TWEEDE DEELTENTAMEN WISB 212

Analyse in Meer Variabelen

04-07-2006 14-17 uur

- Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzijden.
- De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien het u niet lukt een bepaald onderdeel te maken en ga gewoon door.
- Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden gebruikt.
- De antwoorden mogen uiteraard in het Nederlands worden gegeven, ook al zijn de vraagstukken in het Engels geformuleerd.
- De drie vraagstukken tellen NIET evenzwaar: zij tellen voor 35, 25 en 40\%, respectievelijk, van het totaalcijfer.

Exercise 0.1 (Green's first identity by means of Gauss' Divergence Theorem). Consider $B^{2}=$ $\left\{x \in \mathbf{R}^{2} \mid\|x\|<1\right\}$ and $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by $g(x)=x_{1}^{2}-x_{2}^{2}$.
(i) Prove

$$
\int_{B^{2}}\|\operatorname{grad} g(x)\|^{2} d x=2 \pi
$$

(ii) Recall that $\frac{\partial g}{\partial \nu}=\langle\operatorname{grad} g, \nu\rangle$, the derivative in the direction of the outer normal ν to ∂B^{2}, and compute

$$
\int_{\partial B^{2}}\left(g \frac{\partial g}{\partial \nu}\right)(y) d_{1} y
$$

Hint: Use $2\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)^{2}=2 \cos ^{2} 2 \alpha=1+\cos 4 \alpha$.
The equality of the two integrals above is no accident, as we will presently show. To this end, suppose $h: \mathbf{R}^{2} \rightarrow \mathbf{R}$ to be an arbitrary C^{2} function. Note that $h \operatorname{grad} h: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a C^{1} vector field and recall the identity div grad $=\Delta$.
(iii) Prove $\operatorname{div}(h \operatorname{grad} h)=\|\operatorname{grad} h\|^{2}+h \Delta h$.
(iv) Suppose $\Omega \subset \mathbf{R}^{2}$ satisfies the conditions of Gauss' Divergence Theorem. Apply this theorem to verify

$$
\int_{\Omega}(h \Delta h)(x) d x+\int_{\Omega}\|\operatorname{grad} h(x)\|^{2} d x=\int_{\partial \Omega}\left(h \frac{\partial h}{\partial \nu}\right)(y) d_{1} y
$$

(v) Derive (\star) in part (iv) directly from Green's first identity.
(vi) Show that the equality of the integrals in parts (i) and (ii) follows from (\star) in part (iv).

Exercise 0.2 (Area of surface in \mathbf{C}^{2}). As usual, we identify $z=y_{1}+i y_{2} \in \mathbf{C}$ with $y=\left(y_{1}, y_{2}\right) \in$ \mathbf{R}^{2}. In particular, an open set $D \subset \mathbf{C}$ is identified with the corresponding $D \subset \mathbf{R}^{2}$ and a complexdifferentiable function $f: D \rightarrow \mathbf{C}$ with the vector field $f=\left(f_{1}, f_{2}\right): D \rightarrow \mathbf{R}^{2}$. Thus, we will study $\operatorname{graph}(f) \subset \mathbf{C}^{2}$ in the form of the following set:

$$
\begin{gathered}
V=\left\{(y, f(y)) \in \mathbf{R}^{4} \mid y \in D \subset \mathbf{R}^{2}\right\}=\operatorname{im}(\phi) \quad \text { with } \\
\phi: D \rightarrow \mathbf{R}^{4} \quad \text { given by } \quad \phi(y)=\left(y_{1}, y_{2}, f_{1}(y), f_{2}(y)\right) .
\end{gathered}
$$

It is obvious that V is a C^{∞} submanifold in \mathbf{R}^{4} of dimension 2 and that ϕ is a C^{∞} embedding.
(i) Compute the Euclidean 2-dimensional density ω_{ϕ} on V determined by ϕ. Next, use the CauchyRiemann equations $D_{1} f_{1}=D_{2} f_{2}$ and $D_{1} f_{2}=-D_{2} f_{1}$ to show the following identity of functions on \mathbf{R}^{2} :

$$
\omega_{\phi}=1+\left\|\operatorname{grad} f_{1}\right\|^{2}=1+\left\|\operatorname{grad} f_{2}\right\|^{2}
$$

Suppose D to be a bounded open Jordan measurable set and deduce

$$
\operatorname{vol}_{2}(V)=\operatorname{area}(D)+\int_{D}\left\|\operatorname{grad} f_{1}(y)\right\|^{2} d y
$$

(ii) Suppose $D=\{z \in \mathbf{C}| | z \mid<1\}$ and $f(z)=z^{2}$. Apply the preceding result as well as part (i) in Exercise 0.2 in order to establish that in this case we have $\operatorname{vol}_{2}(V)=3 \pi$.

