derivation is given 
showing that for large N this leads to a differential equation for P(R, N); 

(2.4) 

where .6. represents the Laplacian (note that we write R =( x, y, z»: 

[p 82 82 

.6. = ox2 + 8y2 + 8z2 

This equation is identical to the well-known diffusion equation (Fick's second law) 

8c = D.6.c 
8t 

using the following correspondence: 

segment number N f---> time t 

position R f---> position R 

probability P f---> concentration c 

~ b2 
f---> diffusion coefficient D 

6 

(2.5) 

(2.6) 

An ideal chain can thus be compared to a diffusion problem of a particle starting 
to diffuse from the origin at time t = 0 with diffusion coefficient D. The fanciful 
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trajectory such a particle traverses in time (increasing t) is completely comparable 
to the conformation consecutive segments of an ideal polymer (increasing N) form 
within space. A larger typical steplength b leads according to (2.2) to a larger mean 
square of the end-to-end distance; application of the correspondence (2.6) gives for 
the analogous diffusion problem: 

This is the well-known Einstein formula that tells that a diffusing particle (on 
average) moves with the square root of time (instead of linearly if the particle would 
always move in the same direction). Now it is also intuitively clear why (2.2) only 
applies to an ideal polymer: the polymer must have the opportunity to intersect 
itself. For a diffusing particle there is after all not a single impediment to return to 
the same place in space at a later time. In reality this is not possible for a polymer 
and this may lead to drastically different behaviour. As we will see later there are 
certain circumstances under which an ideal chain may be a good representation for a 
polymer. 

The solution of (2.4) can be found by applying the correspondence (2.6) to the 
well-known solution of (2.5) for the analogous diffusion problem (or use Fourier trans­
forms, see appendix 7.2): 

( 3 )3/2 (3R2 ) 
peR, N) = 21'iNlJ2 exp - 2NlJ2 (2.7) 

Here R2 = R· R = x 2 + y2 + z2. This solution may be verified by substitution 
into the differential equation (2.4). Such a distribution function is called a Gaussian 
distribution. The form (2.7) is normalized: 

+00 +00 +00 J peR, N) dR = J J J peR, N) dx dy dz = 1 
-00 -(X)-OO 

as can be easily verified using the integrals given in appendi.x 7.4. With this 
probability distribution also other properties than (R2) can be easily calculated, like 
the standard deviation of R 2 : 

(2.8) 

We see that the deviation in the size of the polymer coil is of the same order of 
magnitude as the size itself: an ideal coil is a strongly fluctuating object. 

2.3. The freely rotating chain 

The so-called freely rotating chain is a more realistic model in the sense that there is 
now a fixed angle B between consecutive steps (figure 4). The model is called freely 
rotating because the chain is free to rotate around each bond (though retaining fixed 
bond angles 1'i - B). 
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(a) (b) 

Figure 4. (a) The freely rotating chain. (b) The average of rn at fixed rn-l gives 
cosBrn_l· 

If we now average over all possible directions of a bond, there remains a factor 
'Y == cos B in the direction of the previous bond, so that 

while at every next bond an additional factor 'Y appears because of the averaging 
over the possible directions of that bond (see figure 4(b)) 

(ri· rj) = b2'Yli-jl 

We can use this to calculate the mean square end-t~nd distance. To this end 
we further apply the approximation that most segments are located far from the ends 
of the chain ( if N large) so that in (2.1): 

where we used the summation formula of a geometric series. Substituted in (2.1) 
this ultimately gives: 

(R2) :::::oNb21 +'Y =Nb21+cosB 
1 - 'Y 1 - cos B 

(2.9) 

The most important result is that (R2) is still proportional to N, albeit with 
a proportionality factor larger than for the freely jointed chain (as long as we keep 
B<1r/2). 

2.4. More general considerations 

We now found for two simple models that (R2) is proportional to N. This property 
has a much wider generality and is a consequence of the so-called central limit theorem 
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in mathematics. In a nutshell this theorem says that a variable (say x), itself a sum 
of a large number (say N) identical, independent, stochastic variables, is distributed 
according to a normal (=Gaussian) distribution exp( _x2 /2 (x2 ) and that (x2 ) 0: N. 
A polymer chain complies to this if it has a short-range memory (i.e. the position of 
a certain segment only depends on the positions of a limited number of neighbouring 
segments within the chain). Then, a chain has "forgotten" where it came from after 
a limited number of segments. The consequence is that also for a more complex and 
realistic polymer model the mean square end-to-end distance remains proportional 
to N (for large N) 

(2.10) 

The proportionality constant obviously has a dimension (length)2 and defines the 
effective step length beff. For the freely jointed chain we find (see equation (2.9» 

l+cosB 
l-cosB 

As could be expected the effective step length is larger than b if B < 7f /2. In 
the remainder we generally write b instead of beff' The concept of an effective seg­
ment length was first introduced by Kuhn. In order to be independent of the rather 
arbitrary division into segments (2.10) is now written as 

(2.11) 

where L is the length of the polymer if it were completely stretched and lK is called 
the Kuhn length. 

Also the Gaussian distribution (2.7) remains valid in the case of more general 
short-range models and therefore forms one of the basic formulas of polymer theory. 
In the end it is not so very important how we exactly model a chain since all (short­
range) models give the same results for large chain length. A widely used class of 
models are the s()-{;alled lattice models, where chain segments are placed on the lattice 
points of a space filling lattice (see later). 

2.5. The entropy of an ideal coil 

The end-to-end distribution peR, N) is directly proportional to the number of possi­
ble realizations W(R) of an ideal chain at a given end-to-end vector (and at a given 
number of segments N). From this we can derive an expression for the entropy of 
such an ideal chain via (1.1): 

3kB 2 
S(R) = kB In W(R) = cst - 2Nb2 R (2.12) 

Later we shall use this formula a number of times. At this point we shall use it to 
show the analogy of a polymer coil with a spring. First we form a (Helmholtz free) 
energy from this entropy 

A(R) = U(R) - TS(R) = -TS(R) = cst + ~';:; R2 (2.13) 

Note that U = 0 for an ideal chain. The interesting point of this formula is its 
quadratic form similar to the potential energy of a spring. If the endpoints of a 
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polymer chain are brought apart, it experiences (on average) a retracting force 

The spring constant is 3k B T j N b2 . This entropic effect forms the basis for the 
elasticity of rubber, which consists of a network of interconnected polymer chains. 
Note that the above formula predicts that the spring constant of rubber increases 
with temperature (in strong contrast to most other materials). This is also found 
experimentally and is sometimes called the Guch-loule effect. The formula tells 
further that the material can be stretched more easily if the number of segments 
between consecutive linking points in the network N is larger. 

2.6. Further models of a flexible polymer chain 

Since different parts of an ideal chain do not have any interactions, a part of the chain 
can itself be described by a Gaussian distribution. We then have to use a generalized 
version GN(RIR') for the probability of a chain of N segments starting at a position 
R' and ending at R (so peR, N) = GN(R/O». Let us for instance consider a chain 
on which we also want to fi.-x segment v at position R". Since both parts of an ideal 
chain are independent the probability for such a configuration is then given by the 
product of both probabilities, GN-v(R/RI)Gv(R"/R'). Integrating over all possible 
positions of the vth segment, gives back the original end~to-end distribution: 

This relation can be verified easily using (7.4) and the convolution theorem in 
Fourier space. 

A widely used model, the standard Gaussian 0- Gaussian bond model retains this 
Gaussian property up to the level of each single bond (assuming the distribution is 
still valid if we set N = 1 in (2. 7». This is frequently justified since we saw that 
many results do not depend on the specific details of the local structure of the chain. 

If we compare this with the previous section this also implies that each bond is 
a spring with spring constant 3kB T jb2 . This forms the basis of another model the 
bead-spring model, in which a polymer is modelled as a string of beads connected by 
springs. This model is especially used in describing polymer dynamics (RousejZimm 
model). 

The ultimate consequence of the Gaussian model is a continuous model where we 
do not have separate segments anymore, but a continuous line. This leads to path 
integrals. 

2.7. Gaussian chains in an external field 

Here we consider a slightly more general case than before by placing a polymer chain 
in an external field. We define !peR) as the energy a segment obtains at place R due 
to the interaction with this external field. In appendix 7.3 is shown that differential 
equation (2.4) then takes the form 

(2.14) 
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where we now formulate the differential equation in terms of G = G N (RjR'). It 
is shown in the appendix that the general solution to this equation can be written as 
a so-called bilinear expansion: 

(2.15) 
n 

where 7f'n(R) and .An are the eigenfunctions and eigenvalues of the following equa­
tion (very similar to the time-independent Schrodinger equation in quantum mechan­
ics): 

(2.16) 

The solution critically depends on the type of eigenvalues found. In some cases 
these may take a continuous range of values (a continuous spectrum), which corre­
sponds to a scattering state in quantum mechanics. An example of this is the case 
with <p(R) = 0, corresponding to a free particle in quantum mechanics. In appendix 
7.3 is shown that (2.15) leads back to a Gaussian coil (as expected). 

Another possibility is a discrete spectrum of eigenvalues. In that case one of the 
eigenfunctions may dominate the problem for long chains. Let the smallest eigenvalue 
be.Ao < .A 1, .A2, .. '. If we make N very large, the exponential term containing .Ao will be 
by far the largest in (2.15) and will dominate the solution (ground state dominance): 

(2.17) 

This result seems reasonable for a long chain: both endpoints get completely 
uncorrelated. A state like this is called a bound state. The parallel with quantum 
mechanics gets even stronger if we calculate the segment density c(R) for (2.17). We 
then have to integrate over all segment numbers v in the chain that must be located 
at R, irrespective of the position of the beginning R' and end of the chain (here taken 
as R"): 

c R _ f: dv f dR' f dR"Gv(RjR')GN_v(R"jR) 
( ) - f dR' f dR"GN(R"jR') 

The numerator is a normalizing factor. Using (2.17) for large N simply gives: 

c(R) rvN7f'~(R) (2.18) 

So j7f1o(RW is the probability to find one of the segments at position R, much like 
in quantum mechanics. 
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Figure 5. A polymer chain in a spherical cavity of diameter D. 

An example of this situation is a polymer chain confined to a spherical cavity of 
diameter D (see figure 5). For this spherical symmetry we can express the Laplacian 
in terms of the distance to the origin R: 

If we now solve equation (2.16) with cp(R) = 0 within the cavity, but all eigenfunc­
tions = 0 ou~side (since the chain obviously cannot be there), we find a.s the lowest 
eigenvalue and (normalized) eigenfunction: 

Giving a segment density like in figure 6. This is an example of a chain in a 
globular state. 

c 

Figure 6. Segment density of a very long ideal polymer in a spherical cavity of 
diameter D. 
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2.8. Lifshitz entropy 

For a polymer in a bound state it is possible to derive an expression for the entropy. 
Here, we only consider the situation of ground state dominance (N large). The total 
partition function would now be: 

z = f dR' f dR"GN(R"IR') 

since G N (R" I R') takes into account all chain configurations and Boltzmann weights 
in the external field and the integrals all possibilities of its beginning and end points. 
Substituting (2.17) simply gives 

z ,...., exp( -AoN) (f dR1flo(R») 2 

and a concomitant free energy from (104) 

(2.19) 

Apart from unimportant end terms this expression is proportional to N and is 
therefore an extensive property, like in a true macroscopic system. 

Note that this expression still depends on the external field <peR), since AO is 
the lowest eigenvalue of (2.16). Remarkably however, it is possible to eliminate the 
externally imposed field if we calculate the entropy of the chain. To show this we 
write 

s = U - A = f <peR) c(R) dR- A 
T T T 

Using (2.18) and (2.19) this reduces to 

S = N J <p~) 1fl~(R) dR - kBAON 

The integral in this expression can now also be obtained by taking (2.16) for n = 0, 
multiplying by 1flo(R) and integrating over R: 

Combining these last 2 equations eliminates both <peR) and AO: 

In terms of the segment density c(R) from (2.18) this can be written as 

This is the Lifshitz entropy of a single chain. We see that this entropy is connected 
to concentration gradients and therefore the spatial inhomogeneity of the segment 
distribution. We could say that spatial inhomogeneity is unfavorable for the entropy, 
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because in the presence of a concentration gradient, the chain is forced to bend in 
certain directions more often than in others. This restricts the total number of allowed 
conformations and therefore decreases the entropy. 

When there are many chains, their conformational entropies add up and c(R) rep­
resents the total concentration of segments of all chains. In fact an ideal translational 
term should be added, but this is very small since for every chain a very large number 
of segments N are connected together to form only one translational unit. Therefore, 
the conformational entropy which as a rule is insignificant for low-molecular-weight 
substances (compared to the translational entropy) becomes predominant for many 
properties of polymers. 

2.9. Self-consistent field method 

The results in the last section are useful for the so-called self-consistent field (SCF) 
method for polymers. In statistical physics we try to describe systems in terms of 
a restricted number of macroscopic variables instead of specifying all positions and 
momenta of individual particles. In the limit of a very large system (thermodynamic 
limit) we expect that the free energy shows a very sharp minimum when varying the 
values of these macroscopic variables. This sharpness justifies the usual procedure 
of minimizing the free energy with respect to these macroscopic variables to find its 
equilibrium value. However, this neglects the possible influence of fluctuations. 

In the case of our polymer system the form of (2.20) suggests to take c(R) as our 
(quasi)macroscopic variables. The entropy S[c(R)] is now a functional of c(R) (i.e. 
it is a function of a function: its variables are the values of the segment density at 
all positions R in the system, but this already is an average over many microscopic 
configurations). The important point is that in (2.20) the external field rp(R) has 
been eliminated, so its form is independent of the forces that cause this macroscopic 
state. The next step to obtain an SCF theory would be to add interactions between 
segments in the form of an energy term U[c(R)], giving 

A(c(R)] =U(c(R)]-TS[c(R)] 

The equilibrium distribution ceq(R) is obtained by functional minimization of A 
with respect to c(R). Since in many polymer systems the segment concentrations are 
low, an often used approximation for U[c(R)] is to take the corresponding expressions 
for disconnected segments (a non-ideal gas), although omitting the translational (ideal 
gas) term since segments are connected here. 
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3. NON-IDEAL CHAINS 

Until now we only considered the short-range interaction between segments (i.e. in­
teraction between segments closely together if measured along the chain contour). 
As soon as we also take into account long-range interactions (in this case indicating 
interaction between segments far apart if measured along the chain; by back folding of 
the chain these segments can come closely together in space) the chain statistics can 
change drastically. For simplicity we consider a lattice model for a polymer (figure 7) 
where every lattice point has z neighbouring positions at a distance b. 

N 

~ 
).. 

2 

1 

Figure 7. A lattice model for a polymer. The white cirkels are the segments and the 
bold line. segments form the bonds. 

The volume per lattice point is called VC' If such a chain were ideal (no interaction) 
there would be no obstruction to placing several segments on one and the same lattice 
position. In that case each consecutive segment has z possibilities to be placed and 
the total number of possibilities for a chain of N segments would be ZN. It can be 
easily verified that (R2) =Nb2 also applies in this case, so that (2.7) remains valid. 
The total number of configurations vVo(R) at a given end-to-end distance R is now 
proportional to: 

(3.1) 

Since we do not write the number of configurations as a function of end-to-end vector 
R but in terms of end-to-end distance R, we get an extra factor of 47r R2 (0: the surface 
of a spherical shell of radius R). We may again formulate this problem in terms of a 
free energy Ao(R) (or entropy, So(R)): 

~o~;) ( = _ S~~R)) = -In Wo(R) = cst - 2ln R + 2~lJ2 R2 (3.2) 
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To get the most probable end-to-€nd distance we minimize this free energy by 
taking the derivative with respect to R and equating it to 0: 

2 3 ~ --+-R=O:::;.RQ= -JNb2 
R Nb2 3 

(3.3) 

This procedure gives us an ideal chain dimension RQ (NB the procedure followed is 
not entirely correct but gives a reasonable estimation). We can also use this formula 
to estimate the average volume fraction of segments within the coil ¢; :::::: N v cI RQ3 :::::: 
Nvc /(b/N)3 ~ N-l/2 j this obviously gets very small for large N. 

