Instituut voor Theoretische Fysica, Universiteit Utrecht

MID-EXAM ADVANCED QUANTUM MECHANICS

November 10, 2011

- The duration of the exam is 3 hours.
- The exam is closed-book.
- Usage of a calculator and a dictionary is allowed.
- Use different sheets for each exercise.
- Write your name and initials on every sheet handed in.
- Divide your available time wisely over the exercises.

Problem 1 (15 points)

Consider a pure state described by the following wave function

$$
\psi(x)=C e^{\frac{i p_{0} x}{\hbar}-\frac{\left(x-x_{0}\right)^{2}}{2 a^{2}}}
$$

where p_{0}, x_{0} and a are real parameters. Determine the average values of position and momentum as well as their variance

$$
\left(\sigma_{Q, \psi}\right)^{2}=\langle\psi| Q^{2}|\psi\rangle-\langle\psi| Q|\psi\rangle^{2}, \quad\left(\sigma_{P, \psi}\right)^{2}=\langle\psi| P^{2}|\psi\rangle-\langle\psi| P|\psi\rangle^{2}
$$

Is the uncertainty principle satisfied?

Problem 2 (25 points)

Let $\mathcal{H}=L^{2}([0,1])$ and consider the operators T_{0} and $T_{0,0}$ defined on the following domains

$$
\begin{aligned}
D\left(T_{0}\right) & =\{\psi \in \mathcal{H}: \quad \psi \text { suitably smooth, } \psi(0)=\psi(1)=0\} \\
D\left(T_{0,0}\right) & =\left\{\psi \in \mathcal{H}: \quad \psi \text { suitably smooth, } \psi(0)=\psi(1)=0=\psi^{\prime}(0)=\psi^{\prime}(1)\right\}
\end{aligned}
$$

(where the prime indicates the derivative) and acting as

$$
\begin{aligned}
& T_{0} \psi(x)=-\frac{d^{2}}{d x^{2}} \psi(x)=-\psi^{\prime \prime}(x), \quad \forall \psi \in D\left(T_{0}\right), \\
& T_{0,0} \psi(x)=-\frac{d^{2}}{d x^{2}} \psi(x)=-\psi^{\prime \prime}(x), \quad \forall \psi \in D\left(T_{0,0}\right) \text {. }
\end{aligned}
$$

1. Find the adjoint of the operator T_{0}, and the domain $D\left(T_{0}^{\dagger}\right)$ (do not consider smoothness issues).
2. Find the adjoint of the operator $T_{0,0}$, and the domain $D\left(T_{0,0}^{\dagger}\right)$ (do not consider smoothness issues).
3. State which one of these two operators is self-adjoint, and, for that operator, find the spectrum, i.e. an explicit formula for the eigenstates $\psi_{n}(x)$ (up to a non-zero normalization constant) and the corresponding eigenvalues λ_{n}, where n is an appropriate index.
4. Show that $\left(\psi_{n}, \psi_{m}\right)=\delta_{m n}$, up to a normalization constant, where the brackets denote the scalar product; the convention for (anti-)linearity used in the formula is inessential here.

Hint: it is possible (but not mandatory) to answer to this point without evaluating any integral.

Problem 3 (25 points)

Consider the following Weyl operators

$$
\begin{aligned}
U(u) & =e^{-i u P}, \\
V(v) & =e^{-i v Q},
\end{aligned}
$$

where u and v are two real numbers (parameters) and (P, Q) are the operators of momentum and coordinate satisfying the Heisenberg commutation relations. The Weyl quantization map associates to a real function $f \equiv f(p, q)$ the following selfadjoint operator

$$
A_{f}=\frac{1}{2 \pi} \int_{\mathbf{R}^{2}} \mathrm{~d} u \mathrm{~d} v \hat{f}(u, v) e^{\frac{i h u v}{2}} V(v) U(u),
$$

where $\hat{f}(u, v)$ is the Fourier image of $f(p, q)$.

1. Find the action of $U(u)$ and $V(v)$ on a wave function in the coordinate representation.
2. Find the kernel of the operator A_{f} in the coordinate representation.
3. Express the trace of the operator A_{f} in terms of $f(p, q)$.