Exercise 0.3 (Computation of $\zeta(2)$ by successive integration). Define the open set $J=] 0, \sqrt{2}[\subset$ \mathbf{R} and the function $m: J \rightarrow \mathbf{R}$ by $m\left(y_{1}\right)=\min \left(y_{1}, \sqrt{2}-y_{1}\right)$.
(i) Sketch the graph of m. Verify that the open subset \diamond of \mathbf{R}^{2} is a square of area 1 if we set

$$
\diamond=\left\{y \in \mathbf{R}^{2} \mid y_{1} \in J,-m\left(y_{1}\right)<y_{2}<m\left(y_{1}\right)\right\}
$$

(ii) Define

$$
f: \diamond \rightarrow \mathbf{R} \quad \text { by } \quad f(y)=\frac{1}{2-y_{1}^{2}+y_{2}^{2}}
$$

Compute by successive integration

$$
\int_{\diamond} f(y) d y=\frac{\pi^{2}}{12}
$$

At $(\sqrt{2}, 0)$, which belongs to the closure in \mathbf{R}^{2} of \diamond, the integrand f is unbounded. Yet, without proof one may take the convergence of the integral for granted.
Hint: Write the integral the sum of two integrals, one involving] $0, \frac{1}{2} \sqrt{2}$ [and one $] \frac{1}{2} \sqrt{2}, \sqrt{2}[$, which can be computed to be $\frac{\pi^{2}}{36}$ and $\frac{\pi^{2}}{18}$, respectively. In doing so, use that $f(y)=f\left(y_{1},-y_{2}\right)$. Furthermore, without proof one may use the following identities, which easily can be verified by differentiation:

$$
\begin{aligned}
\int f\left(y_{1}, y_{2}\right) d y_{2} & =: g\left(y_{1}, y_{2}\right):=\frac{1}{\sqrt{2-y_{1}^{2}}} \arctan \left(\frac{y_{2}}{\sqrt{2-y_{1}^{2}}}\right) \\
\int g\left(y_{1}, y_{1}\right) d y_{1} & =\frac{1}{2} \arctan ^{2}\left(\frac{y_{1}}{\sqrt{2-y_{1}^{2}}}\right) \\
\int g\left(y_{1}, \sqrt{2}-y_{1}\right) d y_{1} & =-\arctan ^{2}\left(\sqrt{\frac{\sqrt{2}-y_{1}}{\sqrt{2}+y_{1}}}\right)
\end{aligned}
$$

Introduce the open set $I=] 0,1\left[\subset \mathbf{R}\right.$, and furthermore the counterclockwise rotation of \mathbf{R}^{2} about the origin by the angle $\frac{\pi}{4}$ by

$$
\Psi \in \operatorname{End}\left(\mathbf{R}^{2}\right) \quad \text { with } \quad \Psi=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right), \quad \text { set } \quad \square=I^{2} \subset \mathbf{R}^{2}
$$

(iii) Show that $\Psi: \diamond \rightarrow$is a C^{∞} diffeomorphism and using this fact deduce from part (ii)

$$
\int_{\square} \frac{1}{1-x_{1} x_{2}} d x=\frac{\pi^{2}}{6} .
$$

(iv) Conclude from part (iii)

$$
\int_{I} \frac{\log (1-x)}{x} d x=-\frac{\pi^{2}}{6}
$$

Give arguments that the integrand is a bounded continuous function on I near 0 .
(v) Compute $\int_{\square}\left(x_{1} x_{2}\right)^{k-1} d x$, for $k \in \mathbf{N}$. Assuming without proof that in this particular case summation of an infinite series and integration may be interchanged, use part (iii) (or part (iv)) to show Euler's celebrated identity

$$
\zeta(2):=\sum_{k \in \mathbf{N}} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Solution of Exercise 0.1

