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• Duration of the exam: 3 hours.

• You are NOT allowed to use any kind of books or lecture notes.

• Every exercise is worth 1.0 points, there are 10 exercises in total.

Question 1. Electron-phonon coupling (3 points)

Consider the phonon Hamiltonian

Ĥph =
∑
q,j

~ωqâ†q,j âq,j + const., (1)

where ωq is the phonon dispersion (here we assumed to depend only on the modulus of the momentum,
|q| = q) and the index j = 1, 2, 3 accounts for the fact that the lattice ions can oscillate in three
dimensions in space (i.e. there are three linearly independent oscillator modes). The electron-phonon
Hamiltonian reads

Ĥel−ph = ~γ
∑
q,j

iqj
(2Mωq)1/2

n̂q(â†−q,j + âq,j). (2)

Here, n̂q =
∑

k ĉ
†
k+qĉk denotes the electronic density expressed in terms of fermion creation and

annihilation operators, and the electron spin has been neglected for simplicity.

a) Formulate the coherent state action of the electron-phonon system by introducing a Grassmann
field ψ (a complex field φ) to represent electron (phonon) operators, and obtain the coherent
state field integral

Z =
∫
D[ψ̄, ψ]

∫
D[φ̄, φ]e−(Sel[ψ̄,ψ]+Sph[φ̄,φ]+Sel−ph[ψ̄,ψ,φ̄,φ])/~, (3)

where we leave Sel[ψ̄, ψ] unspecified. Write down Sph[φ̄, φ] and Sel−ph[ψ̄, ψ, φ̄, φ] explicitly using
Matsubara frequencies.

b) Integrate out the phonon fields to obtain

Seff [ψ̄, ψ] = Sel[ψ̄, ψ]− ~γ2

2M

∑
n,q

q2

ωq

1
iωn + ωq

ρq,nρ−q,−n, (4)

where ρq,n = (1/
√

~β)
∑

k,m ψ̄k+q,mψk,m+n.

c) Show that this is equivalent to

Seff [ψ̄, ψ] = Sel[ψ̄, ψ]− ~γ2

2M

∑
n,q

q2

ω2
n + ω2

q

ρq,nρ−q,−n. (5)

Replacing ωn by −iω, give the condition for ω with respect to ωq for getting an attractive
interaction. Do you know which physical system has an attractive electron-electron interaction
intermediated by the phonons? Which are the physical consequences of this interaction?



Question 2. BEC of polaritons (7 points)

Polaritons are linear superpositions of excitons and photons (remember that an exciton is an electron-
hole bound state). The Hamiltonian of polaritons is given by

Ĥtot = Ĥexc + Ĥph + Ĥexc−ph, (6)

where Ĥexc is an excitonic Hamiltonian, Ĥph is a photonic Hamiltonian, Ĥexc−ph is a Hamiltonian
of exciton-photon interaction. The Hamiltonian of 2D excitons in the infinite homogeneous system
is given by

Ĥexc =
∑
P

εex(P )b̂†Pb̂P +
1

2A

∑
P,P′,q

Uqb̂
†
P+qb̂

†
P′−qb̂Pb̂P′ , (7)

where b̂†P and b̂P are excitonic creation and annihilation operators obeying bosonic commutation
relations. In the first term, εex(P ) is the energy dispersion of a single exciton in a quantum well. In
the interaction term, A is the macroscopic quantization area and Uq is the Fourier transform of the
exciton-exciton pair repulsion potential. For small wave vectors the pair exciton-exciton repulsion can
be approximated as a contact potential Uq ' U0 ≡ U . The Hamiltonian of non-interacting photons
in a semiconductor microcavity is given by:

Ĥph =
∑
P

εph(P )â†PâP, (8)

where â†P and âP are photonic creation and annihilation Bose operators, and εph(P ) is the cavity
photon spectrum. The Hamiltonian of a harmonic exciton-photon coupling has the form:

Ĥexc−ph = ~
∑
P

(ΩRâ
†
Pb̂P + h.c.), (9)

where the exciton-photon coupling energy represented by the Rabi constant ~ΩR depends on the
overlap between the exciton and photon wavefunction.

a) Perform a diagonalization of the total Hamiltonian Ĥtot given in Eq. (6), neglecting the inter-
action term in Eq. (7) and show that the diagonalized Hamiltonian has the form:

Ĥ0 =
∑
P

εLP (P )p̂†Pp̂P +
∑
P

εUP (P )û†PûP, (10)

where p̂†P and û†P are bosonic creation operators for the lower and upper polaritons, respectively.
The energy spectra of the upper/lower polaritons are

εUP/LP (P ) =
εph(P ) + εex(P )