3.1. An excluded volume chain 

We now consider the simplest type of long-range interaction, where a once occu­
pied lattice point cannot be occupied by a second polymer segment. In analogy with 
the diffusion problem this type of conformation is also called a SAW( =Self-Avoiding 
Walk). To describe the resulting conformation qualitatively we assume that the poly­
mer coil swells to a different size R but that the internal structure of the chain is 
retained (such that we can still apply expression (3.1». We further assume that en­
counters between segments take place independently and that only pair interactions 
are important. We account for this by multiplying (3.4) by a correction factor peR) 
which represents the probability that a given conformation is allowed (i.e. we did not 
place one single segment on the same position as one of the others). The probability 
that, if we place a segment on a specific lattice point, this is already occupied by 
another segment, is given by the volume of 1 segment Vc divided by the total volume 
of the coil (approximately R3 ). There are N(N - 1)/2 of this kind of possible (pair) 
contacts within a coil of N segments, so that 

(
V )N(N-l)/2 (N(N -1) ) (N2v ) 

peR):::::: 1- R~ ::::::exp 2 In(1-vc /R
3) ::::::exp - 2R3

c 

Multiplying (3.1) by this factor we get the number of configurations with excluded 
volume: 

N 2 (3R2 
N2vc) 

W(R) ex z 41rR exp - 2Nb2 - 2R3 (3.4) 

The free energy now gets 

(3.5) 

and a similar minimization procedure as for (3.3) now gives 

Combined with m from (3.3) this leads to the following equation for the chain 
size R* of an excluded-volume chain (first given by Flory): 

(3.6) 
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To emphasize we are performing a qualitative calculation we left out a factor of 
J243/128. For large N we can neglect the cubic term and the solution is: 

R' ~ Nl/lO => R* ~ bN3/5 
Ro (3.7) 

R* / RO is often called the expansion factor a. In comparison to the ideal chain 
(3.3) the coil swells and it does so the stronger when the chain is longer. It is essential 
to realize the difference with a chain with short-range interactions: with short-range 
interactions the chain may also swell but in this case because of an increased effec­
tive step length beff , while the ideal dependence on N persists. With a long-range 
excluded-volume interaction the exponent of N changes. The above-described model 
is strongly simplified. More extensive calculations and computer simulations give for 
large N: 

R' ~ bNI/ with v ~ 0.588 

which does not differ much from the Flory exponent 3/5 in (3.7). 

3.2. A chain in solution 

Up to now we only counted conformations to describe a polymer chain, i.e. we only 
took into account the entropy using formula (1.1). This was made possible by the fact 
that energy did not playa role. In actual life this never occurs since a polymer chain 
will always be suspended in a solvent, so different conformations may have different 
energies. We now account for this in a crude way by adding an (average) energy term 
E(R) to the entropic term in the free energy: 

A(R) 
A(R) 
kBT 

= U(R) - TS(R) ==:} 

E(R) -In W(R) 
kBT 

We can determine E(R) in the above-used lattice model by again viewing the 
polymer coil as an object of N segments in a volume R3 and hence a volume fraction 
¢(R) ~ N v c/ R3. The lattice points not occupied by the polymer are now occupied 
by a solvent molecule (see figure 8). 

0 0 0 0 0 0 0 0 0 00 0 
0 0 0 0 0 00 0 0 00 0 
0 0 0 0 0 00 0 0 01, 0 
0 • 0 0 0 00 0 - ..... 0 'T' --
0 - 0 00 0 .. f-4 0 0 - -
0 0 0 : 4~ .. ~ 0 0 0 14 0 0 
0 0 0 14t-.. 4 to 0 0 4 ~ 0 

0 0 0 0 0 4 .. ~ 0 -_ ..... 
0 T --

0 0 0 0 0 .. ~ I. ~ 00 0 
0 0 0 0 0 ..I.. - ..I.. 0 00 0 -- -
0 0 0 0 0 00 0 0 00 0 
0 0 0 0 0 00 0 0 00 0 

Figure 8. The lattice model of a chain in solution. Black cirkels represent polymer 
segments and white cirkels solvent molecules. 
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\Ve now suppose only interaction between neighbouring lattice points, viz. 

polymer segment-polymer segment - cpp (3.8) 

polymer segment-solvent molecule - Cps 

solvent molecule-solvent molecule - C 53 

There are N z neighbouring points next to the polymer, each with a probability ¢ 
to be a polymer segment and 1 - ¢ to be a solvent molecule. The average energy of 
the coil is then: 

E(R) ~ Nz [~¢(-cpp +C.S) + (1- ¢)(-cp. +C3S)] 

The factor 1/2 appears to avoid double-counting of polymer-polymer interactions 
and we have chosen the pure solvent as the reference state (for each contact with a 
polymer segment a solvent-solvent contact is broken). We can rewrite this as: 

E(R) (3.9) 

The last step introduces the so-called chi-parameter X, which we consider more 
closely in the next section. The reason to write (3.9) as in the last line is clear if we 
compare this term with the last term of (3.5): the effect of the energetic interaction 
with the solvent has the same functional form as the excluded volume interaction 
between segments. We can therefore immediately use the results from the previous 
section after transforming 

Vc-4v:=vc(1-2X) 

The Flory equation (3.6) now gives: 

(R*)5 _ (R*)3 ~ ~Nl/2 
RO RO b3 

(3.10) 

(3.11) 

The difference is that in this case the right-hand side is not necessarily large. This 
now depends on the value of X. We will differentiate between several regimes which 
we discuss in the next section. 

3.3. Good, bad and ideal solvents 

The chi-parameter in (3.9) is given by 

_ z.6.c z(cpp + Css - 2"ps) 
X=--= 

kBT 2kBT 
(3.12) 

where 2.6." represents the energy change at the formation of 1 polymer segment­
polymer segment contact (see figure 9). 
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Figure 9. The effective interaction between two polymer segments. If the polymer 
segments (indicated by black cirkels), originally separated as in (a), are brought 

together, as in (b), the energy of the system decreases with an amount 
26c = cpp + Css - 2cps. 

A simple rule of thumb for (London-van der Waals) dispersion forces gives for the 
interaction energy between two molecules i and j: 

Proportionality constant k is generally positive and the as are (segmental) polar­
izabilities (note that in the definition of the cs (3.8) appears a - sign: k > 0 implies 
attraction). Therefore, the energy difference 6e = ~(epp +css - 2cp.) = ~k (ap _ a.)2 
is > 0 in most cases. Consequently, X is also usually positive. We differentiate between 
3 regimes: 

X «1 This implies that the energy change at immersing a polymer segment 
in its solvent is much smaller than kaT (see (3.12». We expect little 
influence from energy effects. This also appears from (3.10): v ~ Vc; the 
coil is swollen as in the previous section. In this case, the solvent is called a 
good solvent. 'When X increases, energy effects are getting more important 
and the polymer coil starts to shrink. 

X = 1/2 In this special case (3.10) gives v = O. The Flory equation (3.11) now 
gives R* = RQ ~ bN1/ 2 , so that the chain behaves like an ideal chain. This 
is caused by two opposing tendencies. The unfavourable energy change 
at immersing the polymer segments in solvent wants to contract the coil, 
while the excluded volume of the segments (and the higher entropy of an 
expanded coil) leads to swelling of the chain. At X = 1/2 these two effects 
just compensate. In this case the solvent is called an ideal solvent, a theta 
solvent or sometimes a marginal solvent. An important parameter to vary 
X is the temperature. The temperature at which the coil behaves ideally, 
is called the theta temperature B. The term marginal solvent is connected 
to the fact that X = 1/2 is a value where the polymer remains only just 
soluble. At a slightly higher value of X energy effects are going to dominate. 

X .2: 1/2 At these values the polymer changes its structure rather abruptly. The 
higher entropy of the coil structure is not sufficient anymore to compensate 
unfavourable energy effects, the solvent is expelled and the coil collapses 
(see figure 10). The chain now forms a rather compact structure, a so­
called globule (an example is formed by the globular proteins), where R* 0: 

N 1/3. At about the same time different globules in the solution tend to 
prefer being in mutual contact rather than with the solvent, so that the 
polymer precipitates (or does not dissolve). In this regime the solvent is 
called a bad solvent. 
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Figure 10. The coil-globule transition in a solution of polystyrene in cyclohexane. 
The radius of gyration Rg and the hydrodynamic radius Rh undergo a dramatic 

change when the temperature passes the O'-:temperature. 

A last remark about the free energy used, (3.5) with transformation (3.10), is in 
order. When we look at the last term of (3.5) we can write it slightly differently in 
terms of the segment concentration c ;:::;: N / R3: 

Written in this form the term strongly resembles the second virial term in the 
expansion of the free energy of a non-ideal gas as a series of concentration c. This 
is no coincidence since the above model describes the interaction between the poly­
mer segments in terms of two-particle interactions and as if the segments can move 
independently within the coil. The factor ~v corresponds with the second virial co­
efficient. In the case of excluded-volume interactions only it is equal to ~vc, half 
the excluded volume of one segment as in the case of gases. We now see the close 
connection with the remarks made in section 2.9. 
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4. CONCENTRATED POLYMER SOLUTIONS 

(a) c<c' (b) c ;:c' (e) c> c' 

Figure 11. (a) A dilute polymer solution; (b) a solution at the overlap concentration 
co; (c) a more concentrated solution. 

If we increase the concentration of a polymer solution separate coils will start to 
overlap at a certain point (see figure 11). The corresponding segment concentration 
is called the overlap concentration c·. We can easily make an estimate of c· since at 
that point the total space will be completely filled by coils touching each other. This 
implies that c· is equal to the (average) segment concentration within 1 isolated coil: 

N NI-3v 
c*~ R*3 ~~ ( 4.1) 

Note that, v lying between 1/2 and 3/5, c* can be very small for long polymers 
(large N). Polystyrene at a molecular weight of 1,000,000 can have its c* at 0.5 weight 
%. This means that polymer chains can be strongly entangled and will have a strong 
mutual interactions. The limit is formed by molten polymers (called a polymer melt), 
where a solvent is completely absent, and which are very important for industrial 
applications of plastics. 

4.1. The Flory-Huggins approximation 

A conceptually important description of polymer solutions is the well-known Flory­
Huggins approximation. A derivation is given in AppendLx 7.5. This theory is an 
example of a so-called mean-field theory, where polymer segments are assumed to be 
randomly distributed in space and the interaction is calculated on the basis of averaged 
concentrations in the system. Fluctuations in segment concentrations are completely 
neglected, although they can be large especially for polymers (if only because of the 
fact that segments are attached to each other). The Flory-Huggins approxximation is 
therefore better suited for concentrated solutions (far above CO). Here we are mainly 
interested in qualitative effects of the degree of polymerization N. 

We consider a system of np polymers of N segments and ns solvent molecules 
(occupying n = npN +n. lattice positions) thus having a volume fraction r/> = npN In. 
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The (Helmholtz) free energy of mixing Am within the Flory-Huggins approximation 
is 

Am(n,¢) = nkaT fm(¢) = nkaT [~¢ln¢ + (1 - ¢) In(1 - ¢) + X¢(1- ¢)] (4.2) 

The first two terms are the entropy of mixing. Here the factor 1/ N is noticeable (in 
the " polymer" term), which is absent for low molecular weight liquids. The last term 
represents the internal energy of mixing analogous to the model considered previously 
for the single chain (see (3.8)) and contains the same chi-parameter 

(4.3) 

4.2. Phase separation in polymer solutions 

To be able to predict from the Flory-Huggins free energy whether a polymer solution 
remains homogeneous or that phase separation occurs, we use a graphical method. 
If we plot the free energy per lattice point, fm(¢) (see (4.2)), against the volume 
fraction ¢ we could for instance obtain a picture like figure 12. 

~--------r---~r-~ R' ... . . 

Figure 12. The free energy of mixing for a system without phase separation. 
Situation at R: a homogeneous phase with volume n and volume fraction ¢. 

(Imaginary) situation at R' : separation in two phases with ·concentrations ¢P, ¢Q 
and volumes n p , nQ. 

If this system is homogeneous, the free energy per lattice point at volume fraction 
¢ is given by the value of f m (¢) at point R (here we consider all energies in units 
kaT) . However, if we would suppose that the system separates in 2 phases P and Q 
of volume fractions ¢p and ¢Q, we first have to determine the volumes np and nQ 
of both phases from the following conservation conditions of mass and volume: 

Dp¢ p +nQ¢Q n¢ 

Dp + n Q n 
Its solution is: 

( 4.4) 

( 4.5) 
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Hence the free energy per lattice point of the phase-separated system is 

Aseparated 
m = 

= 

np nQ n fm(¢p) + n fm(¢Q) 

¢Q-¢ ¢-¢p 
¢ ¢ fm(¢p) + ¢ ¢ fm(¢Q) 
Q- p Q- p 

A more precise consideration of this expression shows that its value (per lattice 
point) in figure 12 lies on the line connecting P and Q at a volume fraction of ¢, i.e. at 
R' (expressions (4.4) and (4.5) represent the lever rule for the relative volumes). In this 
case the free energy of the phase-separated system is higher than the homogeneous 
system. For an upward concave function like in figure 12, this is true for every possible 
way of separating the system in 2 phases and the homogeneous system is always the 
most stable. 

i.M) 

Figure 13. The form of the free energy of mixing for a case of phase separation. 
Solutions at ¢ A < ¢ < ¢ B find there lowest free energy if the system separates in 2 

phases of concentrations ¢ A and ¢ B· 

A very different situation occurs when there is a convex part in the graph, like in 
figure 13. Here R' lies clearly below R. P and Q can be chosen in many different ways. 
However, the lowest possible point is situated on the double tangent to the curve and 
this is therefore the equilibrium state with the two coexisting phases as the tangent 
points (this well-known double-tangent construction also assures that both tangent 
points have equal osmotic pressure and chemical potentials) . 

In (4.2) the value of X determines the form of the fm(¢)-curve. At low values of X 
(usually at high temperatures T) its form is upward concave and the system remains 
homogeneous. At higher values of X (low T) 2 minima appear and phase separation 
takes place. This is represented in figure 14 for different values of T . 

T 

Figure 14. A typical phase diagram for a polymer solution. In the cross-hatched 
region phase separation occurs. 

22 

-161-



The X value at which phase separation first ocurs can be found from the fact that 
both minima in figure 13 shift towards each other and merge at this specific value 
(X = xJ· This requires: 

CP/m = 0 and [f3 1m = 0 
8¢} 8¢} 

This point is called the critical point and can easily be determined from (4.2): 

1 
= 

l+JN 

Xc = 1 ( 1)2 
"2 1+ IN 

If N increases, these formulas predict that Xc approaches 1/2 so that the critical 
temperature Tc = z!::!'c/kBXc rises and the critical volume fraction decreases. This 
tendency is clearly visible in figure 15. However, no quantitative agreement with 
experiments is found. This is understandable, since in the neighbourhood of a critical 
point particularly strong concentration fluctuations take place, whence a mean-field 
theory can not be expected to give a good description. 

~ 40 
;..> 
f-., 

30 

Mw=1.02XIO· 

10~ 
o 0.1 0.2 

if> 

0.3 

Figure 15. Coexistence curves for a solution of polystyrene in methylcyclohexane. 
The B-temperature in this system is 70.3°C. 

A further indication of the failing of the Flory-Huggins theory is the osmotic 
pressure. This can be derived from the Helmholtz free energy: 

II = (4.6) 

In figure 16 the experimental osmotic pressure is plotted for a number of molecular 
weights of the same polymer. Note that Van 't Hoff's law (the first term in (4.6)) is 
only reached at the lowest molecular weight (in this representation the curve should be 
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horizontal in that regime). At higher concentrations the second term dominates and 
does not depend on the molecular weight according to (4.6). This is in fact observed 
but the slope is larger than predicted by Flory-Huggins. This effect is attributed to 
fluctuations which we shall discuss later. 

E 
" 10 

... 
::, 
x 

~ 1 
t:::: 

1 100 
ex 102 (g cm-3 ) 

Figure 16. The concentration dependence of the osmotic pressure of 
poly( a-methylstyrene) molecules of different molecular weights dissolved in toluene. 

From the top to the bottom molecular weights of: 7 x 104 , 20 X 104
, 50.6 X 104

, 

7 x 10\ 119 X 104 ,182 x 10\ 330 x 104 ,747 x 104
• 
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5. SCALING THEORY 

"Ve shall conclude these lecture notes with a more qualitative discussion, where we 
give an indication of a number of more modern ideas within polymer theory. If we 
look at the Gaussian distribution function (2.7) for a chain of N segments with step 
length b, it is striking that Nand b enter only as a fixed combination Nb2 • One could 
say that there exists a length scale NI/2b that determines the total distribution and 
therefore also all equilibrium properties on the level of the total chain. The same 
combination is found within the expression for the entropy of the chain (2.12). An 
ideal Gaussian coil has the particular property that its structure reproduces itself at 
different magnifications (see figure 17). This is the property of self-similarity of a 
s~alled fractal object. 

Figure 17. A computer simulation of a "random walk" of 106 random steps. In the 
figure every 103 steps are represented as one segment. The inset zooms in on one 
such segment and represents all steps. The structure of the chain at both levels is 

completely analogous (self-similar or fractal). 

The picture is getting clearer when we ask ourselves whether the monomers within 
a polymer chain are really determined unequivocally. From a chemical point of view 
the monomer will of course be the smallest repetition unit within the chain, but we 
may as well combine several monomers and subsequently use these as the building 
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block of the polymer ending up with the same polymer. To be more concrete: a chain 
of N segments and step length b has an average end-to-end distance Nl/2b. But 
if we first combine 9 segments into a new building block, the (average) distance the 
chain spans within each building block will be bg == gl/2b which now forms our new 
step length. On the other hand we only have N g == N/g of these new building blocks. 
Our newly built coil is a random walk of the new building blocks (see figure 18) for 

which we determine the average end-to-end distance in the usual way: N;/2b g . The 
transformation may be summarized as follows: 

step length 

number 

end-to-end distance 

b ---> bg (== gl/2b) 

N ---> N g (==N/g) 

N 1/ 2b ---> N;/2bg (= Nl/2b) invariant! 

Figure 18. An arbitrary number of segments 9 in a polymer chain may be thought of 
as a new segment. 

