SOLUTIONS

Problem A:

(1) The function is only not defined when the denominator is 0 . This happens only if $x=2$, thus the requested set A is the set $\mathbb{R}-\{2\}$.
(2) To find the image of f we look at the equation $f(x)=y$ where y is given and solve for x :

$$
\frac{2 x}{x-2}=y \Longrightarrow 2 x=(x-2) y=x y-2 y \Longrightarrow(2-y) x=-2 y
$$

If $y \neq 2$ then we obtain $x=\frac{2 y}{y-2}$ as a solution. Thus any $y \neq 2$ in \mathbb{R} is in the image of f. Now, the equation

$$
\frac{2 x}{x-2}=2
$$

gives

$$
2 x=2 x-4
$$

which clearly has no solution. Thus we see that $y=2$ is not in the image of f. We conclude that $B=\mathbb{R}-\{2\}$.
(3) The inverse of $f: A \rightarrow B$ is the function $g: B \rightarrow A$ given by $g(y)=\frac{2 y}{y-2}$. We verify that by computing

$$
f \circ g(y)=\frac{2 g(y)}{g(y)-2}=\frac{2 \frac{2 y}{y-2}}{\frac{2 y}{y-2}-2}=\frac{\frac{4 y}{y-2}}{\frac{4}{y-2}}=y
$$

for all $y \in B$. Since $f=g$ as functions it also follows that $g \circ f(x)=x$ for all $x \in A$. This proves that g is the inverse of f and thus also that f is bijective.

Problem B:

(1) The Schroeder-Bernstein Theorem states that given two sets A and B and injections $f: A \rightarrow B$ and $g: B \rightarrow A$ then $|A|=|B|$,that is there exists a bijection $h: A \rightarrow B$.
(2) To prove $|[-1,1]|=|(-1,1)|$ it suffices, according to the Schroeder-Bernstein Theorem to find injective functions $f:[-1,1] \rightarrow(-1,1)$ and $g:(-1,1) \rightarrow$ $[-1,1]$. An obvious choice for g is the function given by $g(x)=x$ for all $x \in(0,1)$ which is injective since for any $x, y \in(-1,1)$ if $g(x)=g(y)$ then $x=y$ by definition of g. To find the injection f we need to contract $[-1,1]$ to fit in $(-1,1)$. We can take, for example, the function $f(x)=\frac{x}{2}$ for all $x \in[-1,1]$. We need to verfiy that the codomain of f is indeed $(-1,1)$. This is true since for any $x \in[-1,1]$ holds that $|f(x)|<\frac{1}{2}$, thus $f(x) \in\left(-\frac{1}{2}, \frac{1}{2}\right) \subseteq(-1,1)$. Moreover, f is injective since for any $x, y \in[-1,1]$ if $g(x)=g(y)$ then $\frac{x}{2}=\frac{y}{2}$ which implies $x=y$.
(3) There are several ways to prove the desired result. One uses the fact, proved in the lectures, that the set \mathbb{Q} or rational numbers is countable and the theorem that an infinite subset of a countable set is countable. Now, any real number with a finite decimal expansion is rational and thus $T \subseteq \mathbb{Q}$. We thus only need show that T is infinite. Indeed for any natural number n let $x_{n}=0.111 \cdots 1$ with 1 repeated n times. These are all distinct numbers and all belong to T thus T is infinite and countable.

Problem C:

(1) We use the Euclidean algorithm by repeatedly applying the division algorithm:

$$
\begin{array}{r}
1005=10 \cdot 99+15 \\
99=6 \cdot 15+9 \\
15=1 \cdot 9+6 \\
9=1 \cdot 6+3 \\
6=2 \cdot 3+0
\end{array}
$$

and thus $\operatorname{gcd}(1005,99)=3$. Working backwords from these equations we obtain:

$$
\begin{array}{r}
3=1 \cdot 9-1 \cdot 6 \\
=2 \cdot 9-1 \cdot 15 \\
=2 \cdot 99-13 \cdot 15 \\
=132 \cdot 99-13 \cdot 1005
\end{array}
$$

