Final Test
 Motion and Manipulation

January 3, 2007
9:00-11:00

Note: It is not allowed to consult books, notes, slides, etc. Fill out your name and student number on each page you hand in. The test consists of six exercises. Motivate all your answers.

1: Geometric Modeling (1.5)

(a.) Consider the tetrahedron O with vertices $p_{1}=(0,0,0), p_{2}=(1,0,0), p_{3}=(0,1,0)$, and $p_{4}=$ $(0,0,1)$. Define O as an intersection of closed half-spaces $H_{i}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f_{i}(x, y, z) \leqslant 0\right\}$.
(b.) Give an example of a non-convex semi-algebraic set O^{\prime} that can be written as the intersection of a set $H_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid f_{1}(x, y) \leqslant 0\right\}$ and a set $H_{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid f_{2}(x, y) \leqslant 0\right\}$. Explain your answer.

2: Configuration Space (1.5)

(a.) Determine the dimension of the configuration space for a system of three independentlymoving square robots of which the first can rotate and translate, the second can only translate, and the third can only rotate.
(b.) Construct the Minkowski sum of a line segment s_{1} with endpoints $(0,0)$ and $(0,1)$ and a line segment s_{2} with endpoints $(1,1)$ and $(2,2)$.
(c.) Give a tight upper bound on the combinatorial complexity of the Minkowski sum of a convex polygon with n vertices and a non-convex polygon with n vertices.

3: Kinematics (2.0)

(a.) We are given a fixed orthonormal frame $F=\left\{f^{1}, f^{2}, f^{3}\right\}$ and a mobile orthornormal frame $M=\left\{m^{1}, m^{2}, m^{3}\right\}$. Initially the frames M and F coincide. We rotate M about f^{1} by $\pi / 3$ radians, and then translate M along f^{2} by 4 units. Determine the homogeneous transformation matrix that maps mobile M coordinates into fixed F coordinates. Transform the M coordinates $(0,0,0)$ into F coordinates.
(b.) We are given a fixed orthonormal frame $F=\left\{f^{1}, f^{2}, f^{3}\right\}$ and a mobile orthornormal frame $M=\left\{m^{1}, m^{2}, m^{3}\right\}$. Initially the frames M and F coincide. We rotate M about f^{1} by $\pi / 6$ radians, and then translate M along m^{3} by 3 units. Determine the homogeneous transformation matrix that maps mobile M coordinates into fixed F coordinates. Transform the M coordinates (1, 1, 1) into F coordinates.

4: Combinatorial Motion Planning (2.0)

Draw the four curves

$$
\begin{gathered}
c_{1}=\left\{(x, y) \mid x^{2}+y^{2}-4=0\right\}, \quad c_{2}=\left\{(x, y) \mid x-y^{2}-4=0\right\}, \\
c_{3}=\{(x, y) \mid x-y=0\}, \quad c_{4}=\{(x, y) \mid x+y-6=0\}
\end{gathered}
$$

and construct the cylindrical algebraic decomposition (or Collins' decomposition) of 2D space induced by these curves. How many two-dimensional cells do we obtain in this case?

5: Collision Detection (1.0)

Name one advantage of the use of voxel grids over kd-trees, and one advantage of the use of kd-trees over voxel grids for collision detection.

6: Manipulation (2.0)

Consider the object O given by
$O=\{(x, y) \mid-x-4 \leqslant 0\} \cap\{(x, y) \mid-y-2 \leqslant 0\} \cap\{(x, y) \mid y-2 \leqslant 0\} \cap\{(x, y) \mid x+y-2 \leqslant 0\}$.
(a.) Place four frictionless point contacts along the boundary of O that jointly put O in form closure. Apply Reuleaux' graphical analysis of instantaneous velocity centers to justify your answer.
(b.) Determine the three-dimensional wrench vectors corresponding to point contacts at $(-4,0)$, $(-2,2),(-2,-2)$, and $(0,-2)$ respectively. Draw these wrenches in wrench space and determine whether or not the contacts put O in form closure. Explain your answer.