(i) We have $\operatorname{grad} g(x)=2\left(x_{1},-x_{2}\right)$ and so $\|\operatorname{grad} g(x)\|^{2}=4\|x\|^{2}$. Introducing polar coordinates (r, α) in $\mathbf{R}^{2} \backslash\left\{\left(x_{1}, 0\right) \in \mathbf{R}^{2} \mid x_{1} \leq 0\right\}$, which leads to a C^{1} change of coordinates, we find

$$
\int_{B^{2}}\|\operatorname{grad} g(x)\|^{2} d x=\int_{-\pi}^{\pi} \int_{0}^{1} 4 r^{3} d r d \alpha=2 \pi\left[r^{4}\right]_{0}^{1}=2 \pi
$$

(ii) $\partial B^{2}=S^{1}$, which implies $\nu(y)=y$. Therefore

$$
\left(g \frac{\partial g}{\partial \nu}\right)(y)=g(y)\left\langle 2\left(y_{1},-y_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=2 g(y)^{2}
$$

Note $S^{1}=\operatorname{im}(\phi)$ with $\phi(\alpha)=(\cos \alpha, \sin \alpha)$. Hence $\omega_{\phi}(\alpha)=\|(-\sin \alpha, \cos \alpha)\|=1$ and so

$$
\int_{\partial B^{2}}\left(g \frac{\partial g}{\partial \nu}\right)(y) d_{1} y=\int_{-\pi}^{\pi} 2\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)^{2} d \alpha=\int_{-\pi}^{\pi}(1+\cos 4 \alpha) d \alpha=2 \pi
$$

(iii) We have

$$
\operatorname{div}(g \operatorname{grad} g)=\sum_{1 \leq j \leq 2} D_{j}\left(g D_{j} g\right)=\sum_{1 \leq j \leq 2}\left(\left(D_{j} g\right)^{2}+g D_{j}^{2} g\right)=\|\operatorname{grad} g\|^{2}+g \Delta g
$$

(iv) The assertion follows from application of Gauss’ Divergence Theorem 7.8.5 to the vector field $g \operatorname{grad} g$; indeed,

$$
\begin{aligned}
\int_{\Omega} \operatorname{div}(g \operatorname{grad} g)(x) d x & =\int_{\partial \Omega}\langle g(y) \operatorname{grad} g(y), \nu(y)\rangle d_{1} y=\int_{\partial \Omega} g(y)\langle\operatorname{grad} g, \nu\rangle(y) d_{1} y \\
& =\int_{\partial \Omega}\left(g \frac{\partial g}{\partial \nu}\right)(y) d_{1} y
\end{aligned}
$$

(v) Set $f=g$ in Green's first identity

$$
\int_{\Omega}(g \Delta f)(x) d x=\int_{\partial \Omega}\left(g \frac{\partial f}{\partial \nu}\right)(y) d_{n-1} y-\int_{\Omega}\langle\operatorname{grad} f, \operatorname{grad} g\rangle(x) d x
$$

(vi) This follows from $\Delta g=2-2=0$.

Solution of Exercise 0.2

(i) According to Lemma 8.3.10.(i) and (ii) the Cauchy-Riemann equations apply to the real and imaginary parts f_{1} and f_{2} of the holomorphic function f; consequently, we have the following equality of mappings $\mathbf{R}^{2} \rightarrow \operatorname{Mat}(2, \mathbf{R})$:

$$
\begin{aligned}
& (D \phi)^{t} D \phi=\left(\begin{array}{cccc}
1 & 0 & D_{1} f_{1} & D_{1} f_{2} \\
0 & 1 & D_{2} f_{1} & D_{2} f_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
D_{1} f_{1} & D_{2} f_{1} \\
D_{1} f_{2} & D_{2} f_{2}
\end{array}\right) \\
& =\left(\begin{array}{cl}
1+\left(D_{1} f_{1}\right)^{2}+\left(D_{1} f_{2}\right)^{2} & D_{1} f_{1} D_{2} f_{1}+D_{1} f_{2} D_{2} f_{2} \\
D_{1} f_{1} D_{2} f_{1}+D_{1} f_{2} D_{2} f_{2} & 1+\left(D_{2} f_{1}\right)^{2}+\left(D_{2} f_{2}\right)^{2}
\end{array}\right) \\
& =\left(\begin{array}{rl}
1+\left\|\operatorname{grad} f_{1}\right\|^{2} & 0 \\
0 & 1+\left\|\operatorname{grad} f_{1}\right\|^{2}
\end{array}\right) .
\end{aligned}
$$

