SOLUTIONS

Problem A:

- (1) The function is only not defined when the denominator is 0. This happens only if x = 2, thus the requested set A is the set $\mathbb{R} \{2\}$.
- (2) To find the image of f we look at the equation f(x) = y where y is given and solve for x:

$$\frac{2x}{x-2} = y \implies 2x = (x-2)y = xy - 2y \implies (2-y)x = -2y.$$

If $y \neq 2$ then we obtain $x = \frac{2y}{y-2}$ as a solution. Thus any $y \neq 2$ in \mathbb{R} is in the image of f. Now, the equation

$$\frac{2x}{x-2} = 2$$

gives

$$2x = 2x - 4$$

which clearly has no solution. Thus we see that y = 2 is not in the image of f. We conclude that $B = \mathbb{R} - \{2\}$.

(3) The inverse of $f: A \to B$ is the function $g: B \to A$ given by $g(y) = \frac{2y}{y-2}$. We verify that by computing

$$f \circ g(y) = \frac{2g(y)}{g(y) - 2} = \frac{2\frac{2y}{y-2}}{\frac{2y}{y-2} - 2} = \frac{\frac{4y}{y-2}}{\frac{4y}{y-2}} = y,$$

for all $y \in B$. Since f = g as functions it also follows that $g \circ f(x) = x$ for all $x \in A$. This proves that g is the inverse of f and thus also that f is bijective.

Problem B:

- (1) The Schroeder-Bernstein Theorem states that given two sets A and B and injections $f : A \to B$ and $g : B \to A$ then |A| = |B|, that is there exists a bijection $h : A \to B$.
- (2) To prove |[-1,1]| = |(-1,1)| it suffices, according to the Schroeder-Bernstein Theorem to find injective functions $f: [-1,1] \to (-1,1)$ and $g: (-1,1) \to [-1,1]$. An obvious choice for g is the function given by g(x) = x for all $x \in (0,1)$ which is injective since for any $x, y \in (-1,1)$ if g(x) = g(y) then x = y by definition of g. To find the injection f we need to contract [-1,1] to fit in (-1,1). We can take, for example, the function $f(x) = \frac{x}{2}$ for all $x \in [-1,1]$. We need to verfive that the codomain of f is indeed (-1,1). This is true since for any $x \in [-1,1]$ holds that $|f(x)| < \frac{1}{2}$, thus $f(x) \in (-\frac{1}{2}, \frac{1}{2}) \subseteq (-1, 1)$. Moreover, f is injective since for any $x, y \in [-1, 1]$ if g(x) = g(y) then $\frac{x}{2} = \frac{y}{2}$ which implies x = y.

(3) There are several ways to prove the desired result. One uses the fact, proved in the lectures, that the set \mathbb{Q} or rational numbers is countable and the theorem that an infinite subset of a countable set is countable. Now, any real number with a finite decimal expansion is rational and thus $T \subseteq \mathbb{Q}$. We thus only need show that T is infinite. Indeed for any natural number n let $x_n = 0.111 \cdots 1$ with 1 repeated n times. These are all distinct numbers and all belong to T thus T is infinite and countable.

Problem C:

(1) We use the Euclidean algorithm by repeatedly applying the division algorithm:

$$1005 = 10 \cdot 99 + 15$$

$$99 = 6 \cdot 15 + 9$$

$$15 = 1 \cdot 9 + 6$$

$$9 = 1 \cdot 6 + 3$$

$$6 = 2 \cdot 3 + 0$$

and thus gcd(1005, 99) = 3. Working backwords from these equations we obtain:

$$3 = 1 \cdot 9 - 1 \cdot 6$$

= 2 \cdot 9 - 1 \cdot 15
= 2 \cdot 99 - 13 \cdot 15
= 132 \cdot 99 - 13 \cdot 1005

thus x = -13 and y = 132, as desired.

