Exam Pattern Recognition

9 May 2005, 15-17 hour

Remarks:

i It is not allowed to consult books, notes, telephone, etc., or someone else's answers.
ii Put your name on every sheet, and on the first sheet your student number as well.

iii Always explain your answer, used symbols, etc.; be precise.

iv All questions weight equal.
iv Answers may be given in Dutch or English.

1. Statistics
(a) What is a covariance matrix?
(b) What is a mixed probability density function?

Sketch of the answer:
(a) Extent to which two variables vary together, deviate from mean. $\operatorname{Cov}\left(x_{i}, x_{j}\right)=$ $E\left(\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right)$, where E is the expectation, and μ_{i} is the mean value of variable x_{i}.
(b) $f(x)=\sum P_{i} f_{i}$, with $P_{i}=P\left(\omega_{i}\right)$ the a priori probability, and $f_{i}(x)=P\left(x \mid \omega_{i}\right)$ the class-conditional probability density.
2. Feature analysis

What is non-parametric supervised learning? How works the k-nearest neighbor estimator?

Sketch of the answer:
Learning a distribution function, when model of that function is not known.

$$
\hat{f}(x)=\frac{n}{N V}
$$

where $n=k$ and V is the volume of the smallest sphere that contains k training objects. Note: a k-nearest neighbor pdf estimator is not a k-nearest neighbor classifier!
3. Classifier

What is a proportional classifier?
Sketch of the answer:
A classifier that does not always assign the same feature vector to the same class. Rather, it assigns to a class with a chance that is proportional to the probability of that feature vector. Assign to class A with probability q_{A} :

$$
q_{A}=\frac{P_{A} f_{a}(x)}{P_{A} f_{A}(x)+P_{B} f_{B}(x)}
$$

4. Error Analysis

What is the Bayes error probability? Give an example for two classes A and B.
Sketch of the answer:
Theoretically minimal error probability.

$$
\epsilon^{*}=\int \min \left\{P_{A} f_{A}(x), P_{B} f_{B}(x)\right\} d x
$$

5. Pattern matching formulation
(a) Give a formulation of the computation problem of geometric pattern recognition.
(b) Give a formulation of the optimization problem of geometric pattern recognition.

Sketch of the answer:
(a) Compute $d(A, B)$.
(b) Given patterns A and B, a distacne function d, and a transformation group G, compute g that minimizes d :

$$
\operatorname{argmin}_{g \in G} d(g(A), B)
$$

6. Distance

What is the triangle inequality of a distance function? Give an example of a distance function not satisfying this condition.
Sketch of the answer:
$d(x, z) \leq d(x, y)+d(y, z)$ voor alle $x, y, z \in S$.
7. Distance

What is the Minkowski-distance between two k-dimensional points?
Sketch of the answer:

$$
L_{p}(x, y)=\left(\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}
$$

8. Transformations

What is a 2D similarity transformation, and what are its degrees of freedom?
Sketch of the answer:

$$
M=\left(\begin{array}{ccc}
\epsilon s \cos \phi & -s \sin \phi & t_{1} \\
\epsilon s \sin \phi & s \cos \phi & t_{2} \\
0 & 0 & 1
\end{array}\right) .
$$

where ϵ is plus or minus one. There are four degrees of freedom: s, ϕ, t_{1}, and t_{2}.