Indeed, the coefficient of index $(2,1)$ equals $D_{1} f_{1} D_{2} f_{1}-D_{2} f_{1} D_{1} f_{1}=0$. In view of Definition 7.3.1. - Theorem we obtain

$$
\omega_{\phi}=\sqrt{\operatorname{det}\left((D \phi)^{t} D \phi\right)}=\sqrt{\left(1+\left\|\operatorname{grad} f_{1}\right\|^{2}\right)^{2}}=1+\left\|\operatorname{grad} f_{1}\right\|^{2}
$$

The last assertion now follows, because

$$
\operatorname{vol}_{2}(V)=\int_{V} d_{2} x=\int_{D} \omega_{\phi}(y) d y=\int_{D}\left(1+\left\|\operatorname{grad} f_{1}(y)\right\|^{2}\right) d y
$$

(ii) $f_{1}(y)=\operatorname{Re}\left(y_{1}+i y_{2}\right)^{2}=y_{1}^{2}-y_{2}^{2}=g(y)$ with g as in Exercise 0.2 . The assertion is a consequence from area $(D)=\pi$ and part (i) of that exercise.

Solution of Exercise 0.3

(i) $\operatorname{graph}(m)$ is given by

This is an isosceles rectangular triangle of hypothenuse $\sqrt{2}$, hence its area equals $\frac{1}{2}$.
(ii) Note $J=\frac{1}{2} J \cup\left(\frac{1}{2} \sqrt{2}+\frac{1}{2} J\right)$ while the two subintervals have only one point in common. On $\frac{1}{2} J$ and $\frac{1}{2} \sqrt{2}+\frac{1}{2} J$ one has $m\left(y_{1}\right)=y_{1}$ and $m\left(y_{1}\right)=\sqrt{2}-y_{1}$, respectively. Furthermore $f(y)=f\left(y_{1},-y_{2}\right)$. Therefore, using a generalization of Corollary 6.4.3 on interchanging the order of integration and the antiderivatives as given in the hint, one obtains

$$
\begin{aligned}
\int_{\diamond} f(y) d y & =2 \int_{0}^{\frac{1}{2} \sqrt{2}} \int_{0}^{y_{1}} f(y) d y_{2} d y_{1}+2 \int_{\frac{1}{2} \sqrt{2}}^{\sqrt{2}} \int_{0}^{\sqrt{2}-y_{1}} f(y) d y_{2} d y_{1} \\
& =2 \int_{0}^{\frac{1}{2} \sqrt{2}} g\left(y_{1}, y_{1}\right) d y_{1}+2 \int_{\frac{1}{2} \sqrt{2}}^{\sqrt{2}} g\left(y_{1}, \sqrt{2}-y_{1}\right) d y_{1} \\
& =\arctan ^{2}\left(\frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{3}{2}}}\right)+2 \arctan ^{2}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi^{2}}{36}+\frac{\pi^{2}}{18}=\frac{\pi^{2}}{12}
\end{aligned}
$$

because $\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$.
(iii) The rotations Ψ and Ψ^{-1} are bijective and C^{∞}, hence, Ψ is a C^{∞} diffeomorphism. From the description of Ψ as a specific rotation one gets $\Psi(\diamond)=$Thus, $\Psi: \diamond \rightarrow$is a C^{∞} diffeomorphism. Observe that, for $y \in \diamond$ and $x=\Psi(y) \in \square$,

$$
\frac{1}{1-x_{1} x_{2}}=\frac{1}{1-\frac{1}{2}\left(y_{1}-y_{2}\right)\left(y_{1}+y_{2}\right)}=2 f(y) \quad \text { and } \quad|\operatorname{det} D \Psi(y)|=1
$$