thus $x=-13$ and $y=132$, as desired.
(2) We use the following two properties of $\operatorname{gcd}(a, b)$. First that there are always $x, y \in \mathbb{Z}$ such that $x a+y b=\operatorname{gcd}(a, b)$. Second, that if there are numbers $u, v \in \mathbb{Z}$ such that $u a+v b=1$ then $\operatorname{gcd}(a, b)=1$. Now to prove the result: Since $\operatorname{gcd}(a, b)=1$ there exist $x, y \in \mathbb{Z}$ for which

$$
x a+y b=1 .
$$

Raising this equality to its second power we obtain

$$
x^{2} a^{2}+2 x y a b+y^{2} b^{2}=1 .
$$

Rearranging we get

$$
x^{2} a^{2}+\left(2 x y a+y^{2} b\right) b=1,
$$

and so if we denote $u=x^{2}$ and $v=2 x y a+y^{2} b$, and noting that both these numbers are integers, we get $u a^{2}+v b=1$ which implies $\operatorname{gcd}\left(a^{2}, b\right)=1$.

Problem D:

(1) Let $\psi, \varphi:\left(\mathbb{Z}_{4},+\right) \rightarrow\left(\mathbb{Z}_{5}^{*}, \cdot\right)$ be two isomorphisms with $\psi([1])=\varphi([1])$. Then using the definition of isomorphism we have:

$$
\psi([2])=\psi([1]+[1])=\psi([1]) \cdot \psi([1])=\varphi([1]) \cdot \varphi([1])=\varphi([2])
$$

$$
\begin{aligned}
& \psi([3])=\psi([2]+[1])=\psi([2]) \cdot \psi([1])=\varphi([2]) \cdot \varphi([1])=\varphi([3]) \\
& \psi([0])=\psi([3]+[1])=\psi([3]) \cdot \psi([1])=\varphi([3]) \cdot \varphi([1])=\varphi([0])
\end{aligned}
$$

thus we see that ψ and φ are identical functions, as needed.
(2) According to part 1 of this problem any isomorphism ψ is completely determined by the element $\psi([1])$. Thus there are at most 4 possible isomorphisms $\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}$ with $\psi_{i}([1])=[i]$ for $i=1,2,3,4$. Since any isomorpihsm maps the identity element to the identity element we must have $\psi_{1}([0])=[1]=\psi_{1}([1])$. Thus ψ_{1} is not bijective and thus we are left with three possibilites: $\psi_{2}, \psi_{3}, \psi_{4}$.
(3) To find all subgroups of $\left(\mathbb{Z}_{4},+\right)$ we consider the relevant subsets of \mathbb{Z}_{4} and check them with the subgroup test. Since any subgroup must contain the identity element of the group we need only consider those subsets of \mathbb{Z}_{4} that contain [0]. There are 8 such subsets and one can subject each of them to the subgroup test. One can filter some more sets by using Lagrange's Theorem that says that the order of a subgroup must devide the order of the group. Thus we need only consider subsets of \mathbb{Z}_{4} that contain [0] and that have size 1,2 or 4 . Thus we look at the following subsets:

$$
\{[0]\},\{[0],[1]\},\{[0],[2]\},\{[0],[3]\},\{[0],[1],[2],[3]\} .
$$

The first and the last one are (as always) subgroups. Of the remaining three clearly only $\{[0],[2]\}$ passes the subgroup test. Thus all subgroups of \mathbb{Z}_{4} are $\{[0]\},\{[0],[2]\},\{[0],[1],[2],[3]\}$.

Problem E:

(1) This is false: Let $A=\mathbb{R}$ and let $f(x)=0=g(x)$ for all $x \in \mathbb{R}$. Clearly neither f nor g is injective and yet $f \circ g(x)=f(g(x))=f(0)=0$ and similarly $g \circ f(x)=0$ for all $x \in \mathbb{R}$ thus $f \circ g=g \circ f$.
(2) This is false. Cantor's Lemma states that for any set A holds $|A|<|P(A)|$. This holds then also for $A=P(X)$ for any hypothetic set X.
(3) This is false as the counter example $a=2, b=4$ shows since then $\operatorname{gcd}(a, b)=2$ while $\operatorname{gcd}\left(a^{2}, b\right)=4$.
(4) This is false as seen by the group $\left(\mathbb{Z}_{4},+\right)$ and $g=[0]$. Then indeed $g^{2}=[0]=$ e but $[1]+[1] \neq[0]$.

