Instituut voor Theoretische Fysica, Universiteit Utrecht

MIDDLE TERM EXAM STRING THEORY

Thursday, 17, 2008

- The duration of the test is 3 hours.
- Only the lecture notes may be consulted during the test.
- Use different sheets for each exercise.
- Write your name and initials on every sheet handed in.
- Divide your available time wisely over the exercises.

Problem 1

Consider a classical closed bosonic string which propagates in 5-dimensional Minkowski space-time according to

$$
\begin{aligned}
& X^{0}=\kappa \tau \\
& X^{1}=A \cos n \sigma \cos n \tau \\
& X^{2}=A \sin n \sigma \cos n \tau \\
& X^{3}=B \sin m \sigma \cos m \tau \\
& X^{4}=B \sin m \sigma \sin m \tau
\end{aligned}
$$

Here n, m are integers. Questions:

1. To satisfy the Virasoro constraints, the parameter κ of this solution must be related to the other parameters A, B and n, m. Find this relationship.
2. Compute the energy of the string.
3. How many non-trivial angular momentum components $J^{\mu \nu}$ are carried by the string? Find them.
4. Find the length of the string at the following moment of time: $\tau=\frac{\pi}{2 n}$.
5. What kind of motion exhibits the string in the plane which passes through the coordinate axes X^{1} and X^{2} ?

Problem 2

Explain, by using reparametrization freedom of the closed string, that one can not fix the light-cone gauge by imposing the condition $X^{+}=0$?

Problem 3

Consider a point particle moving in four-dimensional Minkowski space and interacting with the electromagnetic field with the potential $A_{\mu}, \mu=0,1,2,3$. The action is ${ }^{1}$

$$
S=\frac{1}{2} \int_{\tau_{1}}^{\tau_{2}} \mathrm{~d} \tau\left(\frac{1}{e} \dot{x}^{2}-e m^{2}\right)-q \int_{\tau_{1}}^{\tau_{2}} \mathrm{~d} \tau A_{\mu}(x) \dot{x}^{\mu}
$$

Here e is an auxiliary field (one-dimensional metric) and a constant q is the electric charge. First, derive the equations of motion for x^{μ}. Second, impose the static gauge $x^{0}=\tau$ and find the corresponding Hamiltonian.

Problem 4

Consider classical closed string in the light-cone gauge.

1. Explain the appearance of the level-matching condition $\mathcal{V}=0$.
2. What is the value of the Poisson bracket $\left\{\mathcal{V}, J^{i-}\right\}$. To answer this question, you should recall the meaning of \mathcal{V} as the generator of rigid σ-translations.

Problem 5

Consider the Virasoro constraints $T_{\alpha \beta}=0$ for the closed string.

1. Substitute in these constraints the light-cone gauge choice and solve them for the unphysical fields X^{-}and P^{-}.
2. Explain how the light-cone Hamiltonian H is related to P^{-}.
[^0]
[^0]: ${ }^{1}$ In unites where the speed of light c is taken to be $c=1$.