The same story also holds for a non-ideal chain with end-to-end distance NVb. 
P. G. de Gennes applied this type of ideas to determine all kinds of properties of 
polymers in a simple fashion. Consider for instance the situation that we put a 
polymer chain in a good solvent (v = 3/5) into a capillary of diameter D. Can a 
simple expression be given for the length L which the polymer will occupy within the 
capillary? We have seen that the size of the building blocks of the polymer can be 
chosen at will. In this case de Gennes chose the step length equal to the capillary 
diameter: bg3/ 5 = D so that 9 = (D/b)5/3. The N/g new building blocks of size D 
will have an excluded-volume interaction like the original segments, so that they only 
fit into the capillary one behind the other. This gives as the total length of the chain 
within the capillary: 

(5.1) 

It is striking that this calculation is supported by much more involved calculations 
and simulations. Two limiting cases of the formula can be immediately checked. 
Firstly, if we consider a wide capillary with a diameter equal to the size of a coil 
outside the capillary, or D = N 3/ 5b. Substitution in (5.1) now gives L :::::; N 3/ 5b, 
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hence in a wide capillary the chain is not distorted (for even larger values of D (5.1) 
of course no longer applies). The second limit is a very narrow capillary of diameter 
D = b. Now the chain is prevented from folding back and can only lie completely 
stretched. Formula (5.1) indeed gives L ~ Nb. The behaviour of L as a function of 
D is schematically represented in figure 19. 

InL 

Figure 19. A double-logarithmic plot of length L occupied. by a chain in a capillary 
of diameter D (see text). 

As we have seen from (2.8) a polymer coil is a strongly fluctuating object. This 
kind of fluctuations is completely neglected in mean-field theory, since there only 
averaged segment concentrations are used. In scaling theory fluctuations are taken 
along. More formal scaling theory uses an analogy between the behaviour of systems 
near to a critical point in phase transitions (which also show large fluctuations) and 
polymer systems (where liN is comparable with the relative distance to the critical 
point). One of its ingredients is the above-described procedure of redefining the 
segments of a chain (also called renormalization). A typical feature in these theories 
is the prediction of all kinds of power laws containing the relative distance to the 
critical point. In that sense an expression like 

R* ~ bNv where v ~ 0.588 

is such a power law where liN is raised to the power -0.588 (the critical exponent). 
On the basis of this type of theories a much simpler description of scaling laws (=power 
laws) is built, using simple physical considerations in a more intuitive way. Nobel prize 
laureate P.G. de Gennes has been the pioneer of this approach. In the next section 
we apply this description to semi-d.ilute solutions. 

5.1. Semi-dilute solutions in a good solvent 

As we have seen in chapter 4 coils start to overlap around 

27 

-166-



(note that also c* is only determined by a global length scale R*). Since every coil 
is a strongly fluctuating object, we also expect strong fluctuations in a semi-dilute 
solution near ¢ *. Therefore the mean-field description (4.6) is no longer applicable. 
The scaling expression for the osmotic pressure is now: 

(5.2) 

We recognize the ideal law (Van 't Hoff's law) valid at very small ¢, multiplied by 
a function I of the relative distance to the overlap concentration ¢/¢*. For ¢ -+ ¢* 
this function approaches 1 and at higher concentrations it follows a power law with 
exponent m: 

(5.3) 

This form is justified by the above-mentioned more extensive theories. The symbol 
is used for scaling relations and implies that prefactors are left out. Note that 

I(x) goes to 1 for x -+ 1 (or ¢ -+ ¢* ). Exponent m is now determined from an 
additional physical condition, i.e. that IT can not depend on N far into the semi­
dilute region. An entangled collection of very long polymers contains after all a very 
small concentration of end points, so that variation in their number can only have 
a very small influence on the osmotic pressure. Combining the 3 previous equations 
then gives m = 1/(3v - 1) = 5/4 and 

IT rv kBT ¢9/4 
b3 

(5.4) 

This law corresponds to the region in figure 16 where all curves coincide (indeed 
independent of N) and shows a stronger dependence on ¢ than the mean-field result, 
which is also found experimentally. 

The above derivation shows the typical structure used to derive a scaling law. 
The unknown quantity is written as a known law in the trivial regime (here Van 't 
Hoff's law in very dilute solutions) times a scaling function I. Now a characteristic 
parameter is assumed (here the segment concentration), which serves as an argument 
in the scaling function I, and the law is written analogously to equation (5.2). The 
scaling function I has the form of a power law (5.3) and connects to the trivial regime. 
An additional physical argument (here the independence on N) finally fixes the value 
of the exponent. 

A similar derivation can be given for the characteristic length scale ~ in a semi­
dilute solution: 

~ = NVbl(¢/¢*) (5.5) 

As we have seen before the characteristic length scale in the dilute regime is N V b. 
We again suppose a power law: 

(5.6) 

We use the same physical argument that the structure far into the semi-dilute 
solution does not depend on N. This now leads to m = -v/(3v -1) = -3/4, whence 
we find 

(5.7) 
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5.2. Physical picture of a semi-dilute solution 

Both results (5.4) and (5.7) are very important to understand a semi-dilute solution. 
In this section we try to elaborate upon this picture. The mean-field result for long 
polymers in a semi-dilute solution in a good solvent (X = 0) is given by (4.6) 

II ;:::;; kaT [:t + ~1>2 + ... J rv kaT 1>2 
LIe N 2 b3 

(5.8) 

The osmotic pressure is mainly determined by interactions between segments (the 
ideal part of the entropy is very small because segments are connectedinto very large 
units). The square of 1> in the above expression represents the probability of contacts 
(mainly pair contacts), viz. the probability 1> to find 1 segment times the probability 
1> to find a second segment nearby. 

Scaling theory (5.4) now gives the probability to find a second segment not as 1> 
but as w rv 1>5/4: a smaller number. This comes about because around one 'segment 
in a polymer chain there is always a "cloud" of other segments (of the same chain) 
that reduces the probability of finding a second segment: at a given contact between 
2 segments the surrounding segment clouds also have to come in contact leading to a 
stronger repulsion. 

Given this probability w rv 1>5/4 of a contact between 2 segments we can imme­
diately calculate how many segments 9 will lie between 2 encounters of one specific 
chain with other chains: 

9 rv 1>-5/4 

If we use this to calculate the (" end-to--Bnd") distance between consecutive en­
counters in a good solvent this gives 

gVb rv b1>-3/4 

This "mesh size" of the polymeric network is equal to the characteristic length ~ 
(5.7). A chain part of g segments with total size ~ was called a "blob" by de Gennes 
(see figure 20). 

Blobs 

Figure 20. A realization of the conformations in a semi-dilute polymer solution as a 
network with mesh size ~ or as a system of blobs. 
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Let us determine the segment concentration within such a blob. This is simple: 
there are 9 segments in a volume e which makes the concentration g/e ""' l/>/b3 . 

However, this is equal to the average segment concentration c, so we conclude that 
blobs do touch each other but do not overlap. This picture is confirmed if we rewrite 
the osmotic pressure (5.4): 

A semi-dilute polymer solution is an ideal gas of blobs! ~ apparently also can be 
interpreted as a "screening length" for the excluded-volume interaction: after a chain 
comes into contact with another polymer chain it seems as if it forgets which segments 
are on the same chain and which on neighbouring chains. Beyond this length scale ~ 
the chain will be ideal. 

We can now calculate the end-to-end distance for 1 chain: there are N / 9 blobs 
with "step length" ~ that themselves form an ideal chain. This implies 

(5.9) 

This relation with the volume fraction is experimentally verified. Note that this 
expression approaches the completely ideal expression R -+ Nl/2b when I/> -+ l. 
The same is seen from (5. 7): ~ -+ b. This is caused by the fact that in a melt 
no concentration fluctuations are possible and there is already an encounter with a 
different chain after a single step, so that the chain loses its memory right away. The 
fact that a polymer chain in a melt behaves ideally is also called Flory's theorem. 
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6. SUMMARY 

To end these lecture notes it is appropriate to give the following diagram from de 
Gennes' book, which summarizes many of the results we encountered: 

.. 
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N - 2 Nearly ideal chains -.p 
A crossover line L 
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" .. .,.- --------------- j 
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: semi dilute solutions in 
I 
: good solvent , 

Phase diagram for a polymer-solvent system. X is the Flory 
interaction parameter, and <P is the volume fraction occupied 
by the polymer. The condition X = 1/2 defines the Flory e 
temperature. In usual cases such as polystyrene-cyclohexane, 
X is a decreasing function of the temperature T; high tempera­
tures correspond to the lower part of the diagram. 
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7. ApPENDIX 

7.1. Derivation of the diffusion equation for an ideal chain 

In order to derive from relation (2.3) 

(7.1) 

an expression for P(R, N), we use the fact that N is large. This implies that 1 is 
small with respect to Nand r N is small with respect to R, so that P(R, N) varies 
only gradually and it makes sense to make a Taylor expansion of the function on the 
right-hand side around R =( x, y, z) and N: 

oP oP 
P(R-rN,N-1) ~ P(R,N) + oN(-l) + L oa(-rN,c<) 

a=x,y,z 

Since this function actually depends on 4 variables (N, x, y, z) with respect to 
which we expand, this simple Taylor expansion looks slightly terrifying (we only write 
down those terms that we ultimately need; i.e. to quadratic order for the derivatives 
with respect to R since the linear term turns out to cancel). We must now average 
this expression over all directions of r N, using the fact that there is no preferential 
direction for r N: 

o (7.3) 

(rN,c<rN,{3) = (rN,c<) (rN,{3) = 0 als a i= f! 

(r~,x) = (r~,y) = (r~,z) = ~ (r~) = ~b2 
Combining (7.1), (7.2) and (7.3) finally leads to to the following differential equa­

tion for P(R, N): 

oP = .!.b26.P 
aN 6 

where Do indicates the Laplacian: 

02 02 02 

Do = ox2 + oy2 + a z2 

Note that this derivation would in fact also be valid if we would not go back just 
one but several steps along the chain (although a small number compared to the total 
number of segments) as long as conditions (7.3) can be fulfilled. This is the case for 
a chain with a so-called short-range memory. Now b represents an effective segment. 
This substantiates the statements of the opening section of 2.4. 
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7.2. Solution for the probability of a Gaussian chain 

If we want to find the solution for (2.4), this can be easily done by using Fourier 
transformation 

P{k) == J eik-R P{R) dR 

and its reverse 

P(R) == (2:)3 J e-
ikR 

P(k) dk 

Taking the Fourier transform of (2.4) gives a simple differential equation for its 
Fourier transform 

with the simple solution 

( 
Nb2k2) 

P(k, N) = exp --6- (7.4) 

which reduces to (2.7) on reverse transformation. 

7.3. The differential equation for a Gaussian chain in an external 
field 

Here we consider a slightly more general case than in section 7.1 by placing a polymer 
chain in an external field. We define <p(R) as the energy a segment obtains at place 
R due to the interaction with this external field. We now have to modify (7.1) by 
taking into account the Boltzmann factor connected with this energy: 

P(R, N) = (P(R - rN, N - l»rN exp{ -<p(R)jkBT) 

In a Taylor expansion like (7.2) we must now also linearize this Boltzmann factor 
(this means that the segment energy must be much smaller than kBT; however, this 
may always be achieved by our freedom of dividing the chain into more segments) 
giving 

(7.5) 

Equation (7.5) is similar to a diffusion equation with an external field. In a 
slightly more general form (where a chain starts at point R' instead of the origin) P is 
replaced by the so-called Green function G = GN(R/R'), which has the character of 
a conditional probability: the probability of finding the end of a chain of N segments 
at point R given that it starts at point R'. ~ should be understood to be the second 
derivative to R (as opposed to R'). The negative of this form is 

(7.6) 

and bears a remarkable resemblance to the time-dependent Schrodinger equation 
for the wave function 7/I(R,t) (of a particle of mass m in an external potential V(R» 
in quantum mechanics 
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81/; Ii? 
-ih7it = - 2m /11/; + V(R)1/; 

with N now in the role of an imaginary time it/Ii. 
We will now follow the lines of argumentation of quantum mechanics in obtaining 

a number of useful results for our equation (7.6). A standard solution method of 
a partial differential equation like (7.6), called separation of variables, assumes a 
solution of the form: 

G = f(N)1/;(R) 

Substituting in (7.6) and rearranging gives 

_.!. df = ~ (-!b2/11/; + cp(R) 1/;) 
f dN 1/; 6 kBT 

(7.7) 

of which the left-hand side only depends on N and the right-hand side only on R. 
Since this would imply that both sides can be varied independently. However, they 
should always be equal so we conclude that both sides must be equal to a constant, 
say A: 

df 

dN 

-!b2/11/; + cp(R) 1/; 
6 kBT 

The solution of the first equation is simply 

= -Af 

feN) = cexp( -AN) (7.8) 

The second equation is an eigenvalue equation completely analogous to the time­
independent Schrodinger equation: 

1i2 
- 2m /11/; + V(R)1/; = E1/; 

so we must now find the eigenvalues An and eigenfunctions 1/;n(R) for this equation, 
obeying 

(7.9) 

Here we review a number of properties of the eigenfunctions of such an equation, 
for simplicity restricting ourselves to the case that the eigenfunctions are real. It is 
possible to construct a complete set of orthonormal eigenfunctions, with the property 

(7.10) 

(8nm = 1 if n = m and 0 otherwise). This can be easily proved for different 
eigenvalues An =1= Am using (7.9): 

(An - Am) j 7/Jn7/Jm dR = j(1/;mAn7/Jn -7/JnAm1/;m) dR 

_~b2 J (1/;m/17/Jn - 7/Jn/11/;m) dR 

o 
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The last step is obtained by integration by parts. Since An =1= Am this proves that 
J 1fJn 1fJ m dR = O. Further proof can be found in books about quantum mechanics. 

Combining (7.7), (7.8) and the solutions to (7.9) gives: 

where cn(R') indicates that the integration constant may be different for every 
n and can also depend on R'. Since (7.6) is a homogeneous, linear equation, linear 
combinations of its solutions are also solutions: 

n 

which is the general solution, since the 1fJns form a complete set. This expression 
can be further simplified since a chain starting at R' must have the same probability 
of ending at R as a chain starting at R to end at R': the expression must not change 
upon interchanging Rand R'. This implies 

n 

In the limit of very short chains (N -. 0) of this expression, we must require that 
the chain ends at the same position where it starts 

Multiplying with 7Pm(R), integrating over R, and applying (7.10) gives am = 1 
for all m. So our final expression is: 

(7.11) 
n 

If we allow complex eigenfunctions we have to insert a complex conjugate *: 

(7.12) 
n 

We can check this formula for the known case of rp(R) = O. Then the solutions of 
(7.9) are: 

exp(ik· R) 

.!.b2k 2 
6 

valid for every value of k. This means that there is a continuous spectrum of 
eigenvalues and the sum over n in (7.11) reduces to an integral over k: 

GN(RJR') = J exp(ik· (R - R'» exp( -~b2k2N) dk 

which is the Fourier transform of the usual Gaussian distribution. 
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7.4. Gaussian integrals 

Integrals containing Gaussian functions exp( -Ax2 ) can be derived in a simple way 
from the following standard integral 

By taking its derivative with respect to A we obtain integrals of the product with 
even powers of x, e.g. 

+00 

! 2 _Axl d __ dI(A) __ ~ pi _ ~ 11"1/2 
X e x - dA - dA VA - 2 A3/2 

-00 

and by taking higher derivatives we generate the higher even powers. Odd powers 
of x give 0 since the integrand is odd in that case: 

+00 J x2n+le-Ax2 dx = 0 

-00 

Using these formulas, averages can be calculated quite easily, e.g. 

