Department of Physics and Astronomy, Faculty of Science, UU.
Made available in electronic form by the $\mathcal{T}_{\mathcal{B}} \mathcal{C}$ of A-Eskwadraat In $2005 / 2006$, the course NS-353B was given by P.J. van Leeuwen.

Geophysical Fluid Dynamics (NS-353B) March 29, 2005

Question 1

We study a cyclone on the northern hemisphere in geostrophic balance. Its pressure field is given by:

$$
p=-p_{0} \exp \left[-\frac{x^{2}+y^{2}}{2 L^{2}}\right]
$$

in which $L=1000 \mathrm{~km}$. The density is constant $\rho=\rho_{0}$.
a) Discuss the conditions that lead to geostrophic balance, starting from the zonal momentum equation given by

$$
u_{t}+u u_{x}+v u_{y}+w u_{z}-f v=-\frac{1}{\rho_{0}} p_{x}+A u_{z z}
$$

b) Calculate u and v, assuming $f=f_{0}$.
c) Calculate the relative vorticity ζ, and sketch its meridional profile through the cyclone center.
d) Choose $f=f_{0}+\beta y$ and recalculate ζ.
e) Determine the meridional distance between the maxima of p and ζ, using $\beta=210^{-11} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ and $f_{0}=10^{-4} s^{-1}$. Hint: use only terms to first order in y / L when calculating the position of the maximum of ζ. Note that also $\beta L / f_{0} \ll 1$.

Question 2

The cyclone from exercise 1 loses energy due to friction at the bottom. We assume that Ekman friction is a reasonable description.
a) Derive the vorticity equation from the momentum equations in isobaric coordinates, given by:

$$
\begin{aligned}
u_{t}-f_{0} v & =-\phi_{x} \\
v_{t}+f_{0} u & =-\phi_{y}
\end{aligned}
$$

b) Use the continuity equation to rewrite the vorticity equation in the form:

$$
\zeta_{t}=f_{0} w_{z}
$$

Explain the meaning of this equation.
c) Integrate this equation over the geostrophic interior, assuming a vanishing vertical velocity at the top of the layer. Use the expression for the vertical velocity at the top of the Ekman layer to find

$$
\zeta_{t}=-\frac{f_{0} d}{2 H} \zeta
$$

in which H is the thickness of the interior layer, and d is the Ekman-layer thickness.
d) Solve this equation, and determine the spin-down time of the cyclone, given $f_{0}=10^{-4} \mathrm{~s}^{-1}$, $d=100 \mathrm{~m}$, and $H=10 \mathrm{~km}$.
e) Explain why the cyclone spins down using a vorticity argument.

Question 3

We study Rossby-wave propagation in a barotropic fluid. The quasi-geostrophic (QG) potential vorticity equation reads:

$$
\frac{\mathrm{d} q}{\mathrm{~d} t}=0
$$

in which the potential vorticity is given by

$$
q=\Delta \phi+f_{0}+\beta y-\frac{1}{R_{d}^{2}} \psi
$$

with the external Rossby radius of deformation given by

$$
R_{d}=\frac{\sqrt{g H}}{f_{0}}
$$

a) Explain the meaning of the different terms in the expression for the potential vorticity.
b) Linearize the QG potential vorticity equation around a state of rest.
c) Determine the dispersion relation of plane waves of the form

$$
\phi=A \exp [i(k x+l y-\omega t)]
$$

d) Show that waves with an eastward energy-transport component have to fulfill

$$
k^{2}>l^{2}+\frac{1}{R_{d}^{2}}
$$

e) Determine the maximum angular frequency of purely zonal Rossby waves.
f) What is the physical meaning of this maximum angular frequency?

Question 4

Consider a steady current in a two-layer fluid flowing along the eastward side of a meridional coastline. Use $f=f_{0}=10^{-4} \mathrm{~s}^{-1}, \rho_{1}=1024 \mathrm{kgm}^{-3}$, and $\rho_{2}=1026 \mathrm{kgm}^{-3}$. The undisturbed layer thicknesses are $H_{1}=500 \mathrm{~m}$, and $H_{2}=1500 \mathrm{~m}$.
a) Show that when a steady current flows parallel to such a coast, and friction is neglected, it has to be in geostrophic balance.

The upper and lower layer velocity fields are given by

$$
\begin{array}{lll}
v_{1}=V_{1} \frac{L-x}{L} & \text { for } & 0 \leq x \leq L \\
v_{2}=V_{2} \frac{L-x}{L} & \text { for } & 0 \leq x \leq L
\end{array}
$$

with $V_{1}=1 \mathrm{~ms}^{-1}, V_{2}=0.2 \mathrm{~ms}^{-1}$, and $L=20 \mathrm{~km}$.
b) Determine the surface elevation $\xi(x)$ from geostrophy.
c) Determine the interface elevation $\eta(x)$ from geostrophy. Use that the pressure in the second layer is given by $p_{2}=g \xi-g^{\prime} \eta$, in which η is measured positive downward.
d) Calculate the transport, in $m^{3} s^{-1}$, in the upper and in the lower layer, neglecting the surface elevation.

The current encounters a bottom escarpment such that $H_{2}=1250 \mathrm{~m}$.
e) Determine the new velocity profile in the lower layer assuming that it keeps its triangular shape (so determine the new V_{2} and the new L). Neglect surface and interface variations. Hint: use two conserved quantities.