(2) We use the following two properties of gcd(a, b). First that there are always $x, y \in \mathbb{Z}$ such that xa + yb = gcd(a, b). Second, that if there are numbers $u, v \in \mathbb{Z}$ such that ua + vb = 1 then gcd(a, b) = 1. Now to prove the result: Since gcd(a, b) = 1 there exist $x, y \in \mathbb{Z}$ for which

$$xa + yb = 1.$$

Raising this equality to its second power we obtain

$$x^2a^2 + 2xyab + y^2b^2 = 1.$$

Rearranging we get

$$x^2a^2 + (2xya + y^2b)b = 1,$$

and so if we denote $u = x^2$ and $v = 2xya + y^2b$, and noting that both these numbers are integers, we get $ua^2 + vb = 1$ which implies $gcd(a^2, b) = 1$.

Problem D:

(1) Let $\psi, \varphi : (\mathbb{Z}_4, +) \to (\mathbb{Z}_5^*, \cdot)$ be two isomorphisms with $\psi([1]) = \varphi([1])$. Then using the definition of isomorphism we have:

$$\psi([2]) = \psi([1] + [1]) = \psi([1]) \cdot \psi([1]) = \varphi([1]) \cdot \varphi([1]) = \varphi([2])$$

 $\psi([3]) = \psi([2] + [1]) = \psi([2]) \cdot \psi([1]) = \varphi([2]) \cdot \varphi([1]) = \varphi([3])$ $\psi([0]) = \psi([3] + [1]) = \psi([3]) \cdot \psi([1]) = \varphi([3]) \cdot \varphi([1]) = \varphi([0])$

thus we see that ψ and φ are identical functions, as needed.

- (2) According to part 1 of this problem any isomorphism ψ is completely determined by the element $\psi([1])$. Thus there are at most 4 possible isomorphisms $\psi_1, \psi_2, \psi_3, \psi_4$ with $\psi_i([1]) = [i]$ for i = 1, 2, 3, 4. Since any isomorphism maps the identity element to the identity element we must have $\psi_1([0]) = [1] = \psi_1([1])$. Thus ψ_1 is not bijective and thus we are left with three possibilities: ψ_2, ψ_3, ψ_4 .
- (3) To find all subgroups of $(\mathbb{Z}_4, +)$ we consider the relevant subsets of \mathbb{Z}_4 and check them with the subgroup test. Since any subgroup must contain the identity element of the group we need only consider those subsets of \mathbb{Z}_4 that contain [0]. There are 8 such subsets and one can subject each of them to the subgroup test. One can filter some more sets by using Lagrange's Theorem that says that the order of a subgroup must devide the order of the group. Thus we need only consider subsets of \mathbb{Z}_4 that contain [0] **and** that have size 1, 2 or 4. Thus we look at the following subsets:

 $\{[0]\}, \{[0], [1]\}, \{[0], [2]\}, \{[0], [3]\}, \{[0], [1], [2], [3]\}.$

The first and the last one are (as always) subgroups. Of the remaining three clearly only $\{[0], [2]\}$ passes the subgroup test. Thus all subgroups of \mathbb{Z}_4 are $\{[0]\}, \{[0], [2]\}, \{[0], [1], [2], [3]\}.$

Problem E:

- (1) This is false: Let $A = \mathbb{R}$ and let f(x) = 0 = g(x) for all $x \in \mathbb{R}$. Clearly neither f nor g is injective and yet $f \circ g(x) = f(g(x)) = f(0) = 0$ and similarly $g \circ f(x) = 0$ for all $x \in \mathbb{R}$ thus $f \circ g = g \circ f$.
- (2) This is false. Cantor's Lemma states that for any set A holds |A| < |P(A)|. This holds then also for A = P(X) for any hypothetic set X.
- (3) This is false as the counter example a = 2, b = 4 shows since then gcd(a, b) = 2 while $gcd(a^2, b) = 4$.
- (4) This is false as seen by the group $(\mathbb{Z}_4, +)$ and g = [0]. Then indeed $g^2 = [0] = e$ but $[1] + [1] \neq [0]$.