From this last relation we can express A in terms of (x2 ). A normalized Gaussian 
distribution (in 1 dimension) is therefore also written like 

7.5. The Flory-Huggins approximation 

In a concentrated solution polymer chains are interpenetrating, so that a description 
at the level of individual chains does not apply. Here, we use the same lattice model 
as in 3.2 to determine the free energy in such a concentrated system. We follow the 
derivation of M. Doi in his Introduction to Polymer Physics (Clarendon Press, 1996). 
\Ve assume that np polymers each occupy N consecutive lattice positions and the 
remainder of the n lattice positions are occupied by n. = n - npN solvent molecules 
(each occupying 1 lattice position). Therefore, the polymer volume fraction in the 
system is r/> = npN In. If we now write: 
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the Helmholtz free energy is approximated as: 

A E 
-- = -In Z ~ -- - In W 
kBT kBT 

(7.13) 

So, like we did for the single chain, we should determine the total number of config­
urations of the system VV and its average energy E. For the average energy we again 
assume random mixing and interaction between adjacent lattice positions only, like 
in (3.8). In total the number of nearest-neighbour contacts is Dzj2, each partner in 
a contact having a probability ¢ to be a polymer segment and (1 - ¢) to be a solvent 
molecule. This gives: 

(7.14) 

The total number of polymer configurations W is harder to establish. Let us place 
the polymer chains on the lattice segment by segment. The first segment of the first 
polymer can be placed in D ways and each following segment at approximately z - 1 
positions with respect to the previous one. This gives WI, the number of realizations 
for the first polymer: 

WI = D(z - l)N-I 
For the j + 1st polymer to be placed the number of possibilities to place its first 

segment is already less, viz. D - N j, and for each of its next segments we must 
account for the probability that a lattice point is already occupied (for simplicity we 
assume that this is the same for every segment within one polymer, viz. (l-NjjD». 
This leads to the following expression for the number of realizations for the j + 1st 

polymer, Wj+!, 

[ ( N·)]N-I (N·)N wi+I~(D-Nj) (z-l) 1- d ~WI 1- d 
The total number of ways to place np polymers on the lattice is therefore 

1 np 

W=~IIWj 
p j=I 

The factor np! corrects for the fact that the polymer molecules are indistinguish­
able. The logarithm of W can be calculated simply by transformation to an integral: 

np 

InW = Lln(wjfj) 
j=I 

(7.15) 

Combining (7.13), (7.14) and (7.15) now gives an expression for the free energy of 
a system of volume fraction ¢ occupying n lattice points, A(D, ¢). In general, the free 
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energy of mixing Am is used, from which the free energy of the components before 
mixing has been subtracted 

Am(n, ¢) = Acn, ¢) - A(n¢, 1) - A(n(l - ¢), 0) 

This now leads to the celebrated Flory-Huggins expression: 

Am(n,¢) = nkBT [~¢ln¢ + (1 - ¢)In(l- ¢) + X¢(l- ¢)] (7.16) 

Note that in this case the usual solute term of the ·entropy of mixing ¢ In ¢ is 
multiplied by a factor 1jN and the energy of mi.xing X¢(l - ¢) contains the same 
chi-parameter as the energy for a single coil (3.9): 

_ z/::"c z(cpp + C33 - 2cps) 
X = kBT = 2kBT 

7.6. Literature 

These lecture notes are largely based upon a number of standard books about polymer 
theory. A modern book on a very basic level is: 

• A.Yu. Grosbergj A.R. Khokhlov, Giant Molecules (1997, Academic Press, San 
Diego) 

Several concepts are described in a relatively simple way in: 

• M. Doi, Introduction to Polymer Physics (1996, Clarendon Press, Oxford) 

Two classical books by Flory are: 

• P.J. E'lory, Principles of Polymer Chemistry (1953, Cornell University Press, 
Ithaca) 

• P.J. Flory, Statistical Mechanics of Chain Molecules (1969, Interscience Pub­
lishers, New York) 

Another older but useful book is: 

• H. Yamakawa, Modern Theory of Polymer Solutions (1971, Harper and Row, 
New York) 

The classical book about scaling theories is: 

• P.G. de Gennes, Scaling Concepts in Polymer Physics (1979, Cornell University 
Press, Ithaca) 

The first chapters of the following book give a short introduction to static prop­
erties: 

• M. DoijS.F. Edwards, The Theory of Polymer Dynamics (1986, Clarendon 
Press, Oxford) 

Finally, the Russian school of polymer physics is very well described in: 

• A.Yu. Grosberg/ A.R. Khokhlov, Statistical Physics of Macromolecules (1994, 
AIP Press, New York) 
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1. THE DL VO POTENTIAL 

It should always be remembered that the origin of forces between colloidal particles is 
molecular of origin. And although we will soon turn, as one of the many 
approximations necessary to arrive at results, to a continuous description of matter, it 
is instructive to write down the different contributions to the interaction potential V 
between two molecules: 

V = overlap repulsion (1) + elctrical multipole - elctrical multipole (2) + 
elctrical multipole - induced elctrical multipole (3) + dispersion (4) 

(1) 

Clearly, all these interactions can in principle be calculated exactly by solving the 
quantum mechanical Schrodinger equation for the two molecules under consideration. 
Such a calculation would give both the absolute intramolecular energies and charge 
distributions. However, this equation can only be solved in (very) simple cases and it 
is more convenient to interpret the total interaction potential as the sum of the 
contributions given in Eq. (l). Each contribution depends on molecular properties that 
can be derived from the Schrodinger equation as well, but some of these terms can 
also be expressed in a more intuitive (semi) classical form. 

Contribution (1) can only be understood in quantum mechanical terms as it 
represents the repulsion that occurs when the electron clouds of two closed-shell 
molecules start to overlap. In order to really let that happen the Pauli exclusion 
principle forbids more than 2 electrons in the same molecular orbital and thus forcing 
the electrons into excited state orbitals upon approach. This produces a strong 
increase in energy with the repulsion being approximately proportional to the square 
of the overlap and increases very strongly as the separation between the molecules 
decreases. This effect determines a molecule's size (cr), and also a distance of closest 
approach in a continuum description of matter. Usually, this overlap repulsion is 
described as a power law in the distance: VCr) = (cr/r)n. For n = 12, we obtain the 
repulsive term in the Lennard-Jones potential and for n = 00, we are in the limit of 
hard spheres. 

Electrical multi pole-electrical mUltipole interactions (2) occur between two 
molecules that posses net charges or an asymmetrical distribution of electrons or 
nuclei. This term can be (approximately) described by classical electrostatics. 

Electrical multi pole-induced multipole interactions (3) occur between a molecule 
with a permanent electrical multipole and a polarizable molecule, a term which can be 
described semi classical. 

Also the dispersion term (4) can only be described in quantum mechanical terms. It 
represents the coupling between a spontaneous dipole-induced dipole interaction. 

In Eq. (1) there is formally a fifth term that describes charge-transfer interactions 
between two molecules if they are very close together and if one of the molecules acts 
as a donator of electrons to the accepting molecule with an electron deficiency. For 
colloidal interactions this term is unimportant and we will not consider it further. 

In the following section we will give some (simplified) expressions for the terms 1-
4 from Eq. (1) in the case of two neutral molecules. The mono-pole moments that will 
be part in the case of charged molecules will not be considered but will be deferred to 
Section 1.4 and 1.5. Taken together these three simplified terms constitute the Van der 
Waals forces: the Keesom interactions, the Debye interactions and the London 
interactions. 
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1.1 \' an der \\' aals forces between two molecules 
Before turning to two spheres consisting of so many molecules that we will take their 
distribution as continuous, we will first consider the Van der Waals forces between 
two polar and polarizable molecules. As pointed out above, we will only keep 
simplified expressions. In terms of Eq. (I), we will only consider the second order 
terms in the full l11ultipole expansion; the mono pole terms arc zero because the 
molecules are uncharged. 

But first a few words about the origin of the names associated with these 
interactions that will turn out all to have an l/rb dependence on the intermolecular 
distance r. 

It was already Newton in 1686 in his Principia, as pointed out by Sparnaay [13], 
who discussed the attraction between t\\'o molecules separated by a distance r, in 
terms of a force, proportional to r'", where n > 4. He did of course not know the origin 
of such a force, but could show that if 11 would be smaller than four the interaction 
energy of a molecule \vith a large plate would turn out to be infinitely large. Van der 
Waals made in 1873 another major step when he treated the equation of state of a gas 
in his famous thesis [14] and separated out the short-range repulsive forces (term 1 in 
Eq. (1)), resulting in the excluded volume term (b), from the long range attractive 
forces that are described by the constant a: 

n-a 
7 J P+-

1 
.(V-nb)=nRT 

V-
(2) 

This is how the term Van der Waals forces came into being and in the beginning of 
the previous century several workers sought an explanation for these long range 
forces. The three contributions that turned out to be the most important are named 
after their inventors Keesom, Debye and London forces. 

Keesom interactions are Boltzmann-averaged interactions between two permanent 
dipoles (term 2 in Eq. (1)). It follows from simple electro statics that two dipoles 
placed head to toe are in their lowest energy configuration which is given by: 

(3) 

with III the dipole moment of the molecules and Eo the dielectric permIttivity of 
vacuum. To give some idea of the magnitudes of these interactions: two opposite 
elementary charges separated by a distance of 0.1 nm gives a dipole moment m = (0.1 
nm) x (1.6 x 10- 19 C) ::: 1.6 X 10-29 C.m = 4.8 D. The Debye is often used for dipole 
moments and equals 3.336 x lO~J() c.m. Permanent dipolc moments occur in 
asymmetric molecules and thus not in single atoms. Water has a dipole moment of 
1.85 D. Two dipoles with 11/ = lOin their lowest energy configuration have in 
vacuum an energy of kfJT (with kfJ Boltzmann's constant and T the absolute 
temperature) at a separation distance of 0.36 nm. These figures indicate that c1ipole­
dipole interactions in liquids, where the interactions are reduced by a factor [ the 
relative dielectric constant (i'j() for water), are not strong enough to lead to substantial 
mutual alignment. Therefore, the interaction energies between t\\O dipolar molecules 
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can he (Boltzmann) averaged rotationally in order to amve at the following free 
energy w(r) (see e.g. [7,5] for the derivation): 

(4) 

From the above it will be no surprise that the interaction between a polar molecule 
with a polarizable other molecule with polarizability a also has to be (Boltzmann) 
orientationally averaged leading to the so-called Debye or induction interactions: 

(5) 

Or, more generally if we consider two polarizable molecules with two dipole 
moments: 

(6) 

In order to get an intuitive idea of the ongm and magnitudes of the (electronic) 
polarizability a, let us imagine a one-electron atom whose electron (charge e) circles 
the nucleus at a distances R, which also defines the radius of the atom. If under the 
influence of an external electric field E the electron orbital is shifted by a distance 1 
from the original orbit around the nucleus (see Figure 1), then we get for the induced 
dipole moment: 

mind = a.E = l.e (7) 

The external force on the electron due to the field E is given by: 

Fext = e.E 
(8) 

which must be balanced at equilibrium by the attractive force between the displaced 
electron orbit and the nucleus and is given by the Coulombic force e2/4moR 2 

projected along the direction of the field (see Figure 1). The internal restoring force 
thus becomes: 

(9) 

At equilibrium Fex! = Fint and thus 

( 10) 

whence we obtain for the polarizability: 
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R.1 a= 41tEll ( I 1 ) 

The unit of (the electronic) polarizability is therefore 41tEo x (volume) or C
2
.m

2
.J 1 

and 
it is of the order of 41tEo x (molecular radius)3. For example, water has CX/41tEo = 1...1.8 X 

10.30 013, which would lead to a molecular size of 0.114 nm, where 0.114 nm is about 
15 % less than the real radius of a water molecule (0.135 nm) [5]. 

E .... 

E .... 

(a) (b) 

Figure 1 Induced dipole in a one-electron atom: a) no external electric field, b) in an external electric 
field with magnitude E which shifts the orbital a distance I from the nucleus, so that the induced dipole 
moment is nIlOd = I.e == a.E, where the polarizability is given by: a == 4n£oRJ [5]. 

The London or dispersion forces are conceptually the most difficult contribution to 
the Van der Waals forces because they are of quantum mechanical origin. They could 
therefore only be derived after the advent of this theoretical framework. Intuitively, 
their origin may be understood from realizing that for a non polar molecule the time 
average of its dipole moment might be zero, at every instant there exists a finite dipole 
moment because the electronic charge and the nuclear proton charge do not reside at 
the same position in space. This instantaneous dipole moment can induce by 
polarization a dipole in a nearby neutral molecule (or in other words the two 
fluctuating dipoles will couple). The resulting interaction between the two dipoles 
gives rise to an instantaneous attraction between the nonpolar molecules with a time 
average that is not zero. For getting even a semi quantitative feeling of this interaction 
we take an example from Israelachvili's book on interaction forces [5J. 

Let us consider the dispersion interactions between two Bohr atoms. In the Bohr 
atom one electron is orbiting a proton. The smallest distance (that there is a smallest 
distance and its size follow only from quantum mechanics) between the electron and 
the proton is known as the first Bohr radius ao. At this radius the Coulomb energy of 
the system, il41tEoao is equal to 2hv, or, 

2 
au = e 12(41tEo) hv = 0.053 nm (12) 

where h is the Planck constant and v the orbiting frequency of the electron. For a Bohr 
atom, V = 3.3 X 10 15 5:' and thus hv = 2.2 x lO<w 1. This is the energy of an electron in 
its first Bohr radius and equals the energy to ionize the atom, i.e., the first ionization 
potential!. As argued above the Bohr atom has no permanent dipole moment, but at 
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any moment the instantaneous dipole moment m is given by: m :::: ([".t' whose field will 
polarize a nearby other neutral apolar atom giving rise to an attractive interaction that 
is completely analogous to the dipole-induced dipole interaction discussed above. The 
energy of interaction is therefore given by (see Eq. (6»: 

(13) 

here u is the polarizability of the second Bohr atom, which from Eq. (II) is 
approximately given by 41t€o ao 3. Using this expression for u and Eq. (12) gives: 

~ .., 6 
w(r) ~ - u- hv/( 41tEotr (14) 

Apart from a numerical factor Eq. (14) is equal to the result that London derived in 
the 1930's using quantum mechanical perturbation theory. London's expression for 
the dispersion interaction between two different molecules is: 

3 U 1U 2 1/2 

2 ( 4 1tE J 2 r 6 . (II + 12 ) 

(15) 

Although London's equation has of course been foIlowed by more exact, and more 
complicated, expressions (see section 1) it gives fairly accurate numbers, though 
somewhat on the low side compared with more rigorous values. The 'derivation' of 
Eq. (14) also demonstrates that although the dispersion forces arise from quantum 
mechanical effects (which gave the strength of the instantaneous, but fluctuating 
dipole moments), the interaction itself can stiIl be seen as essentially electrostatic. The 
name dispersion force stems from the relation of the forces to the dispersion of light 
in the visible and UV part of the spectrum (as exemplified by v in Eq. (15». A more 
thorough account of molecular Van der Waals forces can be found in [5, 15]. 

1.2 Van der Waals forces between two spheres: Hamaker approach 
All contributions to the Van der Waals forces, induction, orientation and dispersion, 
have the same functional form and can be taken together as: 

(16) 

where the constants C can be taken from Eqs. (4), (6) and (15). From tabulations of 
the constants given in Eq. (16) it becomes clear that in almost all cases the dispersion 
forces are the most important, except for small polar molecules like water. 

The simplest approach to calculate the Van der Waals forces between macroscopic 
bodies (macroscopic in the sense that we will treat them as consisting of continuous 
matter) is to assume that the molecular contributions given above are pairwise 
additive. (Which as it turns out is for most substances not such a bad approximation). 
We can than obtain interaction energies from simple integration an approach first 
taken by a Dutch physicist called Hamaker [16]. The interaction energy dUll between 
two infinitesimal volume elements dVI=cLtl dYI dZ I and dV2=cLt2 dY2 dZ2 inside bodies 
1 and 2 respectively becomes then: 

( 17) 
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where the fJ's are the number densities of the molecules in the material I and 2. It is 
now a matter of algebra (or a numerical calculation) to obtain the interaction energies 
between the two bodies. An interesting feature of the 6th power dependence is that the 
resulting energies are scale invariant. (That means that two colloids at a separation of 
10% of their distance, say 10 nm, have the same interaction energy as two apples a 
few cm apart.). We will first present the interaction energy VI? between two infinite 
half-spaces at a distance h (because the half-spaces are infinite the energy is given per 
area of the half-spaces): 

(18) 

where we have combined (for historical reasons) 2rrC l 2PIP2 to form the Hamaker 
constant A I 2. (There is a very nice anecdote connected to this derivation (see [17])). 
The integration has turned the short range r-6 dependence into a quite long range H2 
dependence! Integration ofEq. (17) between two spheres of size 2R gives [16]: 

V - - AI2 [1 1 21 (X2 -1 'lJ' 12 --_. -'-+-1 + n --1-
12 .X-- - 1 ~X-- .r" 

(19) 

where x = rI(2R) is .the reduced distance between the spheres. 
Equations like Eq. (18) are still of not too much use in the description of 

interactions between two colloidal particles, because these are always dispersed in a 
dispersion medium and Eq. (18) describes interactions in vacuum. The very nice 
feature of the pairwise summation assumption is that it leads in a straightforward way 
to the interactions between two bodies 1 and 3 dispersed in a medium 3. The same 
principle behind the derivation therefore holds also for other forces that can be 
summed in a pairwise fashion (like gravity) and the principle behind it is therefore 
also called the principle of Archimedes (see Appendix A). From this principle it 
follows directly that by immersion of the two bodies into a third medium not the 
geometrical terms are changed but instead only the Hamaker constant according to the 
following equation (see Appendix A): 

(20) 

Similarly as for the case which Archimedes made famous with his outcry of 'Eureka', 
the combined Hamaker constant can both be positive and negative. For interactions 
between two similar bodies Eq. (20) reduces to: 

(2l) 

If we look at Eq. (16) it can be sho\\n that A 121 can be positive only and equals Ibc 
indicating that Van cler Waals forces between two bodies of the same material are 
always attractive! As mentioned for most substances the most important contribution 
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(c~rtaillly fur apolar substances) to th~ Hall1~lkcr cOllstant is gi\~11 by the dispersion 
interaction. from Eq. (15) it follows that approximately: 

(22) 

thus Eq. (21) and Eq. (20) become: 

(23) 

and 

(24) 

which is negative if A II > A:;:; > A33 or A II < A22 < A33. This situation occurs most often 
when a liquid (2) wets a solid surface (I) in air (3). Then A33 "'" 0 and often A II > An. 
This explains for instance why liquid helium \vill be attracted by a wall of a vesseL 
and form a relative thick film on the container wall. Because of its low viscosity it can 
even tlow out of the container (see for theory about \vetting phenomena the lectures 
by Blokhuis). 

