
Midterm Exam- Solutions
Quantum Matter (NS-371B) 2012

1. Magnons in Antiferromagnets

1. We use cos x ! 1− x2/2 to approximate the dispersion:

εk ! (−J) · ka. (1)

The internal energy in 1D can be calculated in the usual way using the Planck
distribution:

U =
∑

k

εk
1

eβεk − 1
=

L

2π

∫ ∞

0

dk
(−J) · ka

eβ(−J)·ka − 1
(2)

k→k/(−Jβa)
=

L

2π

(kBT )2

−Ja

∫ ∞

0

kdk

eβk − 1
=

L

2π

(kBT )2

−Ja
I1D. (3)

By definition, C = ∂U/∂T and thus

C =
L

2π

2k2
BT

−Ja
I1D. (4)

2. The expressions for the energy in two and three dimensions are

ε2
k = (−J)2

[
2− cos2(kxa)− cos2(kya)

]
! (−Ja)2 · (k2

x + k2
y) (5)

and

ε2
k = (−J)2

[
3− cos2(kxa)− cos2(kya)− cos2(kza)

]
! (−Ja)2 · (k2

x + k2
y + k2

z), (6)

respectively.

Proceeding analogously to 1D, in 2D we have

U =
∑

kx,ky

εk
1

eβεk − 1
=

A

(2π)2

∫ ∞

−∞
dkxdky

(−Ja) ·
√

k2
x + k2

y

eβ(−Ja)·
√

k2
x+k2

y − 1
(7)

=
A

2π

∫ ∞

0

kdk
(−Ja) · k

eβ(−Ja)·k − 1

k→ k
(−Jβa)
=

A

2π

(kBT )3

(−Ja)2

∫ ∞

0

k2dk

eβk − 1
=

A

2π

(kBT )3

(−Ja)2
I2D. (8)

and

C =
A

2π

3k3
BT 2

(−Ja)2
I2D. (9)
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Finally, we calculate U and C in three dimensions:

U =
∑

kx,ky ,kz

εk

eβεk − 1
=

V

(2π)3

∫ ∞

−∞
dkxdkydkz

(−Ja) ·
√

k2
x + k2

y + k2
z

eβ(−Ja)·
√

k2
x+k2

y+k2
z − 1

(10)

=
2V

(2π)2

∫ ∞

0

k2dk
(−Ja) · k

eβ(−Ja)·k − 1

k→ k
(−Jβa)
=

2V

(2π)2

(kBT )4

(−Ja)3

∫ ∞

0

k3dk

eβk − 1
(11)

=
2V

(2π)2

(kBT )4

(−Ja)3
I3D. (12)

and

C =
2V

(2π)2

4k4
BT 3

(−Ja)3
I3D. (13)

3. From the prior calculations it is obvious that the temperature dependence of the
heat capacity in d-dimensions is C ∼ T d. The reason for that is the fact that the
angular integral yields kd−1 in d-dimensions, while the dispersion is always such
that εk ∼ k, where k is the radial coordinate (corresponding to momentum) in the
spherical coordinate system.

As we have calculated in the exercise series 4, the temperature dependence of
phonon heat capacity is the same.

2. 2D Bose-Einstein Condensation

1. The density of states in 2D is given by

D2(ε) =
mA

2π!2
, D2(k) =

A

2π
k (14)

such that
D2(ε)dε = D2(k)dk . (15)

The particle number of the 2D Bose gas is

N =

∫ ∞

0

dεD2(ε)NBE(ε)

=
Am

2!2π

∫ ∞

0

dε

exp(β(ε− µ))− 1
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Substitute x = exp(βε) to arrive at

N =
Am

2!2π

∫ ∞

1

dx

βx

1

ζx− 1

where ζ = e−µβ,

=
Am

2!2πβ
ln(

ζ

ζ − 1
)

= −Λ−2
th A ln(1− exp(βµ)).

