FINAL EXAM SUBATOMIC PHYSICS - SOLUTIONS (June 27th, 2012)

NS-369B

Exercise 1: linac

a) If T_{i} is the time that the particle is in tube i, then $v_{i} T_{i}=L_{i}$. Suppose e^{-}particles are accelerated, and the electrons are currently traveling through tube i, then by the time the particle reaches the end of tube i, the polarity of tube i must be - , while the polarity of tube $(i+1)$ must be + . By the time the end of tube $(i+1)$ is reached, the polarity must have switched, i.e., half an oscillation has passed, i.e., a time $T_{i}=1 / 2 f$ has passed. Hence $L_{i}=v_{i} / 2 f$.
b) Using $E_{i}=\gamma_{i} m c^{2}$, we find that $v_{i}=c \sqrt{1-m^{2} c^{4} / E_{i}^{2}}$.
c) From the previous two questions we can see that $2 f L_{i} / c=\sqrt{1-m^{2} c^{4} / E_{i}^{2}}$, where the l.h.s. is assumed to be constant. This means that also the r.h.s. needs to be constant, i.e., the ratio m / E_{i} needs to be constant.

Now assume that the particle comes from the source with an energy E_{0}, then in the i-th tube, it has energy $E_{i}=E_{0}+i V_{0}$, which is also assumed to be constant.
In conclusion, one cannot simply use the same linac, but both E_{0} and V_{0} need to be changed such that the ratio m / E_{i} is the same for all i.

Exercise 2: a simple model of the strong nuclear force.

a) For the force we have:

$$
\mathbf{F}_{E}(r)=-\nabla V_{E}(r)=\frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}},
$$

which vanishes for $r \rightarrow \infty$.
b) The force will become constant $\left(\mathbf{F}_{S}(r)=-k \hat{\mathbf{r}}\right)$ at large distances.
c) The total energy in the string can be found by integrating:

$$
E=\int_{-R}^{R} d E \rightarrow 2 k \int_{0}^{R} \gamma d r=2 k \int_{0}^{R} \frac{d r}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

However, since the quarks at the end points of the string go with the speed of light, we must have: $v(r)=c r / R$. Hence it follows:

$$
E=2 k \int_{0}^{R} \frac{d r}{\sqrt{1-\frac{r^{2}}{R^{2}}}}=2 k R \int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}=\pi k R,
$$

where we've used $x=r R$.
d) In a very similar way we have:

$$
J=\int_{-R}^{R} d J=\frac{2}{c^{2}} \int_{0}^{R} r v d E=\frac{2 k}{c^{2}} \int_{0}^{R} \gamma r v d r=\frac{2 k}{c^{2}} \int_{0}^{R} \frac{r v d r}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Now again we substitute $v(r)=c r / R$, followed by the coordinate transformation $x=r R$. We get:

$$
J=\frac{2 k}{c R} \int_{0}^{R} \frac{r^{2} d r}{\sqrt{1-\frac{r^{2}}{R^{2}}}}=\frac{2 k R^{2}}{c} \int_{0}^{1} \frac{x d x}{\sqrt{1-x^{2}}}=\frac{k R^{2} \pi}{2 c}
$$

e) Using the results of (c) and (d) we can eliminate $R: M^{2} c^{4}=E^{2}=\pi^{2} k^{2} R^{2}=2 J c \pi k$. Hence we find: $J=\frac{M^{2} c^{4}}{2 c \pi k}$. From the graph we can roughly deduce the slope of the line. Comparing the ground state and the highest excited state in the graph we find: $\Delta J=3 \hbar, \Delta M^{2} c^{4}=4 \mathrm{GeV}^{2}$. For the natural constants we have: $3.00 \cdot 10^{23} \mathrm{fm} / \mathrm{c}$, and $\hbar=6.58 \cdot 10^{-25} \mathrm{GeV} \cdot \mathrm{s}$.
Plugging in the numbers we thus find:

$$
k=\frac{1}{2 \pi c \hbar} \frac{\Delta M^{2} c^{4}}{\Delta J}=\frac{1}{2 \pi\left(3.00 \cdot 10^{23} \mathrm{fm} / \mathrm{s}\right) \cdot\left(6.58 \cdot 10^{-25} \mathrm{GeV} \cdot \mathrm{~s}\right)} \frac{4}{3} G e V^{2} \approx 1 \mathrm{GeV} / \mathrm{fm}
$$

f) Hence for the size of the meson we find $m_{\phi}-2 m_{s}=\pi k R \rightarrow R \approx 0.3 \mathrm{fm}$.