Although a lot of approximations have been made these kind of combining 
relations are quite useful to estimate Hamaker constants between different materials 
from known values. To give just two examples: the Hamaker constant for a CaF2-

helium-air interaction would be predicted by Eq. (24) to be: Am "'" 
(~7.2--J0.057)(0-~0.056)x 10-20 = -0.58 X 10-20 J. A more rigorous value gives -0.59 
x 10-20 1. Similarly, for a quartz-octane-quartz system Eq. (23) gives: AI21 :::; 

'6 -! - ~ -~o 0 -~o 3 0-"0 [ E' ('./ ).3- '14 . .J rx 10 - = .15 x 10- J compared to 0.1 x 1 - J 5 J. ~stJmates can also 
be made from the following approximate values for interactions in water: 
A121: (30-10 for metals, 3-1 for oxides and halides, - 0.30 for hydrocarbons) x 10-20 1. 

1.3 Van der \Vaals forces between two spheres: Modern Theory 
For many situations in colloid science the approximate formulae derived in the 
previous section are accurate enough. However, it is clear that many approximations 
were made and that there are many places/levels where improvements can be made. 

In a book dedicated to him on the occasion of his retirement Overbeek remarks that 
is was perhaps his major discovery that he realized that the London-Van der Waals 
forces must show retardation at separations larger than the London wave length [18]. 
I n the same heuristic way as the dispersion forces were introduced above, it is not 
hard to understand \vbere such a retardation comes from. It was assumed above that 
the dipole moments that were present at each instant in time could induce a dipole in 
the other molecules instantaneously. It is clear that this can not be correct and in 
reality such an induced interaction can not travel faster than 'vvith the speed of light. 
This means that if the distance between the molecules becomes so large that the 
dipole moment in the first molecule has already changed, the interaction with the 
induced dipole moment is reducl'd. Overbeek asked Casimir whether he saw a way to 
a theoretical treatment of this problem and Casimir and Polder succeeded in 
formulating a quantum mechanical theory for these effects in the case of two metals 
[19]. It turns out that in the retarded limit the 1Ir (, potential is reduced to a faster 
decaying 1/ r 7 functional form. (Note that the other contributions to the Van der 
\Vaals forces do not 5hO\\ this rdardation). 
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U~iIl1:'. ad\al1ced quantum field theury cUl11bined \\ith ~tati\tical mechanics, Lir~hilf 
1201 and I:ller Dfyalu~hil1~kii 1211, derived the 1:'.l'neral case il1cluoin1:'. didel'lric 
materials. In this theory non-additivity effects and retardation are all treated in a 
natural way. Because the results were so complex it took a long way for them tu reach 
the complex tluids community. This only happened after Van Kampen and others, 
along the same treatment as \vas used by Casimir and Polder, had rederived the 
essential equations using a much simpler (semi classical) approach. It goes very 
roughly along the heuristic lines indicated abO\'e about the coupling of 
electromagnetic fluctuations traveling from the one body to the other, but is cast 
completely in terms of the dielectric responses of the bulk materials. Quite a lot of 
researchers subsequently simplified the equations to such an extent that it is possible 
to calculate Hamaker constants from just a few relevant dielectric properties of the 
materials under consideration. Here we witl just refer to the standard books on this 
subject [15, 4, 5, 7, 8, 10]. All geometrical equations of the previous section are 
obtained as limiting cases though, and the material properties like the Hamaker 
constant, are not derived from molecular but bulk dielectric properties. 

1,4 Overlap of flat double layers: Debye-Hiickel approximation 
The interactions between a charged surface and the distribution of ions, both frol11 
added salt (we will limit ourselves to so-called z-z symmetric salts) and counterions 
will be treated within the self-consistent mean-field Poisson-Boltzmann approach. In 
this approach the Poisson equation, which follows directly from the Coulomb law of 
electrostatics, is combined with the statistic mechanical Boltzmann equation in order 
to obtain the distribution of ions in the potential field of the plate v.lith a certain 
surface charge. We will treat the distribution of the ions along one plate first, after 
Gouy and Chapman who were the first to do this along these lines, and subsequently 
calculate the free energy difference of bringing two such plates together. 

The surface charge is supposed to be of uniform density and the ions are treated as 
point objects with no size, embedded in a solvent which is approximated as a 
continuous dielectric medium. The surface charge on the plate sets up a potential \jf in 
the solvent, which depends on the distance from the plate and which puts the free ions 
in the solution at an electrical potential energy. Conversely, the distribution of ions 
determines the local potential. The iterative or self-consisted way in which these 
dependencies are expressed is a combination of the Poisson equation, which relates 
the local charge density to the local potential, and the Boltzmann equation which 
describes the probability of finding an ion at a certain (electrical) free energy. The 
Poisson equation is given by: 

div(urad llf) = V\f = - P 
b ~ SE 

o 

(25) 

here p is the local volume density of charge, i.e., the number of charges per unit 
volume: 

r)="II-e 
t .L.J 1""'1 (26) 

vvhere the summation is oyer all the species of ion present with valency Zi and number 
density l1i, here ZI includes the sign of the charg.e. 
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The Boltzmann equation reads for an ion at potential 0/: 

(27) 

where Wi represents the work done in bringing an ion i up from the bulk, where its 
number density is nui, to a point in the double layer where the potentials is 0/. The 
amount of work Wi is now approximated as Wi = Zieo/. In other words the only work 
done that is taken into account is the electrical work done on or by the ion when it is 
brought into the double layer. This ignores work done to move other ions away or 
create a hole in the solvent, or any effect the ion has on the structure of the solvent or 
the distribution of the other ions. As stated above the ion is simply treated as a point 
charge. 
Combining Eqs. (25)-(27) gives the Poisson-Boltzmann equation (PB): 

(28) 

If the electrical energy is small compared to the thermal energy (Izieo/I < kBn it is 
possible to expand the exponential in this non-linear equation. Neglecting all but the 
first to terms: 

(29) 

The first summation must be zero because of charge neutrality in the bulk solution, 
thus: 

(30) 

where 

(31 ) 

This linearization of the PB equation is called the Debye-Htickel (DH) approximation 
because it was used by these workers in their theory of strong electrolytes. Eq. (30) 
can be solved easily and one obtains: 

(32) 

with % the surface potential. The quantity K·
j 

the Debye-Hiickel screening length 
plays an important role in the theory of the double layer. From Eq. (32) it can be seen 
why, as in this approximation it determines the extension of the double layer and the 
region at which the potential around a colloid is different from that of the bulk where 
it is zero. Apart from some fundamental constants, K depends only on the temperature 
and the ionic strength I defined as: I == (1I2)I,Ci Z j2 where Ci is the ionic concentration 
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in moi/i. A useful rule of thumb is obtained by filling in the constants for water at 
room temperature (25°C): 

(33) 

Thus for a solution of 1: 1 electrolyte at 10.3 M the double layer thickness is 9.6 nm. 
At 10.6 M it is 304 nm. 

For flat plates the non-linear PB equation can be solved analytically using a 
mathematical trick. However, in these notes we are more concerned with spherical 
double layers so we will refer to the literature for this result [2, 4, 9]. Without giving 
the full result it is easy to see that even in the case of high surface potentials at large 
distances 'V becomes small and the long distance tail of the potential takes on the 
exponential form given by Eq. (32), but now with a different scaling factor which is 
determined by the full solution. Because an other particle will only sample the not too 
high potential regions the exponential form is often used. 

(j 

o 
h/2 

h z 

Figure 2 Two interacting negatively charged surfaces 
separated by h experience a repulsive force as they are pushed 
together. 

Before turning to the 
much more difficult 
problem of a double layer 
around a sphere, we will 
first gi ve one 
thermodynamic path of how 
to obtain the amount of 
work done if two flat double 
layers are brought in each­
others neighborhood and 
start to overlap, i.e., the free 
energy as a function of 
distance between two 
infinitely large spheres. In 
the case of overlapping 
double layers the 
mechanism of surface 
charge regulation becomes 
of importance. There are 
several mechanisms by 
which a surface can obtain 
and regulate a surface 
charge, some of the most 
important are: 1) A very 
small imbal ance in the 
amount of crystal lattice 
anions or cations (e.g., as in 

the case of AgI crystals in water). 2) Surface dissociation. 3) Crystal lattice defects. 4) 
Surface absorption of ionic species. The problem of how the surfaces regulate their 
charge on the surface on overlap of two double layers is complicated and also depends 
on the mechanism of charge generation and maybe even the speed of approach. This 
problem has not yet been solved unambiguously [9]. However, it can be shown that 
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real systems will lie within the borders of a constant surface charge upon approach 
and a constant surface potential, for the moment we will assume the latter. 

One other subject that is still to this date a matter of controversy in the literature is 
the experimental determination of the surface charge or potential. Again going into 
this would lead us much too far astray, but is should be mentioned that a lot of 
experimental observations are not yet explained satisfactorily [7,9]. 

Lets now tum to the work required to bring two plates from infinity to a separation 
distance x in the limit where we can use the DH approximation. There are several 
ways to obtain this free energy difference of double layer overlap Vd10 in the case of 
flat plates [1-2], here we will only go into one, called the 'force method' by Overbeek 
[2]. If the plates are brought together reversibly all the forces on the system should 
cancel because a reversible path goes through equilibrium states. We can use this 
balancing of forces to recognize that the free energy difference can be obtained by 
integrating the osmotic pressure n difference (compared to the bulk) at the midplane 
between the plates from infinity to the separation distance h: 

It 

Vd/o = -f ndx 

o 
Zmid 

(34) 

Figure 3 Superposition approxi­
mation for two similarly charged 
surfaces. If the surface charges on the 
surfaces on the plates are thought to 
be unaffected by the overlapping 
double layers, the resul ting charge 
distribution is the sum of the two and 
by the linearity of the Poisson 
equation the resulting potential at the 
midplane will also be the sum of the 
unperturbed potentials, which can be 
related to an osmotic pressure at the 
midplane by the Boltzmann equation. 

The rationale behind Eq. (34) is that symmetry dictates that at the midplane the 
electrical forces on the ions are equal and thus there is no excess charge at this 
position as well, both because the potential has a minimum here. In the PB approach 
there are no correlations between the ions so the osmotic pressure of the non 
interacting ions is simply given by the 'ideal gas' value: 

n := kBY eLI ndmidplane - [I ndinfinity). 

In the linearized DH approximation of small potentials one can take the potential at 
the midplane as twice the potential of the single plate potential as given by Eq. (32), 
see Figure 2. This leads to the following double layer overlap potential: 

Vllo = 2££oK\jf~ exp( -K' h) (35) 

Similarly as stated above, in the limit of large separations also the curves with high 
surface potential will adopt a limiting form similar to Eq. (35), again with a different 
'apparent' surface potential, see Figure 4. It should be remarked that even in the 

14 
-191-



'simple' two plate geometry the general case can not be treated analytically anymore 
and all kind of approximate formula's or numerical schemes have to be used (see for 
more details [2, 9]). 
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1.5 Double layer overlap between two spheres 

Figure 4 Two identical 
overlapping flat double 
layers immersed in an ionic 
solution. Results are shown 
in reduced units and as force 
curves for two different 
surface potentials and 
assuming both a constant 
charge and constant surface 
potential. The curves are 
calculated using the exact 
theory also indicated are 
approximate results along 
the lines of Eg, (35). At large 
separations the approximate 
results are quite good [4J. 

It will be no surprise that in the much more awkward geometry of two spheres 
analytical results are even harder to obtain. Not even for a single double layer around 
a sphere are there analytical results that hold for a reasonable range of parameters and 
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semi-empirical equation's have been proposed [9}. Only in the case of the DH 
approximation one obtains an analytical result. Because of the symmetry of the 
problem the PB equation can best be given in spherical coordinates. In these 
coordinates the Laplace operator takes the form: 

1 d (2 d 'V) -II --- r - = ,6,llf = - n 7. exp(-7 e llf / k T) 
J d d 't' iii "I ~l 't' B r- r r EEo I 

(36) 

linearizing the exponential (e-x
"" 1- x) leads to (compare with Eq. (30)): 

(37) 

Solving Eq. (37) gives a screened Coulomb or Yukawa potential: 

'V='Vo aexp[-K(r-a)] 
r 

(38) 

where a is the sphere size. 

At double layer overlap the situation is even worse. Only for very thin double layers 
compared to the sphere size it is possible to use the so-called Derjaguin 
approximation. This approximation comes down to using the results obtained between 
flat plats to derive equations for large interacting bodies. For interactions between two 
colloidal spheres the limit of very thin double layers is totally uninteresting. However, 
because the Derjaguin approximation can also be used with other potentials and is 
useful in interpreting measurements done with the surface force measurements it is 
gi ven in Appendix B. 

For smaller values of Ka « 5) the Derjaguin procedure breaks down. Verwey and 
Overbeek have shown that for low surface potentials and if an error of up to 40% can 
be tolerated approximate formulae in the spirit of Eq. (35) (i.e., by taking sums of 
potentials) can be derived resulting in again a Yukawa or screened Coulomb form: 

here x = r/a=r12R. 

1 exp[- Ka(x -1)]· 
V diu = 1tEE 0 Ka'V 0 -=-=-------'''­

x 

1.6 Summation of forces 

(39) 

The combination of the forces resulting from the overlap of two double layers treated 
theoretically within the assumptions behind the PB equation and the Van der Waals 
forces constitute the DLVO potential: 

(40) 

In this equation we have added the forces that determine the closest distant of 
approach of two colloids through a strong and steep repulsion caused by the Pauli 
exclusion principle of electrons in filled orbitals (see Eq. (1 ». This repulsion is also 
quite naturally taken up into a closest distance of approach in the Van der Waals 
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forces that would otherwise diverge. For two spheres of the same size and using the 
approximations for the interactions as used in these notes the DL YO potential 
becomes: 

., exp[ - Ka(x - 1)] . 
V DLVO = 1t££" Ka\jf;) + 

x 
(41) 

One can find numerous forms of DL VO equations, even within the PB approach, it is 
therefore important to look at which of the many approximations have been used and 
for what situations the equations are valid. 

In a schematic way the different potential shapes, depending on the constants, Eq. 
(41) can give rise to are given in Figure 5. 
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Figure 5 Schematic interaction potentials between two charged colloidal spheres according to Eq. (41) 
[5]. 
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1.7 Deviations from DLVO 
Most of the shortcomings of the Van der Waals forces have already been discussed 
and with sufficient effort they can at the moment be calculated to great accuracy. The 
most serious problems arise from the fact that the Lifshitz treatment is a continuum 
approach and thus if effects that are a consequence of the molecular discreteness are 
involved the theory fails. For most colloidal interactions there are no indications 
though that these effects are very important. 

There are more (known) problems with the PB description of the double layer 
interaction potentials. Already mentioned is that in this equation the finite size of the 
ions and correlations among them are completely neglected. Finite size corrections 
were realized quickly and the 'Stem' layer of closest approach of hydrated ions is one 
of the earliest examples to remedy this neglect. It has not been until the advent of 
computer simulations, however, that both new theoretical improvements and the 
accuracy of the PB approach could be explored fully. It goes too far to discuss these 
matters in length here (see e.g. Refs. cited in [7, 22]). One of the most important 
conclusions is that for 1-1 electrolytes at not too high surface potentials and not too 
close separations the PB equation gives a fair to good description. (It is also relevant 
in preparation of what follows to remark that between two equal surfaces no 
attractions have been observed). If the coupling between ions becomes stronger, like 
for higher valency ions, PB breaks down and qualitatively different behavior is 
observed [7, 22]. 

It also seems that equations that are derived under the DH approximation are 
relati vel y useless because in practice surface potentials are often higher than ca. 25 
m V. However, it is already discussed that this assumption also gives a good 
description at larger separations if an adjusted surface charge or potential is used. 
Furthermore, it has been shown theoretically that the DH approximation results in a 
description that is thermodynamically consistent and can be derived as a limiting case 
within the framework of liquid state theories (see e.g., the lectures of Briels). This 
thermodynamic consistency is not achieved by solutions obtained from the full non­
linear PB equations! Both theoretical work and computer simulations have given 
additional justification to the use of potentials of the Yukawa form. For instance, 
Alexander et al. have shown through calculations of salt and counterion profiles in a 
spherical Wigner-Seitz cell that also for strong interactions between the colloids an 
effective Yukawa pair interaction is obtained if the volume fraction of the particles is 
not too high. The charge must be renormalized and the double layer thickness 
adjusted compared to the DH value [23]. Furthermore, Lowen and Kramposthuber 
have shown from ab initio theory that screened Coulomb potentials can be used in 
many instances as good approximations, but that both the screening length and 
effective charge have to be adjusted. Moreover, it tums out that in these strongly 
interacting systems the effective surface charge and screening length become 
dependent on the phase as well [24]. 