Dividing both sides by the area A we obtain,

Λ2
thn = − ln(1− exp(βµ)). (16)

2. For every value of the degeneracy parameter Λ2
thn we can find a corresponding

chemical potential because the equation can always be inverted. Remember that
µ < 0, hence z = eβµ such that 0 < z < 1 which makes the right hand side always
positive and unbounded. Since the n in the formula is the density for the particles
in the excited states and the equation is always consistent, as we just said, no BEC
occurs. In the three dimensional case this is not possible when Λ3

thn > 2.612 above
which Bose condensation takes place.

Another way to see it is the following: let’s consider the case of condensation, i.e.
a macroscopic occupation of the ground state, which means that z → 1−. In this
case we can inspect the formula and see that the right hand side diverges to +∞
Then, the left hand side must diverge, and thus we need that T → 0 (because
n cannot diverge): there is no critical temperature, or in other words, the only
critical temperature is the trivial one T = 0 because, as you would expect, at zero
temperature particles occupy only the ground state.

3. The chemical potential of an ideal gas in three dimensions can be calculated by
inverting N(V, T, µ). The number of particles is easily calculated from,

N =

∫ ∞

0

dε D3(ε)NMB(ε, µ, T )

=
V

4π2

(
2m

!2

)3/2 ∫ ∞

0

dε
√

εe−β(ε−µ)

The density of states is given by

D3(ε) =
V

4π2

(
2m

!2

)3/2√
ε , D3(k) =

V

2π2
k2 . (17)
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Substitute x =
√

ε to arrive at

N =
V

4π2

(
2m

!2

)3/2

eµβ

∫ ∞

0

dx 2x2 exp(−βx2)

=
V

4π2

(
2m

!2

)3/2

2eµβ

(
− ∂

∂β

∫ ∞

0

dx exp(−βx2)

)

=
V

4π2

(
2m

!2

)3/2

eµβ

(
− ∂

∂β

√
π

β

)

= V

(
m

2π!2β

)3/2

eµβ.

Inverting the above equation yields,

µ = kBT ln
(
Λ3

thn
)
. (18)

3. Heat capacity of liquid 4He

1. The free energy can be written as

F = −kBT

∫
ln(1 + n)

d3p

(2π!)3

= −kBT

∫
ln

[
1 +

1

eβε − 1

]
d3p

(2π!)3

= −4πkBT

(2π!)3

∫
ln

[
1 +

1

eβpc1 − 1

]
p2dp

= −4πkBT

(2π!)3

1

β3c3
1

∫
ln

[
1 +

1

ex − 1

]
x2dx

∝ (kBT )4

2. The entropy can be found from the free energy, which has the following temperature
dependence

S = −∂F

∂T
∝ T 3.

Furthermore, the specific heat can be obtained by using dE = TdS (for constant
volume)

CV =
∂E

∂T
= T

∂S

∂T
∝ T 3.
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3. The Bose-Einstein distribution reduces to the Boltzmann distribution in the limit
∆( kBT since

n =

[
e

β

„
∆+

(p−p0)2

2µr

«

− 1

]−1

≈
[
e

β

„
∆+

(p−p0)2

2µr

«]−1

= e−βεr .

Using a similar approximation the free energy of the ideal Bose gas reduces to the
Boltzmann free energy

F = −kBT

∫
ln

[
1 + e−βεr

] d3p

(2π!)3
≈ −kBT

∫
e−βεr

d3p

(2π!)3
,

where we used that ln(1 + x) ≈ x.

4. The free energy of the roton gas is given by

F = −kBT

∫
exp

[
−β

(
∆ +

(p− p0)2

2µr

)]
d3p

(2π!)3

= −4πkBT

(2π!)3
e−β∆

∫
exp

[
−β

(p− p0)2

2µr

]
p2dp

≈ −4πkBT

(2π!)3
e−β∆

∫
exp

[
−β

(p− p0)2

2µr

]
p2

0dp

≈ −4πkBT

(2π!)3
p2

0e
−β∆

√
2πµr

β

∝ (kBT )3/2e−∆/kBT .

In the third line we approximated the factor p2 in the integral by its value at p0

since if p0 (
√

µr

β , the spread in the gaussian centered at p0 is very small.
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