Application of the Change of Variables Theorem 6.6.1 now leads to the desired equality.
(iv) Note that

$$
\int_{I} \frac{1}{1-x_{1} x_{2}} d x_{2}=\left[-\frac{\log \left(1-x_{1} x_{2}\right)}{x_{1}}\right]_{0}^{1}=-\frac{\log \left(1-x_{1}\right)}{x_{1}}
$$

Since $\square=I \times I$, one obtains the desired formula by means of Corollary 6.4.3 once more. Taylor series expansion of the integrand about 0 shows that it equals $-1+\mathcal{O}(x)$, for $x \downarrow 0$.
(v) Obviously

$$
\int_{\square} x_{1}^{k-1} x_{2}^{k-1} d x=\left(\int_{I} x^{k-1} d x\right)^{2}=\frac{1}{k^{2}}
$$

Summation of the geometric series leads to

$$
\sum_{k \in \mathbf{N}}\left(x_{1} x_{2}\right)^{k-1}=\frac{1}{1-x_{1} x_{2}}
$$

Integrating the equality over \square and interchanging summation of an infinite series and integration one finds, on the basis of part (iii)

$$
\sum_{k \in \mathbf{N}} \frac{1}{k^{2}}=\sum_{k \in \mathbf{N}} \int_{\square}\left(x_{1} x_{2}\right)^{k-1} d x=\int_{\square} \frac{1}{1-x_{1} x_{2}} d x=\frac{\pi^{2}}{6}
$$

Background. Compare this exercise with Exercise 6.39. Note that the definition of the integral in part (ii) needs some care, as the integrand f becomes infinite at the corner $(\sqrt{2}, 0)$ of the closure of \diamond. Since f is continuous and positive on the open set \diamond, in order to prove convergence of the integral it suffices to show the existence of an increasing sequence of compact Jordan measurable sets $K_{k} \subset \diamond$ such that $\cup_{k \in \mathbf{N}} K_{k}=\diamond$ and that the $\int_{K_{k}} f(y) d y$ exist and converge as $k \rightarrow \infty$, see Theorem 6.10.6. One may do this, by choosing the subsets K_{k} to be the closures of the contracted squares $\frac{k-1}{k} \diamond$.

Next, the antiderivatives in part (ii) may be computed as follows. For the first one, write

$$
f(y)=\frac{1}{\sqrt{2-y_{1}^{2}}} \frac{1}{1+\left(\frac{y_{2}}{\sqrt{2-y_{1}^{2}}}\right)^{2}} \frac{d}{d y_{2}} \frac{y_{2}}{\sqrt{2-y_{1}^{2}}} \quad \text { and set } \quad u=u\left(y_{2}\right)=\frac{y_{2}}{\sqrt{2-y_{1}^{2}}}
$$

further, use $\int \frac{1}{1+u^{2}} d u=\arctan u$. For the second antiderivative, apply the change of variables

$$
v=v\left(y_{1}\right)=\frac{y_{1}}{\sqrt{2-y_{1}^{2}}}, \quad \text { so } \quad y_{1}=\sqrt{2} \frac{v}{\sqrt{1+v^{2}}}, \quad \sqrt{2-y_{1}^{2}}=\frac{\sqrt{2}}{\left(1+v^{2}\right)^{\frac{1}{2}}}, \quad \frac{d y_{1}}{d v}=\frac{\sqrt{2}}{\left(1+v^{2}\right)^{\frac{3}{2}}}
$$

Thus,

$$
\int g\left(y_{1}, y_{1}\right) d y_{1}=\int \frac{\arctan v}{1+v^{2}} d v=\frac{1}{2} \arctan ^{2} v
$$

For the third antiderivative, apply the change of variables

$$
w=w\left(y_{1}\right)=\frac{\sqrt{2}-y_{1}}{\sqrt{2-y_{1}^{2}}}, \quad \text { so } \quad y_{1}=\sqrt{2} \frac{1-w^{2}}{1+w^{2}}, \quad \sqrt{2-y_{1}^{2}}=\frac{2 \sqrt{2} w}{1+w^{2}}, \quad \frac{d y_{1}}{d v}=-\frac{4 \sqrt{2} w}{\left(1+w^{2}\right)^{2}}
$$

Thus,

$$
\int g\left(y_{1}, y_{1}\right) d y_{1}=-2 \int \frac{\arctan w}{1+w^{2}} d v=-\arctan ^{2} w
$$

