Wat is Wiskunde Re-Exam A, 21/12/2009, English
Voor de Nederlandse tekst van dit tentamen zie ommezijde.

- On each sheet of paper you hand in write your name and student number
- Each problem counts for 20 points, leading to a maximum of 100 points
- Do not provide just final answers. Prove and motivate your arguments!
- The use of computer, calculator, lecture notes, or books is not allowed

Problem A) Determine which of the following three expressions are logically equivalent

$$
1:(P \wedge(\neg Q)) \Rightarrow(R \vee Q) \quad 2:(\neg P) \vee Q \vee R \quad 3:(\neg P) \vee(\neg Q) \vee R
$$

Problem B) Prove by induction that for every integer $n>0$

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Problem C)

(1) Prove that for every three sets A, B and C holds

$$
((A-B) \cup(B-A)) \cap C=((A \cap C) \cup(B \cap C))-(A \cap B)
$$

(2) Show that the equality

$$
A-(B-(C-D))=((A-B)-C)-D
$$

does not necessarily hold for all sets A, B, C and D.

Problem D)

(1) Consider the set \mathbb{Z} of integers and the relation R given by: for $x, y \in \mathbb{Z}$ holds $x R y$ precisely when the number $|x-y|+1$ is either 1 or a prime number. Prove that R is not an equivalence relation.
(2) Consider the set $\mathbb{R} \times \mathbb{R}=\{(a, b) \mid a \in \mathbb{R}, b \in \mathbb{R}\}$ of pairs of real numbers and the relation S given by: for $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R} \times \mathbb{R}$ holds $\left(x_{1}, x_{2}\right) S\left(y_{1}, y_{2}\right)$ exactly when $x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}$. Prove that S is an equivalence relation.
(3) Consider the same relation S as in (2) and the equivalence classes $A_{1}=$ $[(0,0)], A_{2}=[(0,2)], A_{3}=[(\sqrt{2}, \sqrt{2})]$. Which of A_{1}, A_{2}, A_{3} are equal? Which of A_{1}, A_{2}, A_{3} are finite sets.

Problem E) For each of the following statements decide if it is true or false. Give a short argument to support your answer.
(1) If R is an equivalence relation on a finite set A then the number of distinct equivalence classes is either 1 or a prime number.
(2) Let B_{1}, B_{2}, B_{3} be three sets. If $B_{1} \cap B_{2} \neq \emptyset$ and $B_{1} \cap B_{3} \neq \emptyset$ and $B_{2} \cap B_{3} \neq \emptyset$ then $B_{1} \cap B_{2} \cap B_{3} \neq \emptyset$.
(3) Let A be a set. There exists at least one equivalence relation R on A.

Wat is Wiskunde herkansing A, 21/12/2009, Nederlands
For the English text of this exam see the back of this page.

- Schrijf op elk blad dat je inlevert je naam en studentnummer.
- Elk van de vijf opgaven telt voor 20 punten.
- Geef niet alleen eindantwoorden, maar laat ook duidelijk zien hoe je tot je antwoord komt.
- Gebruik van een computer, rekenmachine, aantekeningen of boeken tijdens dit tentamen is niet toegestaan

Opgave A) Bepaal welke van de volgende drie beweringen logisch equivalent zijn
$1:(P \wedge(\neg Q)) \Rightarrow(R \vee Q) \quad 2:(\neg P) \vee Q \vee R \quad 3:(\neg P) \vee(\neg Q) \vee R$
Opgave B) Bewijs met inductie dat voor elk geheel getal $n>0$ geldt

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Opgave C)

(1) Bewijs dat voor elk drietal verzamelingen A, B, C geldt

$$
((A-B) \cup(B-A)) \cap C=((A \cap C) \cup(B \cap C))-(A \cap B)
$$

(2) Bewijs dat de gelijkheid

$$
A-(B-(C-D))=((A-B)-C)-D
$$

niet hoeft te gelden voor elk viertal verzamelingen A, B, C, D.

