Department of Physics and Astronomy, Faculty of Science, UU.
Made available in electronic form by the $\mathcal{T B}_{\mathcal{B}} \mathcal{C}$ of A-Eskwadraat
In 2005/2006, the course NS-TP526M was given by dr. K. Peeters.

String Theory (NS-TP526M)
 July 6, 2006

Question 1

Classical closed bosonic string propagates in 5-dimensional Minkowski space-time according to

$$
\begin{aligned}
X^{0} & =\kappa \tau \\
X^{1} & =a \sin n \sigma \cos n \tau \\
X^{2} & =a \sin n \sigma \sin n \tau \\
X^{3} & =b \sin m \sigma \cos m \tau \\
X^{4} & =b \sin m \sigma \sin m \tau
\end{aligned}
$$

Here n, m are integers.
a) Show that the Virasoro constraints are satisfied provided the parameters of the solution are related as

$$
\kappa^{2}=a^{2} n^{2}+b^{2} m^{2}
$$

b) Compute the energy of the string and the angular momenta $J_{1} \equiv J_{12}$ and $J_{2} \equiv J_{12}$ corresponding to rotation of string in spatial planes 12 and 34 respectively.
c) Show that the energy is related to the angular momenta as

$$
E=\sqrt{\frac{2}{\alpha^{\prime}}\left(n J_{1}+m J_{2}\right)}, \quad \text { where } \quad \alpha^{\prime}=\frac{1}{2 \pi T}
$$

Question 2

Consider classical closed string in the light-cone gauge. Show that if the level-matching condition is not satisfied then the Lorentz generators J^{i-} are not conserved quantities (in time) anymore.

Question 3

What is a conformal operator with conformal dimension Δ (give a definition)?

Question 4

Consider closed fermionic string. Find the propagator for fermions in the NS sector $\left(\tau>\tau^{\prime}\right)$:

$$
\left\langle\psi_{+}^{\mu}(\tau, \sigma), \psi_{+}^{\nu}\left(\tau^{\prime}, \sigma^{\prime}\right)\right\rangle=T\left(\psi_{+}^{\mu}(\tau, \sigma), \psi_{+}^{\nu}\left(\tau^{\prime}, \sigma^{\prime}\right)\right)-: \psi_{+}^{\mu}(\tau, \sigma), \psi_{+}^{\nu}\left(\tau^{\prime}, \sigma^{\prime}\right):
$$

where T stands for the operation of time ordering.

Question 5

How many (real) components has a Majorana-Weyl spinor of 10-dimensional Minkowski spacetime?

Question 6: Spiky strings! (bonus)

Consider classical bosonic string propagating according to

$$
\begin{aligned}
X^{0} & =t=\tau \\
\vec{X} & =\vec{X}\left(\sigma^{+}\right)+\vec{X}\left(\sigma^{-}\right)
\end{aligned}
$$

Here $\vec{X}=\left\{X^{i}\right\}, i=1, \ldots d$ and

$$
\begin{aligned}
\vec{X}\left(\sigma^{-}\right) & =\frac{\sin \left(m \sigma^{-}\right)}{2 m} \mathbf{e}_{1}+\frac{\cos \left(m \sigma^{-}\right)}{2 m} \mathbf{e}_{2} \\
\vec{X}\left(\sigma^{+}\right) & =\frac{\sin \left(n \sigma^{+}\right)}{2 n} \mathbf{e}_{1}+\frac{\cos \left(n \sigma^{+}\right)}{2 n} \mathbf{e}_{2}
\end{aligned}
$$

where \mathbf{e}_{1} and \mathbf{e}_{2} are two unit orthagonal vectors and the ratio $\frac{n}{m}$ is an integer.
a) Show that this configuration satisfies the Virasoro constraints.
b) Show that there are points on the string where $\vec{X}^{\prime}=0$. Show that at these points $\dot{\vec{X}}^{2}=1$, i.e. these points move with the speed of light - these are spikes.
c) Let $m=1$ and $n=k-1$. Show that k is the number of spikes.