Now that we have some understanding of the ideas, approximations and limitations 
behind the DL VO potential(s) it is time to see what experimental methods have been 
developed over the years to measure these interactions in a direct way. A development 
which recently has been speeded up, partially from new input from the related field of 
biology inspired physics and from recent experimental findings that will be described 
in Section 3. 
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2. MEASURING INTERACTION POTENTIALS 

[n this Section we will limit ourselves to a qualitative description of direct methods to 
measure interaction forces. With 'direct' is meant that the measurements give force­
distance curves in an unambiguous way. This excludes methods like osmotic pressure 
measurements, where only information of a thermodynamic nature is obtained, which 
can not be directly translated into a force law, or methods that determine only a 
certain aspect of the force distance relationship like adhesion measurements or 
coagulation studies. We also exclude potential measurements that rely on an inversion 
of structural information obtained through scattering studies. Although this method is 
in principal direct in the above sense it is clear that, largely because of experimental 
limitations, the inversion procedure is 'ill-defined' and does not give unambiguous 
potentials (see e.g., [25,26] and refs. cited). 

2.1 Surface Force Apparatus (SFA) 
The first attempts to measure both double-layer and Van der Waals forces started in 
the early fifties in Russia by Derjaguin [27] and in the Netherlands by Overbeek [28] 
and their coworkers. These studies were performed with set-ups that were essentially 
similar to what would later be called the surface force apparatus. However, the forces 
measured were limited to the retarded regime at large surface-to-surface separations 
because of the roughness of the fused quartz and glass surfaces that were used. It was 
not until the end of the sixties that Tabor and Winterton started using cleaved mica 
which made it possible to measure force-distance curves down to molecular 
separations [29]. Native mica crystallizes in layer structures which can be easily 
cleaved providing a clay-like atomically smooth surface over a large area, ideally 
suited for force measurements both in vacuum annd in liquids. It is quite remarkable 
though that just such a 'trivial' matter of obtaining atomically smooth surfaces over 
large areas has held up the measurement of forces at non-retarded and important range 
of distances for quite a number of years. 
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Figure 6. Surface Force Apparatus (SFA) with which force-distance curves can be obtained 
between molecularly smooth mica sheets with A (0.1 nm) resolution and a force sensitivity around 
10 nN (10.8 N) [5J. 

The modem version of the surface force apparatus is conceptually simple and is 
depicted in Figure 6 [5]. The separation between the mica surfaces, which are glued 
onto two quartz pieces with a radius of curvature of 1 cm and are silvered on the back 
with a partially reflecting silver film, can be determined with an accuracy of ] A (0.] 
nm). This high accuracy is reached by analyzing the interference that results from 
multiple reflections of white light by the silver layers on the mica in a spectrometer. 
Measuring the di stance between the surfaces with A accuracy is only half of the story, 
it is also necessary to have this accuracy in positioning the surfaces. This is 
accomplished by a three-stage mechanism. The smallest scale displacements (between 
1-\ 0 A) are achieved by means of a piezoelectric tube that can translate the upper 
mica surface. In piezo electric materials an electric field can cause the crystal lattice 
to expand or contract, e.g ., by about 1 nm per volt that is applied across the surface of 
the cylinder wall. Positioning of the lower mica surface on the] nm level is achieved 
by a two spring construction where the difference in stiffness or spring constant 
between the stiff double-cantilever spring and the helical spring attached to the lower 
micrometer rod. Therefore, a displacement of the lower micrometer results in a nm 
displacement of the lower mica surface, in the absence of forces between the mica 
surfaces. Afte r calibration of this positioning system the actual displacement of this 
surface can be measured from the interference between the crossed mica surfaces. The 
difference in displacement can be converted to a force by using the calibrated spring 
constant of a force measuring spring. The second, lower mica surface is attached to 
such a force measuring spring of which the stiffness can be varied (by a factor of 
1000) by moving a clamp. In this way both attractive and repulsive forces can be 
measured with a ~cnsitivity of about 10 nN (J 0.8 N). Finally, an upper rod can move 
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the whole section of springs over distances between I l-lm and I cm, but it is not used 
during the actual force measurement. Within the Derjaguin approximation (Appendix 
B), which is clearly a very good approximation between these macroscopic surfaces, 
the ratio of the measured force and the radius of curvature, FIR, equals 2rrU, where U 
represents the interaction potential per unit area. Physically, this equivalence means 
that at a distance h between the curved mica surfaces an average is measured of all 
interaction forces larger than h. The result of this averaging, the total force equals the 
sum of the forces between the surface segments from infinity to h, is the energy at h. 

In vacuum the forces between the mica sheets are solely due to Van der Waals 
forces. After all kind of corrections, like change of curvature of the mica sheets due to 
deformation of the glue by the strong attractive forces, the measured force curves 
come to within 10 per cent of the calculated curves using the Lifshitz approach over 
the full range of separations [5]. Immersed in water the mica surfaces obtain a 
negative surface charge by the dissociation of potassium ions and a double-layer is 
formed. In this way the DL VO theory was tested at different ionic strengths and 
potential determining ions (see Figure 8 and Figure 9). 
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Figure 7 Attractive van der Waals forces between two curved mica surfaces 
measured in an aqueous electrolyte solution with the SFA [5]. The measured 
non-retarded Hamaker constant is 2.2 x 10.20 J. Retardation effects become 
apparent at distances above 5 nm. 

At this date the SFA has been quite important in the measurement of all kinds of 
forces, besides Van der Waals forces and double-layer forces [30, 31], examples are: 
capillary forces, solvation forces [32], adhesion forces [33], 'hydration' forces [34, 
35], depletion forces [36, 37J, steric repulsion forces [38, 37], or special 'gel-like 
short-range' forces on silica [39, 40], and forces that were hardly considered before 
the experiments, like attractive hydrophobic forces [41, 5] and oscillatory structural 
forces [5]. All these forces are not elaborated on here, because under conditions under 
which they are measured it is clear where the assumptions underlying the DLVO 
potential are not met and/or why the description breaks down. It should be mentioned 
here that recently these tests are not limited anymore to just one kind of surface, mica 
in water. For instance, the mica can be used as a substrate to adsorb a thin film of 
some other material, for example, lipid monolayers, metal films. proteins etc. (sec for 
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Refs. in [5 D. In the case of opaque materials a capacitance method replaces the optical 
technique for measuring distances with similar overall accuracy [42]. Furthermore, 
Horn t't al. have finally found a way to make silica surfaces smooth enough so that 
they could be used in the SFA as well down to molecular levels [43] . The trick is to 
blow small glass bubbles very fast from the melt so that the surface tension can keep 
the surface molecularly smooth. 

Recently, the SFA measurements have also been extended to the measurement of 
dynamic interactions and time-dependent effects like the viscosity of liquids in very 
thin films, measurements which are outside the scope of these lecture notes . 

Under circumstances where the assumptions and limitations of the PB approach are 
met and at distances not too close to contact, no important deviations, that were not 
expected see Section 1.5 , have been reported see e.g. Figs. 7-9. 
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Figure 8 Measured double layer and Van der Waals forces betwee n two curved mica sheets in the SFA 
in dilute sa lt so lutions [5]. Curves are C:llcu lated using a Hamaker constant of 2.2 x 10.20 J (see Figure 
7) and the constant charge and potential limits are drawn. 

The most serious critique against the SFA apparatus measurements is that it is never 
clear how well the macroscopic surfaces are representative for the surfaces of 
colloidal particles was somewhat alleviated by measurements with the SF A between 
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two surfaces at which colloidal spheres were adsorbed [44]. Of course this kind of 
approach goes at the cost of accuracy in the distance determination and the geometry 
becomes less well defined. Also the critique that the time scales of approach are 
completely different than in the colloidal domain is not alleviated. With the 
measurement of depletion potentials, where it is also assumed in the theories that one 
of the colloidal entities is much larger than the other, the measured potentials are 
probably close to 'true' colloidal potentials. For instance, recent measurements in 
which depletion forces were measured at a high volume fraction of microemulsion 
droplets [36]. In this case a true potential of mean-force was measured showing 
maxima and minima in the force curves as a consequence of the structuring of the 
droplets by the high volume fraction and the presence of a wall. 

0.4 

E ---. 
0.3 Z 

E pH \Vo(mV) 

a: ---. 02 
LL 

r----------- 11 41 
r-------- 10 35 

9 22 
cii 6.7 13 
:J 
u 01 co 
a: --... 
Q) 
u 0 ... 
0 

LL 

-0.1L--LL-L-~ ________ ~ ________ ~ ______ ~ 

o 10 20 30 40 

Distance, D (nm) 

Figure 9 DL VO potentials measured between two sapphire surfaces in J 0-3 M NaCI solutions at different pH. Full 
curves have been calculated using the potentials shown and a Hamaker constant of 6.7 x 10-20 J [5 j. 

2.2 Atomic Force Microscopy (AFM) 
The development of the atomic force microscope was a direct consequence of the 
development of the scanning tunneling microscope (STM), but can in retrospect also 
be seen as a natural continuation of the ideas behind the SF A. The most important 
difference is that the forces are not measured between two macroscopic bodies, but 
between a fine tip and a surface [45]. The tip radii can be as small as one atom or 
larger than 111m. Because of this reduction in size compared to the SFA the spring 
constants need to be much smaller and the displacements of these springs need to be 
measured still with high accuracy. Already, spring constants as small as 0.5 N.m-' are 
used and displacements as small as 0.01 nm can be accurately measured. A schematic 
diagram of a typical set up is given in Figure 10. Position detection of the spring is 
achieved by reflecting a laser off the back of this spring onto a position-sensitive 
detector. The tip is moved over the surface by a piezo-scanner (not shown) and the tip 
deflection is used in a feedback loop operated via another piezoelectric tube to 
maintain a constant force between the tip and surface by changing the height of the 
tip_ With the tip signal from the feedback loop as a function of position an image of 
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the surface can be created. Or with the known spnng constant force versus distance 
curves can be obtained. 
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Figure 10 Schematic depiction of an Atomic Force Microscope (AFM). Spring constants as small as 
0.5 N.m'l can be combined with position determination of the spring of 0.01 nm to allow for the 
measurements of forces smaller than 100 pN (10,]0 N) [7J. 

Although 'atomic forces' can in principal be measured with the AFM we are here 
more interested in the extension of this technique to the measurement of forces 
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Figure 11 DL YO potentials as measured between a silica sphere (size 5 11m) and a glass plate in water 
with added salt measured with an AFM. Surface potentials were taken to be equal for the sphere and 
plate at values of -105 mY and -42 mY [501. 

24 
-201-



between a particle in the colloidal size range and a wall. Ducker t't a/. [46] and Butt 
[47J were among the first to do this between a silica sphere glued to the AFM tip and 
a tlat glass surface in aqueous salt solutions out to surface separations of 60 nm. 
Similar measurements with silica particles were done by Meagher [48]. Li et a/. 

extended the method in the sense that they measured the potential between two 
polystyrene particles [49] of which one was glued to the tip and one was stuck to a 
glass surface. All these measurements found fair agreement with potentials derived 
using the PB approach (some used linear equations others like Butt and Li et al. 
numerically solved the full non-linear equations). Excellent agreement was found by 
Hartley et af. [50] who not only measured the force-distance curves between silica 
spheres and mica and silica surfaces, but also independently determined the ~ 
potential of the spheres by electrophoresis measurements and of the surfaces by 
streaming potential measurements [9]. An example of their careful and accurate 
measurements is given in Figure 11. 

2.3 Total Internal Reflection Microscopy (TIRM) 
Prieve and coworkers [51, 52, 53] developed a method to measure the interaction 
force between a colloidal particle and a wall, which is referred to as total internal 
reflection microscopy (TIRM). The name is somewhat confusing as it was already 
used as a general microscopy technique where imaging relied on an evanescent field. 
When light is incident upon an interface from the more optically dense side (for 
instance glass) at an angle exceeding the critical or Brewster angle, total internal 
reflection occurs producing an evanescent wave in the less dense medium (e.g., air or 
water). If the interface is smooth no light is transmitted normal to the interface into 
the less dense medium. Imperfections the size of the wavelength or larger will scatter 
light and appear bright against a dark background. This way of imaging is used to 
inspect optical surfaces or as a special contrast technique in biology and is also 
abbreviated TIRM. Prieve et af. made use of the fact that the irregularity in the 
evanescent field could also be a colloidal particle. If such a particle will have a 
sufficiently large refractive index and is brought within a few thicknesses of the 
evanescent wave it can start scattering and thus transfer energy from the evanescent 
field into a propagating wave travelling away from the dense material. This situation 
is called 'frustrated total internal reflection' and Chew et af. [54] solved the Mie 
scattering problem of a single dielectric sphere by an evanescent wave. This solution 
can be used to accurately determine the height of a colloidal particle close to a wall. 

prism 

Figure 12 Schematic diagram showing the scattering cell for total internal retlection microsco[)y 
(TIRM) measurements on colloidal particles; the (photometric) microscope is not shwon [51]. 
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In this method a relatively large colloidal particle, e.g., a silica sphere with a 
diameter of 10 11m is allowed to sediment until the gravitational pull and the repulsive 
interaction forces with the wall are of even strength. Because of the Brownian motion, 
the particle will not be stationary but sample positions around this equilibrium point. 
These distances are measured as mentioned above and the potential between the 
particle and the wall can be evaluated around this equilibrium point by assuming a 
Boltzmann distribution of the distances. 

Brown et af. extended the technique by combining it with optical tweezers (see 
Appendix C) which give additional control over where the equilibrium position of the 
particle could be placed and thus were the potential could be sampled [55, 56, 57J. In 
addition the tweezers made it possible to measure the absolute separation distance 
between the sphere and the reflecting surface. 

Interaction potentials of polystyrene latex spheres of different size and at different 
ionic strengths were measured carefully by Bike et al. [58, 59J. They did not use 
tweezers, but were able to get absolute distance measurements. An example of the 
potentials, which were in good agreement with DL VO potentials, they obtained is 
given in Figure 13. 

Dynamic measurements of the hindered diffusion of the colloid can also quite 
easily be made by feeding the light to a correlator [51, 60J 
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Figure 13 Double-layer potential as measured with TIRM of 15 flm diameter latex sphere above 
glass as function of the ionic strength [59]. 

2.4 Direct Imaging 
The above mentioned methods always involve one component that is not of a 
colloidal size. Quite recent methods, almost all relying in some way or another on 
direct imaging of the particles, finally make it possible to measure force-distance 
curves between two colloidal particles and have the potential to be used even in the 
very relevant concentrated regime. However, to this date only a handful of 
measurements have been reported between two colloidal spheres in 3D in the very or 
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semi-dilute regime where only a few particles are interacting. It is expected though. 
that it is only a matter of time before the assumption of pair-wise additivity of 
colloidal interaction potentials can be tested experimentally under concentrated 
conditions. In the following we will briefly discuss the papers that have appeared 
already. 

The first papers [61, 62, 63], appeared in 1994 and the interaction potentials were 
extracted by using digital video analysis to obtain particle coordinates and an analysis 
based on the radial distribution function, g(r), to obtain the pair-wise inter particle 
interaction potential U(r) through the relationship: 

U(r) = -k8Tln(g(r) (42) 

The radial distribution function essentially gives the chance of observing a particle 
pair with a separation distance r, see the lectures by Briels. In general U(r) is not the 
effective pair potential, but the so-called potential of mean-force. This potential 
describes the potential of a pair of particles in the presence of the interactions with all 
the neighboring particles as background. Only in the limit of 'infinite' dilution when 
only isolated pairs of particles interact one obtains the effective pair potential. 

Fraden et al. analyzed the interactions between two spheres that were confined to 
an almost two-dimensional (2D) plane by the double layer repulsion of two glass 
walls separated by only several micron [61, 64]. The only way they could get good 
statistics was to measure at finite concentrations where more than two particles were 
interacting at the same time. In order to correct for these effects and obtain a true pair 
potential they used Brownian dynamics computer simulations in an iterative 
procedure. Carbajal-Tinocco et al. used the same experimental procedure as Fraden et 
aI. and also got similar results [65]. They measured also potentials at higher 2D 
concentrations and used the Ornstein-Zernike equation together with several closures 
to obtain the effective pair potential from the measured potential of mean force (see 
the lectures of Briels). These results will be discussed more fully in Section 3.4. 
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Vcrsmold el 01. analyzed their potentials at sufficiently low density that three body 
interactions could be neglected and they analyzed their separations at least 2 micron 
away from the glass walls [63J. To get good statistics more than 20.000 video pictures 
were analyzed. (However, they do not describe how it was possible to get accurate 
distance measurements, because an ordinary microscope was used and the particles 
were not confined in any way .) 
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Figure 14 Measurement of pair potential 
from direc t imaging and optical tweezers 
manipulation [66]. Top: Distribution of 
particle separations initially at ret) which 
evolved to ret + 33 ms). Deviations from 
the line are the result of interactions 
between the spheres. The density of 
points does not renect the probability of 
finding the spheres at a certain 
separation, but rather the frequency of 
which they were put there with the 
tweezers. Inset shows a his togram of the 
same data set but now normalized as a 
propagation matrix. Bottom: sample 
potential curve between two latex 
spheres in water. Fit is to a 'charge­
regulated' DLVO potential [66,67] . 

Also in 1994, Grier et al. presented interaction potentials between two charged 
colloids in water far enough in the bulk to exclude any wall effects [62]. They 
measured the potential by analyzing the statistics of the displacements of the colloids 
in a set time interval after they were first put at a specific initial separation with laser 
tweezers (see Appendix C) [66]. In this way they were sure to measure only pairs and 
still got good statistics relatively easily. There were also no problems to determine the 
true separations, because the tweezers confined the particles first in the focal plane. 
To give some numbers: around 20.000 images of sphere pairs taken in 1130 sec 
intervals suffice to measure an interaction potential with a 60 nm spatial resolution 
and 0.2 kT energy sensitivity over a range of 6 Jlm [66]. A sample measurement from 
their paper on the experimental details of the determination of the pair potentials is 
given in Figure 14 [()6]. (It should be men tioned here that some aspects of the 
procedure Grier ef al. use in their analysis are unclear [67]) . 