Problem 4 (35 points)

Consider the one-dimensional classical harmonic oscillator. Let m be the mass, and ω the angular frequency.

1. Consider the complex function of momentum and position

$$
\alpha(t)=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{m \omega} q(t)+\frac{i}{\sqrt{m \omega}} p(t)\right) .
$$

Find the evolution equation it satisfies, that is, compute $\frac{d}{d t} \alpha(t)$. Solve the resulting differential equation with the initial condition $\alpha(0)=\alpha$, where $\alpha \in \mathbb{C}$.

Consider now the one-dimensional quantum harmonic oscillator.
2. Consider the raising and lowering operators a^{\dagger} and a, given by

$$
a^{\dagger}=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{m \omega} Q-\frac{i}{\sqrt{m \omega}} P\right), \quad a=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{m \omega} Q+\frac{i}{\sqrt{m \omega}} P\right) .
$$

State what the commutators $\left[a^{\dagger}, a\right]$ and $\left[a, a^{\dagger}\right]$ are. Write the Hamiltonian operator H in terms of a, a^{\dagger} and give the spectrum $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$ of H. Show that the normalized eigenvectors are

$$
\left|\psi_{n}\right\rangle=\frac{1}{\sqrt{n}} a^{\dagger}\left|\psi_{n-1}\right\rangle=\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}\left|\psi_{0}\right\rangle, \quad H\left|\psi_{n}\right\rangle=\lambda_{n}\left|\psi_{n}\right\rangle .
$$

You may assume that $\left|\psi_{0}\right\rangle$ is the unique normalized vector such that $a\left|\psi_{0}\right\rangle=0$.
3. Consider the following eigenvalue equation

$$
a\left|\phi_{\alpha}\right\rangle=\alpha\left|\phi_{\alpha}\right\rangle, \quad \alpha \in \mathbb{C} .
$$

Using the properties of a^{\dagger}, a and $\left|\psi_{n}\right\rangle$, show that

$$
\left|\phi_{\alpha}\right\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}\left|\psi_{n}\right\rangle .
$$

Show also that $\left\langle\phi_{\alpha} \mid \phi_{\alpha}\right\rangle=1$. State whether it must be $\alpha \in \mathbb{R}$ and if yes, why.
4. Find $\left|\phi_{\alpha}(t)\right\rangle$, the time evolution of $\left|\phi_{\alpha}\right\rangle$ in the Schroedinger picture. Show that up to a global phase this is a still an eigenfunction of a, with eigenvalue $\alpha(t)$:

$$
\left|\phi_{\alpha}(t)\right\rangle=e^{i \Phi(t)}\left|\phi_{\alpha(t)}\right\rangle
$$

Determine $\Phi(t)$ and $\alpha(t)$. Which one of these functions is physically relevant?
5. Write Heisenberg's uncertainty principle for the rescaled position and momentum operators $\tilde{Q}=\sqrt{m \omega} Q$ and $\tilde{P}=\frac{1}{\sqrt{m \omega}} P$ in general. Compute what their uncertainty on the state $\left|\phi_{\alpha}\right\rangle$ is, that is, compute

$$
\sigma_{\tilde{P}, \phi_{\alpha}} \sigma_{\tilde{Q}, \phi_{\alpha}}
$$

where as usual $\sigma_{A, \psi}^{2}=\langle\psi| A^{2}|\psi\rangle-\langle\psi| A|\psi\rangle^{2}$. Explain how what you found for $\left|\phi_{\alpha}\right\rangle$ can be extended to $\left|\phi_{\alpha}(t)\right\rangle$.
6. For a fixed value of α, consider the operator

$$
U_{\alpha}=\exp \left[\alpha a^{\dagger}-\alpha^{*} a\right],
$$

and show that it is unitary. Express it in terms of a multiple of the operator $B_{\alpha} A_{\alpha}$, where

$$
A_{\alpha}=\exp \left[-\alpha^{*} a\right] \quad \text { and } \quad B_{\alpha}=\exp \left[\alpha a^{\dagger}\right],
$$

and show that

$$
\left|\phi_{\alpha}\right\rangle=U_{\alpha}\left|\psi_{0}\right\rangle
$$

Explain how this this fact yields an independent check that $\left|\phi_{\alpha}\right\rangle$ is normalized.

