Answer to problem 1

Section 1.14 of the lecture notes.

Answer to problem 2

The average vorticity within the circle with radius r around the centre of the cyclone is
$\bar{\zeta}(r)=\frac{C(r)}{\pi r^{2}}$,
where $C(r)$ is the circulation around the circle with radius r.

For $r \leq \boldsymbol{R}$ this implies that
$\bar{\zeta}(r)=\frac{2 \pi r}{\pi r^{2}} \frac{v_{0} r}{R}=\frac{2 v_{0}}{R} \equiv \zeta_{0}=$ constant.

The vorticity inside the radius of maximaum wind (in the core of the cyclone) is constant.

For $r>\boldsymbol{R}$ this implies that
$\bar{\zeta}(r)=\frac{2 \pi r}{\pi r^{2}} \frac{v_{0} R}{r}=\frac{2 v_{0} R}{r^{2}}$.

This average vorticity is an area-weighted average of the constant vorticity in the core of the cyclone and the yet unknown vorticity-profile outside the core of the cyclone, i.e.
$\bar{\zeta}(r)=\frac{2 v_{0} R}{r^{2}}=\frac{2 \pi\left(\int_{0}^{R} \zeta_{0} r d r+\int_{R}^{r} \zeta(r) r d r\right)}{\pi r^{2}}$
or
$v_{0} R=\int_{0}^{R} \zeta_{0} r d r+\int_{R}^{r} \zeta(r) r d r=\int_{0}^{R} \frac{2 v_{0}}{R} r d r+\int_{R}^{r} \zeta(r) r d r=v_{0} R+\int_{R}^{r} \zeta(r) r d r$.

In other words,
$\int_{R}^{r} \zeta(r) r d r=0$
for all values of $r>R$, so that
$\zeta(r)=0$
for all values of $r>R$, and
$\zeta(r)=\frac{2 v_{0}}{R}$
for all values of $r \leq R$.

Answer to problem 3

Section 1.34 of the lecture notes.

Answer to problem 4

Section 1.35 of the lecture notes.

Answers to problem 5 (multiple choice)

(i) c
(ii) b
(iii) c
(iv) b
(v) a
(vi) a

