
SOLUTIONS

Problem A:
(1) The function is only not defined when the denominator is 0. This happens

only if x = 2, thus the requested set A is the set R− {2}.
(2) To find the image of f we look at the equation f(x) = y where y is given and

solve for x:
2x

x− 2
= y =⇒ 2x = (x− 2)y = xy − 2y =⇒ (2− y)x = −2y.

If y 6= 2 then we obtain x = 2y
y−2

as a solution. Thus any y 6= 2 in R is in the
image of f . Now, the equation

2x

x− 2
= 2

gives
2x = 2x− 4

which clearly has no solution. Thus we see that y = 2 is not in the image of
f . We conclude that B = R− {2}.

(3) The inverse of f : A→ B is the function g : B → A given by g(y) = 2y
y−2

. We
verify that by computing

f ◦ g(y) =
2g(y)

g(y)− 2
=

2 2y
y−2

2y
y−2
− 2

=

4y
y−2

4
y−2

= y,

for all y ∈ B. Since f = g as functions it also follows that g ◦ f(x) = x for all
x ∈ A. This proves that g is the inverse of f and thus also that f is bijective.

Problem B:
(1) The Schroeder-Bernstein Theorem states that given two sets A and B and

injections f : A → B and g : B → A then |A| = |B|,that is there exists a
bijection h : A→ B.

(2) To prove |[−1, 1]| = |(−1, 1)| it suffices, according to the Schroeder-Bernstein
Theorem to find injective functions f : [−1, 1] → (−1, 1) and g : (−1, 1) →
[−1, 1]. An obvious choice for g is the function given by g(x) = x for all
x ∈ (0, 1) which is injective since for any x, y ∈ (−1, 1) if g(x) = g(y)
then x = y by definition of g. To find the injection f we need to contract
[−1, 1] to fit in (−1, 1). We can take, for example, the function f(x) = x

2

for all x ∈ [−1, 1]. We need to verfiy that the codomain of f is indeed
(−1, 1). This is true since for any x ∈ [−1, 1] holds that |f(x)| < 1

2
, thus

f(x) ∈ (−1
2
, 1

2
) ⊆ (−1, 1). Moreover, f is injective since for any x, y ∈ [−1, 1]

if g(x) = g(y) then x
2

= y
2
which implies x = y.
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(3) There are several ways to prove the desired result. One uses the fact, proved
in the lectures, that the set Q or rational numbers is countable and the
theorem that an infinite subset of a countable set is countable. Now, any
real number with a finite decimal expansion is rational and thus T ⊆ Q. We
thus only need show that T is infinite. Indeed for any natural number n let
xn = 0.111 · · · 1 with 1 repeated n times. These are all distinct numbers and
all belong to T thus T is infinite and countable.

Problem C:
(1) We use the Euclidean algorithm by repeatedly applying the division algo-

rithm:

1005 = 10 · 99 + 15

99 = 6 · 15 + 9

15 = 1 · 9 + 6

9 = 1 · 6 + 3

6 = 2 · 3 + 0

and thus gcd(1005, 99) = 3. Working backwords from these equations we
obtain:

3 = 1 · 9− 1 · 6
= 2 · 9− 1 · 15

= 2 · 99− 13 · 15

= 132 · 99− 13 · 1005

thus x = −13 and y = 132, as desired.
(2) We use the following two properties of gcd(a, b). First that there are always

x, y ∈ Z such that xa + yb = gcd(a, b). Second, that if there are numbers
u, v ∈ Z such that ua + vb = 1 then gcd(a, b) = 1. Now to prove the result:
Since gcd(a, b) = 1 there exist x, y ∈ Z for which

xa+ yb = 1.

Raising this equality to its second power we obtain

x2a2 + 2xyab+ y2b2 = 1.

Rearranging we get

x2a2 + (2xya+ y2b)b = 1,

and so if we denote u = x2 and v = 2xya + y2b, and noting that both these
numbers are integers, we get ua2 + vb = 1 which implies gcd(a2, b) = 1.

Problem D:
(1) Let ψ, ϕ : (Z4,+)→ (Z∗

5, ·) be two isomorphisms with ψ([1]) = ϕ([1]). Then
using the definition of isomorphism we have:

ψ([2]) = ψ([1] + [1]) = ψ([1]) · ψ([1]) = ϕ([1]) · ϕ([1]) = ϕ([2])



ψ([3]) = ψ([2] + [1]) = ψ([2]) · ψ([1]) = ϕ([2]) · ϕ([1]) = ϕ([3])

ψ([0]) = ψ([3] + [1]) = ψ([3]) · ψ([1]) = ϕ([3]) · ϕ([1]) = ϕ([0])

thus we see that ψ and ϕ are identical functions, as needed.
(2) According to part 1 of this problem any isomorphism ψ is completely de-

termined by the element ψ([1]). Thus there are at most 4 possible iso-
morphisms ψ1, ψ2, ψ3, ψ4 with ψi([1]) = [i] for i = 1, 2, 3, 4. Since any iso-
morpihsm maps the identity element to the identity element we must have
ψ1([0]) = [1] = ψ1([1]). Thus ψ1 is not bijective and thus we are left with
three possibilites: ψ2, ψ3, ψ4.

(3) To find all subgroups of (Z4,+) we consider the relevant subsets of Z4 and
check them with the subgroup test. Since any subgroup must contain the
identity element of the group we need only consider those subsets of Z4 that
contain [0]. There are 8 such subsets and one can subject each of them to the
subgroup test. One can filter some more sets by using Lagrange’s Theorem
that says that the order of a subgroup must devide the order of the group.
Thus we need only consider subsets of Z4 that contain [0] and that have size
1, 2 or 4. Thus we look at the following subsets:

{[0]}, {[0], [1]}, {[0], [2]}, {[0], [3]}, {[0], [1], [2], [3]}.
The first and the last one are (as always) subgroups. Of the remaining three
clearly only {[0], [2]} passes the subgroup test. Thus all subgroups of Z4 are
{[0]}, {[0], [2]}, {[0], [1], [2], [3]}.

Problem E:
(1) This is false: Let A = R and let f(x) = 0 = g(x) for all x ∈ R. Clearly

neither f nor g is injective and yet f ◦ g(x) = f(g(x)) = f(0) = 0 and
similarly g ◦ f(x) = 0 for all x ∈ R thus f ◦ g = g ◦ f .

(2) This is false. Cantor’s Lemma states that for any set A holds |A| < |P (A)|.
This holds then also for A = P (X) for any hypothetic set X.

(3) This is false as the counter example a = 2, b = 4 shows since then gcd(a, b) = 2
while gcd(a2, b) = 4.

(4) This is false as seen by the group (Z4,+) and g = [0]. Then indeed g2 = [0] =
e but [1] + [1] 6= [0].