Of more recent date are measurements performed by Sugimoto et al. who did not 
use Eg. (42) to obtain U(r), but instead used the potential well created in the ccnter of 
the optical traps (sec Appendix C) to obtain the pair potential of latex spheres in water 
[68]. (Although not the potential of interest for these lectures , depiction forces 
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induced by polymers between a latex sphere and a glass wall have also been measured 
with optical tweezers [69]). 

The ability to measure interaction forces between two colloidal particles both in the 
bulk of a dispersion and in confinement, have already provided very interesting 
results. even though almost all were limited to the very dilute regime. These will be 
discussed in the Section 3.4. 

In this section two papers that make use of magnetic forces to measure colloidal 
force-distance curves are also worth mentioning, despite the fact that this method is at 
the moment limited to emulsion droplets with quite special properties. The emulsion 
droplets are filled with a ferrofluid, which can be magnetized in a magnetic field. The 
magnetic dipolar interactions can subsequently be used to 'handle' the particles in 
similar ways as can be done with the optical tweezers. Bibette et al. used the dipolar 
interactions to have the ferrofluid droplets, which interact without the magnetic fields 
as charged particles, self-organize in strings [70]. By changing the field strength the 
equilibrium distance between the magnetic dipoles could be balanced against the 
double-layer repulsion. By calibrating the dipole moments and measuring the inter 
particle distances in the chains through the Bragg reflection (but this could have also 
been done by imaging) force curves in agreement with DL VO were obtained. 'Weitz et 
al. used a variation of this method to measure attractive interactions as well. In order 
to do this they changed the geometry by forcing the particles in a 2D layer between 
two glass plates [71]. In this geometry the dipoles are repulsive. They obtained the 
attractive forces drawing the particles together after the magnetic field was switched 
off by analyzing the (stationary) velocity of the particles as a function of distance and 
converting this to force vs. distance with the known drag coefficient. 
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Appendix A The Principle of Archimedes: Effect of the suspension medium 

We will calculate the effect of the suspension medium on the Van der Waals forces 
between two bodies, but the principle used is quite general and we will only use the 
additivity assumption. In order to calculate the interactions between the two bodies 1 
and 2 dispersed in 3 we consider the thermodynamic path depicted in Figure 25. In the 
initial state bodies 1 and 2 are immersed in 3 but infinitely far apart. We can regard 
the molecules 3 in the place where body I will finally be as constituting a 'ghost­
body' 3 as depicted. Now lets remove both body 1 and 3 from the medium to vacuum. 
The change in free energy for this step is: 

(44) 

where D is the distance from 'body 3' to body 2 and Fi is the interaction energy of the 
isolated body i with a universe of medium 3. The energy change in removing body 3 
not just - F3 but -CFJ-VJj(D) + V32CD» as its environment is not just pure 3. The 
energy V32CD) - V]JCD) represents the change in the interaction energy of body 3 with 
its environment, when the molecules of 3 that would have occupied the position of 
body 2 are replaced by body 2. In the second step body 3 and body 1 are placed back 
into the medium but with their positions changed. The free energy change of this 
second process is: 

(45) 

The interaction energy V123CD) of bodies 1 and 2 at separation D immersed in medium 
3 is given by 

V123 (D) = M'+M = VI2 (D)+ V33 (D)- VI3(D)- V31 (D) 
(46) 

Because of the pairwise summation method: Vk;(D) = -Akj V(D) where V(D) is a 
positive function only of the geometry of the system and independent of the nature of 
bodies I and 2 and Akj is the vacuum Hamaker constant. Thus Eq. (20) is obtained in 
which 

(47) 

Figure 25 Thermodynamic path for calculating the interaction energy between two 
bodies 1 and 2 immersed in a third medium 3 [6]. 

I'".(f) )~ 1r+1r 
~V,.(f) )+V,,(f) )-v,,({) )-\',.(1)) 
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Appendix B Derjaguin Approximation 

Derjaguin realized that when surfaces are uniformly curved, their (attractive) force 
relates to the interaction energy between two planar surfaces. As an example 
demonstrating this principle (see [7]) we will consider the interaction (here taken to 
be Van der Waals) between a sphere with radius R at separations h + R, which will be 
taken to be very small, from a half-space as given in Figure 26. Thus we assume in 
the deri vation that R > > h. Then we can calculate the force F acting on the sphere by 
considering the interaction energy V at two positions displaced by an infinitesimal 
distance dh: 

F = _V_C_h )_-_V_( h_+_d_h_) 

dh 
(48) 

When hlR is small, we need only to consider the shell with thickness dh (in the ::. 
direction) closest to the half-space; the shell on the other side of the sphere makes a 
negligible contribution to the force because of the large separation of the interaction 
potential contribution. 

At a lateral distance r from the point of closest approach of the sphere, the shell is 
at a distance hi from the surface. From hi to hi + dh there exists a circular strip with 
volume 2nr dr dh . From simple geometry it follows that hi = h + //2R as long as R 
» r. We know the interaction energy per unit volume as Vdh). As in Eq. (48) we 
obtain the total force by integrating over r so that 

R=.oo 

F;2 = f 2npV12(~)d r 
(49) 

o 
= 

= 2npR f V;2(~)d ~ 
h 

Where we have used the geometrical relation between hi and r and extended the upper 
integration limit because we assume Vdh) is negligible for hi of order R. If we 
compare Eq. (49) with the interaction energy between two planar surfaces, Eq. (18). 
The final integration step leading to Eq. (18) amounts to an integration over planar 
sheets of thickness dZ2 so that 

= 

V I2 (h) = area f PVI2 CZ )d Z 
o 

(50) 

with Vi2 is the interaction energy between a molecule and a half-space. The integrals 
in Eqs. (55) and (50) are the same except for the integration variables and thus 

(51 ) 

as long as radius R is large enough compared to the range of Vdh). 
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In the derivation only the additivity assumption is used, not the interactions self, 
therefore this result is quite general as long as the potentials are additive and the range 
is short compared to R. Similar equations can be derived for two crossed cylinders 
with radii R I and R2: 

And for two spheres: 

R 

Sphere 

--------.... 

Ring of Radius r 
Volume 2rcr drdh 

Figure 26 Calculating the force between a sphere and a half-space. 

(52) 

(53) 
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Appendix C Optical Tweezers or Single-beam gradient optical traps 

The ability to measure forces in the pN range over nm distances with light was 
initiated by Ashkin in the early 70's when he showed that it is possible to move and 
trap atoms and dielectric particles with a highly focused laser beam [134]. The 
particle refractive index, np, has to be higher than that of the dispersion medium, nllZ, 
or, m= nlnm, has to be larger than 1. There are several regimes, depending on the 
ratio of the particle diameter, a, and the wavelength in the medium, A, and m, in 
which these forces can be calculated or approximated. 

The first regime of electromagnetic radiation interacting with a dielectric sphere is 
called the Rayleigh regime. A Rayleigh scatterer is a particle with a size much smaller 
than the wavelength, a « A. In this regime the particle can be replaced by an 
effective dipole moment. If we consider the most simple optical trap formed by 
focusing a laser beam with a Gaussian intensity profile across the beam (e.g., like the 
fundamental spatial mode of a laser, the TEMoo mode) propagating along the z 
direction and with polarization in the x direction than we can distinguish for this 
scattering regime two kinds of forces acting on the particle. These are the gradient and 
scattering forces. The gradient force tends to pull the particle into the region of 
highest intensity thus minimizing the energy of the dielectric sphere in the 
electromagnetic field. In the transverse directions the gradient is due to the Gaussian 
intensity profile. In the z direction the presence of a focal point creates the gradient. 
The second force, the scattering force, is due to radiation pressure and destabilizes 
along the z-direction by pushing the particle out of the trap. There is, however, a small 
region where the gradient force exceeds the radiation pressure, thus defining the 
trapping region. Although most particles of interest will not fall in the Rayleigh 
regime, it is only for this regime that analytical results can be given. We will present 
these formula's, because they give at least a feeling for the relevant parameters of the 
problem. Under the above mentioned assumptions the gradient force, Fgrad on a 
particle is given by [135]: 

F = 41ta 3 ( m 
2 

- 1 ). VI 
grad C m2 +2 

(54) 

here c is the velocity of light in vacuum, I the light intensity. The scattering force is 
given by [135J: 

(55) 

The most important conclusions, which are valid in the other regimes as well, that can 
be drawn from these equations is that there is an unequal dependence of the forces on 
the sphere size and refractive index and that there is an optimal radius and refractive 
index difference for trapping of spheres. 

On the other extreme are particles that are (much) larger than A. Here one enters the 
regime of geometrical optics and the forces can be calculated (numerically) by using 
ray optics and summing over all directions of the highly focused light. Again the 
forces can be decomposed in a trapping gradient contribution and a destabilizing 
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scatlering contribution [136]. These calculations can be summarized by stating that 
the optimal refractive index difference is close to m = 1.6. (In this regime the results 
are not depending on the radius anymore). It is likely that the ray optics calculations 
still give a reasonable estimate at particle sizes of about SA [136]. 

In the intermediate regime, the most relevant for most applications of the tweezers, 
the particle size is of the order of the wavelength (m is relatively large) and the 
interactions with light are called Mie scattering. In this regime the forces are by far 
the most difficult to calculate and for the geometry of a highly focused light beam 
these calculations have not yet been done! For Mie scattering in the case of a plane 
wave of incidence, it is still possible to find an analytical solution, although in the 
form of a slowly converging series. For most other particle forms or a strongly 
converging light beam this is not the case. 

The development of optical tweezers and very sensitive position detection has 
benefited a lot from researchers from the biophysical community. In this field there 

Figure 27 Schematic diagram of 
a single beam optical trap or a 
pair of optical tweezers [140]. 

have already been quite a number of successful measurements of very small forces (~ 
I pN) on bio-molecules and a lot of quite advanced manipulations with the optical 
tweezers. To build up a simple set of tweezers is not hard and well described in the 
literature [137, 138, 139]. Recently, tweezers are finding their way to the colloid 
community as well [140]. 
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Soft Condensed Matter 2005 Problems Chapter 1 
 
 
1) In order to get a feeling of where the formula for the Brownian time (Eq. 1.5 ) comes 
from, we can derive it for a simpler case already encountered in the field of the 
mechanics of point objects. We want to calculate how long it takes if drops a ball with 
radius R and buoyant mass m in a liquid. Assume that the friction factor f is proportional 
to the speed v and is given by 6πηR.  

a) What is the terminal velocity of the ball if it is give that the η = 1 * 10-2 Pa.s and 
that the buoyant mass of the ball is 1 kg and its radius 1 m (g = 10 m/s2). 

b) Derive an equation for the relaxation time mentioned by solving the second 
order differential equation that describes this situation.  

c) What is the relaxation time for the situation mentioned in a)? 
d) What is the terminal velocity and the relaxation time for a colloidal sphere with a 

radius of 1 µm, assume a particle density difference of 1 g/cm3 with the solvent? 
e) What distance does the particle travel if it is assumed to diffuse Brownian during 

this time? 
f) What is the gravitational height of the same colloidal sphere? 
 
 

2) Let us assume the human lifetime is extended to 10.000 year, what size of particle 
would one still consider colloidal? What will ultimately limit the size of a colloid? 
 
 
3) The rotational diffusion constant of a spherical particle with radius ‘a’ in a medium 
with viscosity η is given by: 

0 38
r Bk T

D
aπη

=

 
 
What particle size would you choose if you wish to study their rotational diffusion 
experimentally, for instance in an aqueous (η = 1 * 10-2 Pa.s [Pa·s]) system? 
 
 
4) a) Show that for colloidal particles dispersed in a liquid, the equilibrium number of 

particles, N, at a height h above a reference level, h0, is given by: 
 

 
 
where N0 is the number of particles at height h0 and m’ is the mass of fluid 
displaced by a particle of mass m. 

]/)()'(exp[ 00 TkhhgmmNN B−−−=

b) Svedberg (1928) gives the following Table for the sedimentation equilibrium of a 
gold sol under gravity: 

 
Height (µm) Number of particles Height (µm) Number of particles 
0 889 600 217 
100 692 700 185 
200 572 800 152 
300 426 900 125 
400 357 1000 108 
500 253 1100 78 
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Assume the particles have radius 21 nm and density 19.3 g·cm-3 and the 
temperature is 20 ˚C. Estimate the Boltzmann constant, k, from the equation derived 
in (a) and then calculate Avogadro’s number, NA, assuming R=8.31 J·K-1·mol-1. 

 
c) Repeat the calculation with a radius of 22 nm and note how sensitive the 
answer is to this variable. 
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Problems

1. The First and Second Law of Thermodynamics, and thermodynamic potentials. Consider a ther-
modynamic system of N identical particles in a volume V with energy E. The temperature is
T , the pressure p, and the chemical potential is µ. This system is subject to a process such that the
energy changes by a (very small) amount dE due to the uptake of a (very small) amount of heat
q, due to the uptake of a (very small) number of particles dN , and due to a (very small) change of
volume dV .

(a) How are these changes related according to First Law?

(b) If we assume that the process is reversible, what is the entropy change dS of the system
according to the Second Law?

(c) Show that dE = TdS − pdV + µdN , and conclude/show that the thermodynamic properties
of the system such as T , p and µ would follow if the function E(S, V,N) were known. Note
that in this picture S, V and N are the independent variables to describe the system, and T ,
p, and µ follow by differentiation of E(S, V,N) .

(d) It is not always convenient to deal with S as an independent thermodynamic parameter, in
fact one often prefers T as the independent one. Analyse the combination d(E − TS) ≡ dF
and show that F (N,V, T ) can generate the complete thermodynamics of the system, i.e. µ, p,
and S, from the independent variables N , V , and T . Note that F is called the Helmholtz free
energy, it is the thermodynamic potential of the independent variables N , V , and T .

(e) Which thermodynamic function must be used for independent (N, p, T )? And (µ, V, T )? And
(N, p, S)?

2. Phase space of a single particle in 1 dimension Consider a classical point particle that can only
move on a 1 dimensional line. We denote the position by x and the momentum by px; the to-
tal energy of the particle is E and is assumed fixed —so the system is assumed closed. The mass
of the particle is m.

(a) Sketch the phase-space trajectory of this particle in the case that it is confined to a ”box” with
two hard walls, one at x = 0 and the other at x = L, with L the size of the 1-dimensional box.

(b) Sketch the phase-space trajectory of this particle in the case that it is trapped by a harmonic
potential V (x) = Cx2/2 with C the spring constant.

3. Partition functions and the Gaussian integral It is well-known that the Gaussian integral is given
by

∫∞
−∞ dx exp[−ax2] =

√
π/a for any a > 0.

(a) Use this to calculate the canonical partition function Z1 of a single classical point particle in a
1-dimensional box of length L (see previous question) at temperature T , where Z1 is defined
by

Z1(T,L) =
1
h

∫ ∞

−∞
dpx

∫ L

0

dx exp[−p2
x/(2mkBT )], (1.1)

with h Planck’s constant and m the mass of the particle.

(b) Rewrite your answer of (a) as Z1(T,L) = L/Λ, and give Λ.

(c) The free energy of this single particle is given by F1 = −kBT lnZ1, and its entropy by S1 =
−∂F1/∂T . Calculate F1 and S1, and also the average energy E1 using that F1 = E1 − TS1.
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2

(d) Write down the canonical partition function Z3 for a single particle in a three-dimensional
cubic box of volume V = L × L × L, and show that it equals Z3 = Z3

1 . Calculate the free
energy, entropy, and average energy of this three-dimensional case.

4. Virial coefficients of model systems.

a. Calculate the second virial coefficient of the hard-sphere (HS) system (diameter σ), and of the
square-well (SW) system (diameter σ, well depth −ε < 0, and well width λσ with λ > 1).
Check for the limiting cases ε→ 0 and λ→ 1.

b. Calculate B3 for hard spheres.

5. The three routes that lead from g(r) to thermodynamics are called the virial, the caloric, and the
compressibility route. The first two of these follow from the partition function Z(N,V, T ) =
Q(N,V, T )/N !Λ3N , with Q(N,V, T ) =

∫
V
drN exp[−

∑N
i<j φ(rij)/kT ] the configuration integral.

a. Show first that βp = (∂ logQ/∂V )N,T . Go over to scaled Cartesian coordinates siα = riα/V
1/3,

i.e. such that dsi = dri/V , and show that
βp = N/V − 1

6kTV

∫
V
dr1dr2r12φ

′(r12)ρ(2)(r1, r2). Reduce this for a homogeneous and isotropic
system to the virial-route expression in the notes.

b. Show that E = 〈H〉 = −(∂ logZ/∂β)N,V , and rewrite this to the expression for the caloric
route in the notes.

Note that the virial and caloric route only hold for a pair wise interaction Hamiltonian; the com-
pressibility route is more generally valid.

