String Theory (NS-TP526M)
 April 13, 2006

Question 1

A classical open bosonic string propagates in 3-dimensional Minkowski space-time according to

$$
\begin{aligned}
X^{0} & =L \tau \\
X^{1} & =L \cos \sigma \cos \tau \\
X^{2} & =L \cos \sigma \sin \tau
\end{aligned}
$$

a) Find the area of the world-sheet swept by the string in one period of rotation.
b) Compute the angular momentum $J \equiv J_{12}$ and the mass M^{2} for this string motion. Verify that $J \equiv \alpha^{\prime} M^{2}$.

Question 2

Explain what the level-matching constraint is.

Question 3

Consider a closed string in the light-cone gauge. Define the transversal Virasoro generators as follows:

$$
\begin{aligned}
L_{m}^{\perp} & =\frac{1}{2} \sum_{n=-\infty}^{\infty} \alpha_{m-n}^{i} \alpha_{n}^{i}, \\
\bar{L}_{m}^{\perp} & =\frac{1}{2} \sum_{n=-\infty}^{\infty} \bar{\alpha}_{m-n}^{i} \bar{\alpha}_{n}^{i} .
\end{aligned}
$$

a) Compute the action of the transverse Virasoro generators on string coordinates, i.e., find

$$
\left\{L_{m}^{\perp}, X^{i}(\sigma, \tau)\right\}=? \quad\left\{\bar{L}_{m}^{\perp}, X^{i}(\sigma, \tau)\right\}=?
$$

b) What is the Poisson bracket $\left\{L_{m}^{\perp}, L_{n}^{\perp}\right\}$?

Question 4

A classical open string moves in three-Minkowski space. Assume that the motion (in the light-cone gauge) is defined by $x_{0}^{-}=x_{0}^{i}=0$, and the vanishing of all transversal oscillators α_{n}^{i} except

$$
\alpha_{1}^{1}=\left(\alpha_{-1}^{1}\right)^{*}=a,
$$

where a is a dimensionless real constant.
a) Construct explicitly the string coordinates $X^{0}(\sigma, \tau), X^{1}(\sigma, \tau)$ and $X^{3}(\sigma, \tau)$.
b) What further restrictions are needed to describe a string which oscillates in the (X^{1}, X^{2}) plane and has zero momentum in this plane?
c) For the last case compute the (time-dependent) length and the energy of the string in terms of a and the Regge slope parameter α^{\prime}.

Question 5 (Bonus)

Solve the conformal Killing equations for the case of an open string. Describe the conformal Killing vectors which leave the midpoint $\sigma=\frac{\pi}{2}$ of the open string taken at $\tau=0$ fixed.

