Exam: Dynamical Meteorology

Date: November, 12, 2010, 09:00-12:00.

In this exam all symbols have their normal definitions.
Answers may be given in either English or Dutch.

Problem 1 (2 points)

Hydrostatic balance and scale height

Hydrostatic balance in terms of the Exner function, Π, and the potential temperature, θ, can be expressed as follows.
$\frac{\partial \Pi}{\partial z}=-\frac{g}{\theta}$.
Show that Π decreases exponentially with height in a hydrostatically balanced isothermal atmosphere. What is the associated scale height in metres. The definitions of Π and θ are
$\theta=T\left(\frac{p_{\text {ref }}}{p}\right)^{K} ; \Pi=c_{p}\left(\frac{p}{p_{\text {ref }}}\right)^{K}$,
and $c_{\mathrm{p}}=1000 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}, g=10 \mathrm{~m} \mathrm{~s}^{-2}, T=300 \mathrm{~K}$.

Problem 2 (2 points)

Vorticity in a "Rankine vortex".

A "Rankine vortex" is an axisymmetric circular vortex with an azimuthal velocity, v_{θ}, which is a function of the radius, r (the distance from the centre of the vortex), as follows.
$v_{\theta}=\frac{v_{0} r}{R}$ for $r \leq R$
$v_{\theta}=\frac{v_{0} R}{r}$ for $r>R$

Here v_{0} is the maximum wind velocity and R is the radius of maximum wind velocity. Calculate and plot the relative vorticity as a function of r for a Rankine vortex with $v_{0}=40 \mathrm{~m} \mathrm{~s}^{-1}$ and $R=40$ km.

Problem 3 (2 points)

Q-vector

The frontogenetical function is defined as follows.

$$
\frac{\mathrm{d}\left(\vec{\nabla}_{\mathrm{h}} \theta\right)^{2}}{\mathrm{~d} t}=2 \vec{\nabla}_{\mathrm{h}} \theta \cdot \frac{\mathrm{~d} \vec{\nabla}_{\mathrm{h}} \theta}{\mathrm{~d} t} \equiv 2 \vec{Q} \cdot \vec{\nabla}_{\mathrm{h}} \theta
$$

Here $\vec{\nabla}_{\mathrm{h}} \theta$ is the horizontal gradient of the potential temperature. Derive an equation for the x - en y-components of \vec{Q} (under adiabatic circumstances).

Problem 4 (2 points)

Isallobaric wind

Derive equations for the two horizontal components of the isallobaric component of the ageostrophic wind (the x-component, $u_{\text {isa }}$ and the y-component, $v_{\text {isa }}$), on an isobaric surface in terms of
$\frac{\partial^{2} z}{\partial t \partial x}$ and $\frac{\partial^{2} z}{\partial t \partial y}$,
where z is the height of the isobaric surface. Use the two horizontal components of the momentum equation in isobaric coordinates, which are:
$\frac{d u}{d t}=-g\left(\frac{\partial z}{\partial x}\right)_{p}+f v ;$
$\frac{d v}{d t}=-g\left(\frac{\partial z}{\partial y}\right)_{p}-f u$.

Problem 5 (2 points)

Multiple choice

(i) The dynamical definition of the tropopause is in terms of
(a) lapse rate
(b) vorticity
(c) potential vorticity
(ii) The energy conservation equation for an air parcel can be written as follows

$$
J d t-c_{v} d T-p d \alpha=0
$$

The change in the internal energy is given by
(a) the first term
(b) the second term
(c) the third term
(iii) If we let a saturated parcel of air ascend, its equivalent potential temperature will
(a) increase
(b) decrease
(c) not change
(iv) CAPE is a measure of
(a) the potential final vertical velocity of air parcels
(b) the maximum possible change in the vertical velocity of air parcels
(c) the layer stability between the ground and the capping inversion
(v) The equation for thermal wind balance is derived from
(a) the equation for geostrophic balance and the equation for hydrostatic balance
(b) the vorticity equation and the equation for hydrostatic balance
(c) the continuity equation and the equation for geostrophic balance
(vi) A descending air parcel follows
(a) an isentrope on a thermodynamic diagram
(b) a pseudo-adiabat on a thermodynamic diagram
(c) an isotherm on a thermodynamic diagram