6. Van der Waals’ approximation to the free energy density f = F/V of a one-component system of
density ρ and temperature T is given by

f = ρkT

(
log

ρΛ3

1− bρ
− 1

)
− aρ2,

with a and b positive constants.

a. Give the dimension and physical meaning of a and b.

b. Calculate the pressure p and the chemical potential µ from f .

c. Calculate the critical density ρc and the critical temperature Tc. Is it crucial that a, b > 0?

d. Calculate the critical pressure pc, and show that pc/(ρckTc) = 3/8 independent from a,b.
Compare this with the experimental values [from: Hirschfelder, Curtis and Bird, “Molecular
Theory of Gases and Liquids”]:
substance pc/ρckTc substance pc/ρckTc

He 0.300 Xe 0.293
H2 0.304 N2 0.292
Ne 0.296 O2 0.292
Ar 0.291 CH4 0.290

e. Sketch p(ρ) and µ(ρ) for T > Tc, T = Tc, and T < Tc. Describe how the condition for gas-
liquid equilibrium at T < Tc can be determined, in principle and in practise, from p(ρ, T ) and
µ(ρ, T ).

7. The hard-sphere direct correlation function c(r) is, within the Percus-Yevick (PY) approximation,
given by an expression in the notes.

a. Show that the compressibility route can be written as

kT
(∂ρ
∂p

)
T

= lim
q→0

S(q) =
1

1− ρ
∫
drc(r)

.

b. Combining the PY-form of c(r) with the result of a. yields an expression for the pressure given
by pc = ρkT (1 + η + η2)(1 − η)−3, where the index “c” denotes that this result stems from
the compressibility route. Confirm this result, expand it in powers of η, and compare at which
order it no longer agrees with the hard-sphere virial expansion (given in the notes).

-226-



3

c. What is the source of the disagreement with the virial expansion?

A very accurate hard-sphere free energy expression is due to Carnahan and Starling and reads

FCS

NkT
= log ρΛ3 − 1 +

4η − 3η2

(1− η)2
.

d. Calculate the hard-sphere pressure pCS and chemical potential µCS that follow from FCS .

8. The orientation-averaged second virial coefficient of two hard spherocylinders is given by Biso
2 =

4v0+L2D/(4π)2
∫
dω̂dω̂′| sin γ| with γ the angle between ω̂ and ω̂′. Check this expression, calculate

Biso
2 , and discuss the importance of the first term 4v0 as a function of L/D.

9. In a simple model of a system of rodlike particles one views the particles as rectangular blocks of
length L and thickness D, i.e. of the form L × D × D. A further simplification is to restrict the
number of possible orientations of each rod to three, such that the main axes of the rods can only
point in the direction of a laboratory frame x̂α, α = 1, 2, 3. A particle with orientation α has its
long axis along x̂α. The interaction between the particles is hard, i.e. overlap is not allowed. The
Helmoltz free energy F of N = ρV of such rods in a volume V at temperature T is given, within
the second virial approximation, by

F

V kT
=

3∑
α=1

ρα

(
log ραV − 1

)
+

3∑
α=1

3∑
α′=1

Bαα′ραρα′ ,

with ρα the density of particles with orientation α, and V the (irrelevant) thermal volume.

a. Calculate the second virial coefficients Bαα ≡ B‖ and Bαᾱ ≡ B⊥ for a pair of parallel and
perpendicular rods, respectively. [Here ᾱ stands for “not-α”, i.e. if α = 1 then ᾱ = 2 or 3,
etc.].

b. Consider from now the “needle” limit L/D → ∞. First calculate B‖/L
2D and B⊥/L

2D
in this limit, and then the dimensionless free energy ψ = FL2D/V kT as a function of the
dimensionless densities cα = L2Dρα.

c. Define the nematic order parameter S by c3 = c(1 + 2S)/3 and c1 = c2 = c(1 − S)/3, with
c = ρL2D the total dimensionless density. Explain this nomenclature.

d. Calculate ψ(c, S). For a given c one needs to determine S such that it minimises ψ (at the
fixed c). Show that S = 0 is a solution of (∂ψ/∂S)c = 0 for any c. With which phase do you
associate S = 0?

e. The result of d. does not guarantee that S = 0 yields a minimum of ψ. Argue on the basis of
(∂2ψ/∂S2)c at S = 0 that ψ is minimised by S 6= 0 at sufficiently high c. Which phase do you
associate with S 6= 0?

f. Which equations should be solved (numerically) in the determination of phase coexistence of
an isotropic phase (density cI and order parameter SI) and a nematic phase (density cN and
order parameter SN )?
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4. Problems  
 
1) How does equation (4.11) change if the incident light has perpendicular polarization? 

And parallel?  
 
2) Calculate the scattering cross section of a Rayleigh scatterer. 
 
3) Derive (4.14). 
 
4) The form factor of a clay particle 

Clay particles have the shape of a uniform, but very small, thin disk. Propose a method 
to measure the radius R of the disks with light scattering. Derive a formula with which to 
extract R from the measured data. 

 
5) Scattering by a Gaussian polymer coil 

Debye pointed out in 1947 that when calculating the scattering by a polymer molecule it 
is convenient to consider the basic scattering particle to be the statistical chain segment. 
Interference between waves scattered from different chain segments is then incorporated 
into the structure factor. The chain segment is usually so small compared to the 
wavelength of light that it can be considered a point scatterer (i.e. its form factor equals 
unity.) If the polymer solution is dilute then only interference between segments in the 
same polymer molecule is important. The structure factor (4.27) depends only on the 
difference vector rjk between two such segments. For a Gaussian polymer coil the 
probability density function for this vector is given by (see the Chapter on polymers) 
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where b is the segment length. 
a. Show that the form factor for a Gaussian coil with N segments can be written as 

 ( )
2 21

6

2

1 q b j k

j k

P e
N
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Hint: Contrary to most problems involving spherical symmetry the integral is best done 
in normal Cartesian coordinates. The integrals can be performed by completing the 
squares in the exponent and making use of the integral 

  
2axe dx aπ
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=∫ . 

b. Next, evaluate (P2) by approximating the sums with integrals. Show that 

 ( ) (2

2
1yP e

y
− )y= − +q , (P3) 

where  
 2 21

6y Nq b= . (P4) 

c. Now derive a lowest order in q approximation for the form factor and confirm that the 
radius of gyration of a Gaussian chain is given by 
 2 1

6g
2R Nb= . (P5) 
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6) Determine the systematic vanishings for a body-centered cubic lattice (bcc). How would 
you distinguish bcc from fcc? 

 
7) The graph shows small-angle X-ray scattering 

data on two suspensions of colloidal silica 
spheres in the solvent cyclohexane. The upper 
curve is a sample with a concentration of 0.714 
g/cm3, the lower curve 0.01 g/cm3. The vertical 
axis shows the scattered intensity I and the 
horizontal axis shows the scattering vector K 
(multiplied by 100).  
 

a. Estimate the size of the spheres used in this 
experiment. 

b. Explain why the upper curve has a peak in the 
low-K range, while the lower curve does not. 

c. Why do the curves look almost the same in the 
high-K range? 

d. Estimate the average distance between the 
particles in the suspension. 

e. How would the measured data change if a silica 
concentration of 1.0 g/cm3 is used? 

 
 
8) Brownian motion 
a. Find an expression for the probability density function P(∆r,t) describing the 

displacement of a Brownian particle in a time t. 

b. Show that the mean square displacement is given by 2 6r D∆ = t . 

 
9) The Random Walk 

Consider the following idealization of a random walk in one dimension. A particle starts 
in the origin and makes a step of size lx randomly in the positive or negative x direction, 
so that: 
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It is clear that, after a large number N of steps, the expectation value of the x coordinate 
of the particle is zero. 

a. Now show that 

 2 2
N xx Nl= . 

b. Assuming that the particle travels ballistically with a speed v, show that 

 2
xx vl t= .  

c. Next, consider a random walk in three dimensions. Furthermore, allow the random walk 
step size l to be selected from a probability distribution P(l). Show that  

 
2

2
l

r vt
l

= . (0.1) 
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d. For diffusion of molecules in a dilute gas the pdf for the step size P(l) can be found by 
considering the collision probability between molecules. Consider an ensemble of 
molecules that have just undergone a collision. After traveling a distance l there are N(l) 
molecules left that have gone without colliding a second time. The number of these 
molecules undergoing another collision in the next dl meters is then proportional to dl 
and N(l). Verify that this leads to 

 ( )
mfl l

mf

e
P l

l

−

= , 

 where mfl = l  is called the mean-free path of the molecules. 

e. Finally, show that the diffusion coefficient of these molecules is given by the following 
formula, which is well known in the kinetic theory of gases: 
 1

3 mfD vl= . (0.2) 

 
10) Suppose that a dilute colloidal dispersion contains equal numbers of two types of 

spherical particles. One population has a radius of 20 nm, the other 40 nm. Describe the 
form of the intensity autocorrelation function that one would measure with DLS.  
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1. The Clausius-Clapeyron equation

(
dP

dT

)

1−2coexistence

=
`12

T (v1 − v2)

describes the temperature-pressure relation of phase coexistence of a
phase 1 (e.g. a gas) and a phase 2 (e.g. a liquid) of a simple one-
component system. Here `12 ≡ T (s1− s2) is the so-called latent heat,
which is taken up by the system during the phase transformation from
phase 1 to phase 2, and vi is the volume per particle in phase i = 1, 2.
Here we derive this.

a. Two coexisting phases must satisfy the conditions of thermal,
mechanical, and chemical equilibrium. What are these condi-
tions?

b First consider a state (p, T ) for which µ1(p, T ) = µ2(p, T ), with
µi the chemical potential in phase i = 1, 2. [Recall that µ =
µ(p, T ), e.g. from the Gibbs-Duhem relation.] Now manipu-
late the condition for phase coexistence at another temperature
T + dT and pressure p + dp to obtain the Clausius-Clapeyron
equation.

2. Ideal gas
The Hamiltonian for an ideal gas is given by

H =
N∑

i=1

p2
i

2m
(1)

The ideal gas is often used as a reference system of which one can
calculate the free energy analytically.

a. Calculate the canonical partition function Z(N, V, T ).

b. Calculate the Helmholtz free energy, the pressure, the chemical
potential, and the averaged energy.

c. Calculate the averaged energy and show that the energy fluctu-
ations are given by

〈(E − 〈E〉)2〉 =
3
2
N(kBT )2 (2)

Show that the relative energy fluctuations are small for large N .
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2

3. The three-dimenional hard-sphere fluid is described by the Hamilto-
nian

H(Γ) =
N∑

i=1

p2
i

2m
+ Φ(rN ) with Φ(rN ) =

N∑

i<j

φHS(rij),

where φHS(r) = ∞ for r < σ and 0 if r > σ. The volume of a sphere
is v0 = (π/6)σ3.

a. Give the canonical partition function Z(N, V, T ) for this system,
and perform the momentum integrations. The remaining factor
is the configuration integral

Q(N,V, T ) =
∫

V

dr1 · · ·
∫

V

drN exp[−βΦ].

b. Calculate the energy E and the specific heat CV ≡ (∂E/∂T )V,N

exactly (!).
c. In order to obtain the Helmholtz free energy we need to calculate

Q. Argue to what extent the following two approximations are
reasonable:

(i) Q(N, V, T ) ' V (V − 8v0)(V − 2 · 8v0) · · · (V − (N − 1) · 8v0);
(ii) Q(N, V, T ) ' (V − 4Nv0)N .

d. Use approximation (ii) to calculate the pressure p, and compare
this with the Van der Waals’ equation of state.

e. Does method (ii) yield the correct hard-sphere virial coefficients
B2 and B3?

4. Carnahan-Starling equation of state for hard spheres The virial ex-
pansion for the pressure is given by (see Eq. 3.1):

P

ρkBT
= 1 + B2ρ + B3ρ

3 + B4ρ
3 + · · · (3)

For hard spheres B2, B3, B4 are known analytically, while higher order
terms have been calculated by Monte Carlo simulations:

B2 = 4v0

B3 = 10v2
0

B4 = 18.36v3
0

B5 = 28.24v4
0

B6 = 39.53v5
0

B7 = 56.52v6
0 (4)
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3

with v0 = π/6σ3 the volume of a single hard sphere with diameter σ.

a. Check that the virial coefficients can be approximated remarkably
well with Bn+1 = (n2 + 3n)vn

0 .

b. Show that by using the expansion:

S0 =
∞∑

n=1

ηn =
η

1− η
(5)

one can derive:

S1 =
∞∑

n=1

nηn =
dS0

dη
− 1− S0

S2 =
∞∑

n=1

n2ηn =
d2S0

dη2
+ 1− 3

dS0

dη
+ S0 (6)

c. Show that

P

ρkBT
= 1 +

∞∑
n=1

(n2 + 3n)ηn (7)

reduces to the Carnahan-Starling equation of state Eq. (3.54).
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9. DLVO Potential & Techniques to Measure Interaction Forces  
 
 
1)  Show that if the interaction potential between molecules are of the form C/rn for all distances, 

the energy of that molecule will depend on the shape of the container if n≤3. (Why does the 
same argument not hold for the free energy?) 

 
 
2)  Show that for two weakly interacting dipoles the Boltzmann averaged first order 

approximation to the energy is of the form 1/r6. 
 
 
3a) Show that the interaction energy of an atom A with a permanent dipole with moment m1 with 

an atom B with a polarizability α2 is given by: 
 

 
2

21 2
2 6

0

1( , ) 1 3cos
2 (4 )

m
w r

r

αθ θ
πεε

⎡ ⎤= − +⎣ ⎦  

 
Where θ is the angle between the dipole and the distance vector r between the atoms.  

3b) Average this energy rotationally to arrive at the 1/r6 term for the induction or Debye forces. 
 
 
4)  Calculate the interaction energy between two infinite half-spaces using Hamaker’s approach 

of pair-wise summation of 1/r6 interactions (note that this energy needs to be given per unit 
surface area).  

 
 
5a) Calculate the Van der Waals interaction energy between two identical spheres with radius a a 

distance h apart using pair-wise summation. Note that in this equation the interaction depends 
only on h/a (as it should for scale invariant 1/r6 potentials).  

5b) What is the limiting formula for distances h/a << 1? 
5c) Show that this limiting form is compatible with the Derjaguin approximation between two 

spheres.  
5d) Check how good this limiting formula is by calculating the interaction at a distance h=0.01a.  
 
 
6a) Colloidal particles often aggregate in non-polar liquids (hydrocarbons, oils) because of the 

attractive Van der Waals forces between them. This is often a nuisance but can be prevented 
by coating the particles with a surfactant or polymer layer whose refractive index matches that 
of the liquids. Explain this phenomenon.  

6b) At an ACS conference Dr. X from Colloids Corp. describes a colloidal dispersion of silica 
spheres (diameter 0.5 µm, smooth surface) in oil, where by coating the spheres with a 
‘matching layer’ of surfactant, the depth of the potential well was reduced by a factor 10 as 
ascertained by light scattering measurements. When asked about the thickness of the layer, Dr. 
X replied that this is proprietary information. What was the thickness of the layer? 

 
7a) Show that the non-linear PB equation for a flat plate and 1-1 electrolyte can be written in 

dimensionless units (X=xκ, and Φ=eψ/kT) as: 
 

  
21 c

2
d d d

dX dX dX

oshΦ Φ⎛ ⎞ =⎜ ⎟
⎝ ⎠
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7b) Solve this equation and show that its solution is: 
 

  0 0
0

0

12ln    with  tanh
1 4

X

X

t e
t

t e

−

−

⎛ ⎞+ Φ⎛ ⎞Φ = =⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠
 

 
7c) Show that for Φ <<1 this equation reduces to the DH limiting case (Eq. 32). 
7d) Another interesting limiting case is obtained for large X. Show that in this case the potential 

can be approximated with: 
 

04 Xt e−Φ =  
 
7e) Interpret the physical meaning of the (limit of) the prefactor. 
 
 
8) Use the equation derived at 7d) in combination with the superposition approximation (using the 

force method) and the Derjaguin approximation for spheres to obtain the following free 
energy of interaction between two identical spheres (for distances κ-1 << x << a) at a constant 
surface potential (note the different functional form as compared with Eq. 39): 

 

  2
0( ) 4 h

dlo
Bj

a
V h kT t e

l
κ−=  

 
with the Bjerrum length as defined in Chapter 1 and h the distance between the spheres. 
 
 
9) If we combine the Van der Waals forces for short distances between spheres (means also in the 

Derjaguin approximation) with the Equation derived in problem 8 we get for this limit of the 
DLVO potential:  

 

  2
0( ) 4

12
effh

Bj

A aa
V h kT t e

l h
κ−= −  

 
We can now analyze this equation for conditions of stability between the spheres. 
 9a) First show for what conditions this equation has a maximum. 

Let’s now analyze a few concrete examples. Example 1: Aeff = 20 x 10-20 J (~50 kT) and κ-1 = 
10 nm (10-3

 M 1-1 electrolyte in water, ε~80). 
9b) For what surface potentials will there be a maximum in the stability curve? 

Example 2: Aeff = 20 x 10-20 J (~50 kT) and Φ0=1. 
9b) For what range of 1-1 salt concentration will there be a maximum in the DLVO potential? 
9c) Are the values given for 9b still within the approximations made in deriving the DLVO 

potential used? 
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