Opgave D)

(1) Neem op de verzameling \mathbb{Z} van de gehele getallen de relatie R gegeven door: voor $x, y \in \mathbb{Z}$ geldt $x R y$ precies dan als $|x-y|+1$ gelijk is aan 1 of een priem getal. Bewijs dat R niet een equivalentie relatie is.
(2) We beschouwen op de verzameling $\mathbb{R} \times \mathbb{R}=\{(a, b) \mid a \in \mathbb{R}, b \in \mathbb{R}\}$ van paren van reële getallen de relatie S gegeven door: voor $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R} \times \mathbb{R}$ geldt $\left(x_{1}, x_{2}\right) S\left(y_{1}, y_{2}\right)$ precies dan als $x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}$.
Bewijs dat S een equivalentie relatie is.
(3) Neem dezelfde relatie S als in (2) en beschouw de equivalentieklassen $A_{1}=$ $[(0,0)], A_{2}=[(0,2)], A_{3}=[(\sqrt{2}, \sqrt{2})]$. Welke van de equivalentieklassen A_{1}, A_{2}, A_{3} zijn gelijk? Welke van de equivalentieklassen A_{1}, A_{2}, A_{3} is een eindige verzameling?
Opgave E) Geef voor elk van de onderstaande beweringen aan of hij juist of onjuist is. Geef een kort argument ter ondersteuning van je antwoord.
(1) Als R een equivalentie relatie op een eindige verzameling A is dan is het aantal verschillende equivalentieklassen gelijk aan 1 of een priemgetal.
(2) $\mathrm{Zij} B_{1}, B_{2}, B_{3}$ een drietal verzamelingen. Als $B_{1} \cap B_{2} \neq \emptyset$ en $B_{1} \cap B_{3} \neq \emptyset$ en $B_{2} \cap B_{3} \neq \emptyset$ dan geldt $B_{1} \cap B_{2} \cap B_{3} \neq \emptyset$.
(3) $\mathrm{Zij} A$ een verzameling. Er bestaat minstens 1 equivalentie relatie op A.

Wat is Wiskunde Re-Exam A - Solutions

Problem A) Determine which of the following three expressions are logically equivalent

$$
1:(P \wedge(\neg Q)) \Rightarrow(R \vee Q) \quad 2:(\neg P) \vee Q \vee R \quad 3:(\neg P) \vee(\neg Q) \vee R
$$

Solution: By calculating and inspecting the truth tables for each of the three expressions one verifies that only expressions 1 and 2 are equivalent.

Problem B) Prove by induction that for every integer $n>0$

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Solution: By induction on n. The induction basis is the case $n=1$ in which case the left hand side becomes $1^{3}=1$ and the right hand side is equal to $\frac{1^{2}(1+1)^{2}}{4}=1$. This establishes the induction basis. For the induction step assume the equality holds for $n=k$ and we now set out to prove that it also holds for $k+1$. The left hand side is in this case equal to

$$
1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}
$$

which by grouping together the first k summands and using the induction hypothesis is seen to be equal to

$$
\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} .
$$

We wish to show that this is equal to the right hand side of the original equation where $n=k+1$. That right hand side is:

$$
\frac{(k+1)^{2}(k+2)^{2}}{4}
$$

and we thus need to establish that

$$
\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4} .
$$

Simplifying the left hand side we have

$$
\frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4}=\frac{\left(k^{2}+4 k+1\right)(k+1)^{2}}{4}=\frac{(k+2)^{2}(k+1)^{2}}{4}
$$

as desired. This proves the induction step and thus the equality for all natural numbers $n>0$ by the induction principal.

