Exam: Dynamical Meteorology Date: November, 12, 2010, 09:00-12:00.

In this exam all symbols have their normal definitions. Answers may be given in either English or Dutch.

Problem 1 (2 points)

Hydrostatic balance and scale height

Hydrostatic balance in terms of the Exner function, Π , and the potential temperature, θ , can be expressed as follows.

 $\frac{\partial \hat{\Pi}}{\partial z} = -\frac{g}{\theta}.$

Show that Π decreases exponentially with height in a hydrostatically balanced isothermal atmosphere. What is the associated scale height in metres. The definitions of Π and θ are

$$\theta = T \left(\frac{p_{ref}}{p} \right)^{\kappa}; \ \Pi = c_p \left(\frac{p}{p_{ref}} \right)^{\kappa},$$

and $c_p = 1000 \text{ J kg}^{-1} \text{ K}^{-1}$, $g = 10 \text{ m s}^{-2}$, T = 300 K.

Problem 2 (2 points) Vorticity in a "Rankine vortex".

A "Rankine vortex" is an axisymmetric circular vortex with an azimuthal velocity, v_{θ} , which is a function of the radius, r (the distance from the centre of the vortex), as follows.

$$v_{\theta} = \frac{v_0 r}{R} \text{ for } r \le R$$
$$v_{\theta} = \frac{v_0 R}{r} \text{ for } r > R$$

Here v_0 is the maximum wind velocity and R is the radius of maximum wind velocity. Calculate and plot the relative vorticity as a function of r for a Rankine vortex with $v_0=40$ m s⁻¹ and R=40km.

Problem 3 (2 points)

Q-vector

The frontogenetical function is defined as follows.

$$\frac{\mathrm{d}(\vec{\nabla}_{\mathrm{h}}\theta)^{2}}{\mathrm{d}t} = 2\vec{\nabla}_{\mathrm{h}}\theta\cdot\frac{\mathrm{d}\vec{\nabla}_{\mathrm{h}}\theta}{\mathrm{d}t} = 2\vec{Q}\cdot\vec{\nabla}_{\mathrm{h}}\theta.$$

Here $\vec{\nabla}_{h}\theta$ is the horizontal gradient of the potential temperature. Derive an equation for the *x*- en y-components of \vec{Q} (under adiabatic circumstances).

Problem 4 (2 points) Isallobaric wind

Derive equations for the two horizontal components of the isallobaric component of the ageostrophic wind (the x-component, u_{isa} and the y-component, v_{isa}), on an isobaric surface in terms of

$$\frac{\partial^2 z}{\partial t \partial x}$$
 and $\frac{\partial^2 z}{\partial t \partial y}$,

where z is the height of the isobaric surface. Use the two horizontal components of the momentum equation in isobaric coordinates, which are:

$$\frac{du}{dt} = -g\left(\frac{\partial z}{\partial x}\right)_p + fv;$$
$$\frac{dv}{dt} = -g\left(\frac{\partial z}{\partial y}\right)_p - fu.$$

Problem 5 (2 points)

Multiple choice

(i) The dynamical definition of the tropopause is in terms of

- (a) lapse rate
- (b) vorticity
- (c) potential vorticity

(ii) The energy conservation equation for an air parcel can be written as follows

 $Jdt - c_v dT - p d\alpha = 0$

The change in the internal energy is given by

- (a) the first term
- (**b**) the second term
- (c) the third term

(iii) If we let a saturated parcel of air ascend, its equivalent potential temperature will

- (a) increase
- (**b**) decrease
- (c) not change
- (iv) CAPE is a measure of
 - (a) the potential final vertical velocity of air parcels
 - (b) the maximum possible change in the vertical velocity of air parcels
 - (c) the layer stability between the ground and the capping inversion
- (v) The equation for thermal wind balance is derived from
 - (a) the equation for geostrophic balance and the equation for hydrostatic balance
 - (b) the vorticity equation and the equation for hydrostatic balance
 - (c) the continuity equation and the equation for geostrophic balance
- (vi) A descending air parcel follows
 - (a) an isentrope on a thermodynamic diagram
 - (b) a pseudo-adiabat on a thermodynamic diagram
 - (c) an isotherm on a thermodynamic diagram