Department of Physics and Astronomy, Faculty of Science, UU. Made available in electronic form by the $\mathcal{T}_{\mathcal{BC}}$ of A-Eskwadraat In 2005/2006, the course NS-TP526M was given by dr. G. Arutyunov.

String Theory (NS-TP526M) April 13, 2006

Question 1

A classical open bosonic string propagates in 3-dimensional Minkowski space-time according to

$$\begin{array}{rcl} X^0 &=& L\tau \\ X^1 &=& L\cos\sigma\cos\tau \\ X^2 &=& L\cos\sigma\sin\tau \end{array}$$

- a) Find the area of the world-sheet swept by the string in one period of rotation.
- b) Compute the angular momentum $J \equiv J_{12}$ and the mass M^2 for this string motion. Verify that $J \equiv \alpha' M^2$.

Question 2

Explain what the level-matching constraint is.

Question 3

Consider a closed string in the light-cone gauge. Define the transversal Virasoro generators as follows:

$$\begin{split} L_m^{\perp} &=& \frac{1}{2}\sum_{n=-\infty}^{\infty}\alpha_{m-n}^i\alpha_n^i,\\ \bar{L}_m^{\perp} &=& \frac{1}{2}\sum_{n=-\infty}^{\infty}\bar{\alpha}_{m-n}^i\bar{\alpha}_n^i. \end{split}$$

a) Compute the action of the transverse Virasoro generators on string coordinates, i.e., find

$$\{L_m^{\perp}, X^i(\sigma, \tau)\} = ? \qquad \{\bar{L}_m^{\perp}, X^i(\sigma, \tau)\} = ?$$

b) What is the Poisson bracket $\{L_m^{\perp}, L_n^{\perp}\}$?

Question 4

A classical open string moves in three-Minkowski space. Assume that the motion (in the light-cone gauge) is defined by $x_0^- = x_0^i = 0$, and the vanishing of all transversal oscillators α_n^i except

$$\alpha_1^1 = \left(\alpha_{-1}^1\right)^* = a,$$

where a is a dimensionless real constant.

- a) Construct explicitly the string coordinates $X^0(\sigma, \tau), X^1(\sigma, \tau)$ and $X^3(\sigma, \tau)$.
- b) What further restrictions are needed to describe a string which oscillates in the (X^1, X^2) plane and has zero momentum in this plane?
- c) For the last case compute the (time-dependent) length and the energy of the string in terms of a and the Regge slope parameter α' .

Question 5 (Bonus)

Solve the conformal Killing equations for the case of an open string. Describe the conformal Killing vectors which leave the midpoint $\sigma = \frac{\pi}{2}$ of the open string taken at $\tau = 0$ fixed.