Problem C)

(1) Prove that for every three sets A, B and C holds

$$
((A-B) \cup(B-A)) \cap C=((A \cap C) \cup(B \cap C))-(A \cap B)
$$

(2) Show that the equality

$$
A-(B-(C-D))=((A-B)-C)-D
$$

does not necessarily hold for all sets A, B, C and D.
Solution: 1) Let $x \in((A-B) \cup(B-A)) \cap C$. Then $x \in(A-B) \cup(B-A)$ and $x \in C$. It thus follows that either $x \in A-B$ or $x \in B-A$. Due to symmetry considerations we may assume without loss of generality that $x \in A-B$. Thus we have that $x \in A-B$ and $x \in C$ which means that $x \in A$ and $x \notin B$ and $x \in C$. Since $x \in A$ and $x \in C$ it follows that $x \in A \cap C$ and thus also that $x \in((A \cap C) \cup(B \cap C))$. Since $x \notin B$ it follows also that $x \notin A \cap B$ and thus we conclude that $x \in((A \cap C) \cup(B \cap C))$ and $x \notin A \cap B$ which means that $x \in((A \cap C) \cup(B \cap C))-(A \cap B)$. This argument proves that $((A-B) \cup(B-A))) \cap C \subseteq((A \cap C) \cup(B \cap C))-(A \cap B)$. For the other direction let $y \in((A \cap C) \cup(B \cap C))-(A \cap B)$. Then $y \in((A \cap C) \cup(B \cap C))$ and $y \notin A \cap B$. Thus either $y \in A \cap C$ or $y \in B \cap C$. Again due to symmetry we may, without loss of generality, assume that $y \in A \cap C$. We thus have that $y \in A \cap C$ and $y \notin A \cap B$. This means that $y \in A$ and $y \in C$ and either $y \notin A$ or $y \notin B$. Since $y \in A$ we conclude that $y \notin B$. We thus have that $y \in A$ and $y \in C$ and $y \notin B$. Since $y \in A$ and $y \notin B$ it follows that $y \in A-B$ and thus also that $y \in((A-B) \cup(B-A)$. Since $y \in C$ we conlude that $y \in((A-B) \cup(B-A)) \cap C$. This argument now established that $((A \cap C) \cup(B \cap C))-(A-B) \subseteq((A-B) \cup(B-A)) \cap C$. The two arguments established the required equality.
2) We provide the counter example: $A=\{1\}, B=\{1,2\}, C=\{1,2\}, D=\emptyset$. Then

$$
A-(B-(C-D))=A-(B-C)=A-\emptyset=A
$$

while

$$
((A-B)-C)-D=(\emptyset-C)-D=\emptyset-D=\emptyset
$$

and since $A \neq \emptyset$ our counter example is valid.

Problem D)

(1) Consider the set \mathbb{Z} of integers and the relation R given by: for $x, y \in \mathbb{Z}$ holds $x R y$ precisely when the number $|x-y|+1$ is either 1 or a prime number. Prove that R is not an equivalence relation.
(2) Consider the set $\mathbb{R} \times \mathbb{R}=\{(a, b) \mid a \in \mathbb{R}, b \in \mathbb{R}\}$ of pairs of real numbers and the relation S given by: for $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R} \times \mathbb{R}$ holds $\left(x_{1}, x_{2}\right) S\left(y_{1}, y_{2}\right)$ exactly when $x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}$. Prove that S is an equivalence relation.
(3) Consider the same relation S as in (2) and the equivalence classes $A_{1}=$ $[(0,0)], A_{2}=[(0,2)], A_{3}=[(\sqrt{2}, \sqrt{2})]$. Which of A_{1}, A_{2}, A_{3} are equal? Which of A_{1}, A_{2}, A_{3} are finite sets.

