General Relativity (NS-TP428M) 30 January 2006

Question 1: A well-known cosmological solution

(7 points)
Consider the Robertson-Walker metric in standard comoving coordinates for the special case of negative curvature $(\mathrm{k}=-1)$ and for a scale factor $a(t)=t$
a) By making a suitable transformation to new coordinates, show that this universe is simply Minkowski space in disguise. (Hint: keep the angular variables in the two-dimensional spherical volume element $d \Omega^{2}$ fixed, so that you end up with Minkowski space in radial coordinates.) (6 points)
b) Determine the domains in terms of the original coordinates (t, r, θ, ϕ) of the Robertson-Walker metric where the coordinate transformation of (a) is well-defined.
(1 point)

Question 2: Parallel-transporting

(13 points)
Consider the two-sphere with metric inherited from \mathbb{R}^{3} and unit radius $r=1$, and parametrized in terms of standard coordinates (θ, ϕ). (Hints: part (c) and (d) below are largely independent of (a) and (b). Try and do at least part of (b).)
a) Making use of the non-vanishing Christoffer symbols $\Gamma_{\phi \theta}^{\phi}=\frac{\cos \theta}{\sin \theta}, \Gamma_{\phi \phi}^{\theta}=-\sin \theta \cos \theta$, write down in as explicit a form as possible the equations for parallel-transport on the sphere of a vector V^{μ} along a curve $\gamma(t)=(\theta(t), \phi(t))$ with tangent vector $t^{\mu}(t)$.
(2 points)
b) Start with the vector V^{μ} which is the unit vector in θ-direction. How does this vector behave when it is parallel-transported along the closed curve

$$
\begin{equation*}
\gamma=\gamma_{4} \circ \gamma_{3} \circ \gamma_{2} \circ \gamma_{1} \tag{1}
\end{equation*}
$$

consisting of the four pieces

$$
\begin{array}{lll}
\gamma_{1}(t) & =\left(\frac{\pi}{2}, t\right) & \text { for } 0 \leq t \leq t_{1}, \\
\gamma_{2}(t) & =\left(\frac{\pi}{2}-t, t_{1}\right) & \text { for } 0 \leq t \leq t_{2}, \\
\gamma_{3}(t) & =\left(\frac{\pi}{2}-t_{2}, t_{1}-t\right) & \text { for } 0 \leq t \leq t_{1}, \\
\gamma_{4}(t) & =\left(\frac{\pi}{2}-t_{2}+t, 0\right) & \text { for } 0 \leq t \leq t_{2},
\end{array}
$$

with $0 \leq t_{1} \leq 2 \pi, 0 \leq t_{2} \leq \frac{\pi}{2}$? (By definition, a curve $\xi \circ \eta$ is the curve given by first moving along η and then along ξ.) It may be helpful to start by making a sketch of the geometry of the problem.
(7.5 points)
c) Compute the Ricci tensor an the Ricci scalar of the spherical surface.
(2 points)
d) Show by explicit calculation that the angle $\Delta \rho$ by which the vector V^{μ} has been rotated after parallel-transport around the curve (1) equals

$$
\begin{equation*}
\Delta \rho=\frac{1}{2} \int_{A} R \tag{2}
\end{equation*}
$$

where A is the surface enclosed by the curve γ, and R is the Ricci scalar.
(1.5 points)