2
± 1

2

√
(εph(P )− εex(P ))2 + 4|~ΩR|2, (11)

which implies a splitting between the upper and lower states at P = 0 of 2~ΩR, known as
the Rabi splitting. Substituting the polaritonic representation of the excitonic and photonic
operators into the total Hamiltonian Ĥtot, the Hamiltonian of lower polaritons is obtained (don’t
do it):

Ĥtot =
∑
P

εLP (P )p̂†Pp̂P +
1

2A

∑
P,P′,q

UP,P′,qp̂
†
P+qp̂

†
P′−qp̂Pp̂P′ . (12)

Assuming UP,P′,q = Ueff , the effective Hamiltonian becomes

Ĥeff =
∑
P

~2P 2

2Meff
p̂†Pp̂P +

Ueff

2A

∑
P,P′,q

p̂†P+qp̂
†
P′−qp̂Pp̂P′ , (13)

where Meff is the effective mass of a polariton.



b) Transform the Hamiltonian Eq. (13) to the real space representation and show that

Ĥ =
∫
drφ̂†(r)

(
− ~2∇2

2Meff

)
φ̂(r) +

Ueff

2

∫
drφ̂†(r)φ̂†(r)φ̂(r)φ̂(r), (14)

where φ̂†(r) and φ̂(r) are real space bosonic field operators of creation and annihilation of
polaritons, correspondingly.
Taking into account the stress induced harmonic trap by adding to the Hamiltonian Veff(r) =
1
2γr

2, with certain parameter γ, the effective Hamiltonian for trapped polaritons will look
exactly like the Hamiltonian of a weakly-interacting dilute 2D Bose gas in a confining trap:

Ĥ =
∫
drφ̂†(r)

(
− ~2∇2

2Meff
+ Veff(r)

)
φ̂(r) +

Ueff

2

∫
drφ̂†(r)φ̂†(r)φ̂(r)φ̂(r). (15)

Although Bose-Einstein condensation (BEC) cannot happen in a 2D homogeneous ideal gas
at non-zero temperature, in a harmonic trap it can occur in two dimensions below a critical
temperature T 0

c > 0.

c) Write down the partition function and the action for the grand-canonical ensemble with the
Hamiltonian Eq. (15) and chemical potential µ. Now, assume that the polaritons are undergoing
a Bose-Einstein condensation. Using the Bogoliubov approximation, you can write

φ(r, τ) = φ0(r) + ϕ(r, τ), (16)

where ϕ(r, τ) denotes the fluctuations. Derive the Gross-Pitaevskii equation for the polariton
condensate and solve it in the Thomas-Fermi approximation (neglect the kinetic energy term).
What is the size of the condensate? How can you find the number of particles in the condensate
(you do not have to evaluate the expressions)?

d) Derive the quadratic part of the action in the fluctuations and show that you obtain

Sϕ2 = −~
2

∫ ~β

0

dτdτ ′
∫
drdr′

[
ϕ∗(r, τ), ϕ(r, τ)

]
G−1(r, τ ; r′, τ ′)

[
ϕ(r′, τ ′)
ϕ∗(r′, τ ′)

]
,

and

G−1(r, τ ; r′, τ ′) =
(

G−1
0 (r, τ ; r′, τ ′) 0

0 G−1
0 (r′, τ ′; r, τ)

)
−1

~

(
2Ueff |φ0|2 Ueffφ

2
0

Ueffφ
∗2
0 2Ueff |φ0|2

)
δ(r − r′)δ(τ − τ ′)

with G−1
0 (r, τ ; r′, τ ′) given by

G−1
0 (x, τ ; x′, τ ′) = −1

~

(
~
∂

∂τ
− ~2∇2

2Meff
+ Veff(r)− µ

)
δ(r − r′)δ(τ − τ ′). (17)

e) Consider the condensate in the middle of the trap and assume the system to be locally ho-
mogeneous. By performing a Fourier transformation of G−1 using plane waves (homogeneous
system) and Matsubara frequencies you would obtain (don’t do it)

−~G−1(k, iωn) =
(
−i~ωn + εk + Ueff |φ0|2 Ueffφ

2
0

Ueffφ
∗2
0 i~ωn + εk + Ueff |φ0|2

)
.

Why do you have opposite signs in front of i~ωn? Write the expression for εk. Why do you
have here Ueff |φ0|2 without the factor 2 in the diagonal terms?

f) Find the spectrum of physical modes in the system by making an analytic continuation (or if you
like Wick rotation) iωn → ωk. This brings us back to the Feynman path integral formulation in
real time, in which ~ωk stands for the energy spectrum or physical modes of the system. You
must show that

~ωk = ±
√
ε2k + 2Ueff |φ0|2εk (18)

g) What happens with the energy spectrum in the limit k → 0? Can you get any conclusions
involving broken symmetries out of that?