Solution; 1) To show that R is not an equivalence relation we show it is not transitive. Let $x=5, y=3, z=2 . x R y$ since $|x-y|+1=3$ is prime. $y R z$ also holds since
$|y-z|+1=2$, a prime number. But $x R z$ does not hold since $|x-z|+1=4$ is not prime and not equal to 1 .
2) We need to show that S is reflexive, symmetric, and transitive. Let $(x, y) \in \mathbb{R} \times \mathbb{R}$. Then $(x, y) S(x, y)$ holds since $x^{2}+y^{2}=x^{2}+y^{2}$. Thus S is reflexive. Now let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R} \times \mathbb{R}$ and assume $\left(x_{1}, x_{2}\right) S\left(y_{1}, y_{2}\right)$. That means that $x_{1}^{2}+x_{2}^{2}=$ $y_{1}^{2}+y_{2}^{2}$. Clearly then $y_{1}^{2}+y_{2}^{2}=x_{1}^{2}+x_{2}^{2}$ which implies $\left(y_{1}, y_{2}\right) S\left(x_{1}, x_{2}\right)$ and thus that S is symmetric. Now let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right) \in \mathbb{R} \times \mathbb{R}$ such that $\left(x_{1}, x_{2}\right) S\left(y_{1}, y_{2}\right)$ and $\left(y_{1}, y_{2}\right) S\left(z_{1}, z_{2}\right)$. That means that $x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}$ and $y_{1}^{2}+y_{2}^{2}=z_{1}^{2}+z_{2}^{2}$ which clearly implies that $x_{1}^{2}+x_{2}^{2}=z_{1}^{2}+z_{2}^{2}$. That is: $\left(x_{1}, x_{2}\right) S\left(z_{1}, z_{2}\right)$ holds which means S is transitive. We have thus shown that S is an equivalence relation.
3) A property of equivalence classes is that two such, $[x]$ and $[y]$ are equal as sets if, and only if, $x S y$. Thus to see which of the three classes given are equal we need to check when the representatives are related in S. Now since $0^{2}+2^{2}=4=\sqrt{2}^{2}+\sqrt{2}^{2}$ it follows that $(0,2) S(\sqrt{2}, \sqrt{2})$ and thus that $A_{2}=A_{3}$. And since $0^{2}+0^{2}=0 \neq 4$ it follows that $(0,0)$ is not related to $(0,2)$ nor to $(\sqrt{2}, \sqrt{2})$ and thus that $A_{1} \neq A_{2}$ and $A_{1} \neq A_{3}$. To see which are finite sets we look at the definition of the equivalence class: $A_{1}=[(0,0)]=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^{2}+y^{2}=0^{2}+0^{2}=0\right\}$. The only solution to this equation is $x=y=0$ and thus $[(0,0)]=\{(0,0)\}$ which is a finite set. Since $A_{2}=A_{3}$ we just need to determine one of the two. We have $A_{2}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^{2}+y^{2}=0^{2}+2^{2}=4\right\}$. The solutions to this equation are all the points in the plane that lie on the circle of radius 2 about the origin. Thus A_{2} (and A_{3}) is infinite.

Problem E) For each of the following statements decide if it is true or false. Give a short argument to support your answer.
(1) If R is an equivalence relation on a finite set A then the number of distinct equivalence classes is either 1 or a prime number.
(2) Let B_{1}, B_{2}, B_{3} be three sets. If $B_{1} \cap B_{2} \neq \emptyset$ and $B_{1} \cap B_{3} \neq \emptyset$ and $B_{2} \cap B_{3} \neq \emptyset$ then $B_{1} \cap B_{2} \cap B_{3} \neq \emptyset$.
(3) Let A be a set. There exists at least one equivalence relation R on A.

Solution: 1) This is not true. In fact the number of equivalence classes can be any number at all. For example let A be a set with n elements for some natural number n. The relation R on A in which for $a, b \in A$ holds $a R b$ if, and only if, $a=b$ is easily seen to be an equivalence relation and the number of equivalence classes is equal to n. For a more concrete counter example: We know that equality modulo 4 is an equivalence relation on \mathbb{Z} and we know that there are then 4 equivalence relations.
2) This in not true. Let $B_{1}=\{2.3\}, B_{2}=\{1,2\}, B_{3}=\{1,3\}$. Then $B_{1} \cap B_{2}=\{2\}$ and $B_{1} \cap B_{3}=\{3\}$ and $B_{2} \cap B_{3}=\{1\}$. However, $B_{1} \cap B_{2} \cap B_{3}=\emptyset$.
3) This is true. For example we can choose for A the relation $S=A \times A$, that is for any $a, b \in A$ holds $a S b$. It is then trivial that S is an equivalence relation. (one can also take the construction of part 1) of this problem.

