Analyse in Meer Variabelen (WISB212) 2007-04-17

Exercise 0.1 (Laplacian of composition of norm and linear mapping). For x and $y \in \mathbb{R}^{n}$, recall that $\langle x, y\rangle=x^{t} y$ where x^{t} denotes the transpose of the column vector $x \in \mathbb{R}^{n}$; and furthermore, that $\|x\|=\sqrt{\langle x, x\rangle}$. Fix $A \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{p}\right)$ and recall ker $A=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}$. Now define $F: \mathbb{R}^{n} \operatorname{ker} A \rightarrow \mathbb{R}$ by $f=\|\cdot\| \circ A, \quad$ i.e. $\quad f(x)=\|A x\| ;$ and set $f^{2}(x)=f(x)^{2}$.
(i) Give an argument without computations that f is a positive C^{∞} function.
(ii) By application of the chain rule to f^{2} show, for $x \in \mathbb{R}^{n}$ ker A and $h \in \mathbb{R}^{n}$,

$$
D f(x) h=\frac{\langle A x, A h\rangle}{f(x)} .
$$

Deduce that

$$
D f(x) \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}\right) \quad \text { is given by } \quad D f(x)=\frac{1}{f(x)} x^{t} A^{t} A
$$

Denote by $\left(e_{1}, \cdots, e_{n}\right)$ the standard vectors in \mathbb{R}^{n}.
(iii) For $1 \leq j \leq n$, derive from part (ii) that

$$
D_{j} f(x)=\frac{\left\langle A x, A e_{j}\right\rangle}{f(x)} \text { and deduce } D_{j}^{2} f(x)=\frac{\left\|A e_{j}\right\|^{2}}{f(x)}-\frac{\left\langle A x, A e_{j}\right\rangle^{2}}{f^{3}(x)}
$$

As usual, write $\triangle=\sum_{1 \leq j \leq n} D_{j}^{2}$ for the Laplace operator acting in \mathbb{R}^{n} and $\|A\|_{E u c l}^{2}=\sum_{1 \leq j \leq n}\left\|A e_{j}\right\|^{2}$.
(iv) Now demonstrate

$$
\triangle(\|\cdot\| \circ A)(x)=\frac{\|A\|_{E u c l}^{2}\|A x\|^{2}-\left\|A^{t} A x\right\|^{2}}{\|A x\|^{3}}
$$

(v) Which form takes the preceding identity if A equasls the identity mapping in \mathbb{R}^{n} ?

Exercise 0.2 (Application of Implicit Function Theorem). Suppose $d: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{∞} function and suppose there exists a C^{∞} function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
G(0) \neq 0 \quad \text { and } \quad f(x ; 0)=x g(x) \quad(x \in \mathbb{R})
$$

Consider the equation $f(x ; y)=t$, where x and $t \in \mathbb{R}$, while $y \in \mathbb{R}^{n}$.
(i) Prove the existence of an open neighborhood V of 0 in $\mathbb{R}^{n} \times \mathbb{R}$ and of a unique C^{∞} function $\psi: V \rightarrow \mathbb{R}$ such that, for all $(y, t) \in V$

$$
\psi(0)=0 \quad \text { and } \quad f(\psi(y, t) ; y)=t
$$

(ii) Establish the following formulae, where D_{1} and D_{2} denote differentiation with respect to the variables in \mathbb{R}^{n} and \mathbb{R}, respectively:

$$
D_{1} \psi(0)=-\frac{1}{g(0)} D_{1} f(0 ; 0) \quad \text { and } \quad D_{2} \psi(0)=\frac{1}{g(0)}
$$

Exercise 0.3 (Quitic diffeomorphism). Recall that $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x>0\}$ and define

$$
\Phi: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2} \quad \text { by } \quad \Phi(x)=\frac{1}{\left(x_{1} x_{2}\right)^{2}}\left(x_{1}^{5}, x_{2}^{5}\right)
$$

(i) Prove that Φ is a C^{∞} mapping and that $\operatorname{det} D \Phi(x)=5$, for all $x \in \mathbb{R}_{+}^{2}$.
(ii) Verify that Φ is a C^{∞} diffeomorphism and that its inverse is given by

$$
\Psi: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2} \quad \text { with } \quad \Psi(y)=\left(y_{1} y_{2}\right)^{\frac{2}{5}}\left(y_{1}^{\frac{1}{5}}, y_{2}^{\frac{1}{5}}\right)
$$

Compute $\operatorname{det} D \Psi(y)$, for all $y \in \mathbb{R}_{+}^{2}$.

Let $a>0$ and define

$$
g: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad \text { by } \quad g(x)=x_{1}^{5}+x_{2}^{5}-5 a\left(x_{1} x_{2}\right)^{2}
$$

Now consider the bounded open sets

$$
U=\left\{x \in \mathbb{R}_{+}^{2} \mid g(x)<0\right\} \quad \text { and } \quad V=\left\{y \in \mathbb{R}_{+}^{2} \mid y_{1}+y_{2}<5 a\right\} .
$$

Then U has a curved boundary, while V is an isosceles rectangular trinagle.
(iii) Show that $g \circ \Psi(y)=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}-5 a\right)$, for all $y \in \mathbb{R}_{+}^{2}$. Deduce that the restriction $\left.\Psi\right|_{V}: V \rightarrow U$ is a diffeomorphism.
Background. By means of parts (ii) and (iii) one immediately computes the area of U to be $\frac{5 a^{2}}{2}$.
Exercise 0.4 (Quintic analog of Descartes' folium). Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function from Exercise 0.3 and denote by F the zero-set of g (see the curve in the illustration above).
(i) Prove that F is a C^{∞} submanifold in \mathbb{R}^{2} of dimension 1 at every point of $F \backslash\{0\}$.
(ii) By means of intersection with lines through O obtain the following parametrization of a part of F :

$$
\phi: \mathbb{R} \backslash\{-1\} \rightarrow \mathbb{R}^{2} \quad \text { satisfying } \quad \phi(t)=\frac{5 a t^{2}}{1+t^{5}}\binom{1}{t}
$$

(iii) Compute that

$$
\phi^{\prime}(t)=\frac{5 a t}{\left(1+t^{5}\right)^{2}}\binom{2-3 t^{5}}{t\left(3-2 t^{5}\right)} .
$$

Show that ϕ is an immersion except at 0 .
(iv) Demonstrate that F is not a C^{∞} submanifold in \mathbb{R}^{2} of dimension 1 at 0 .

The remainder is for extra credit and is no part of the regular exam. For $\left|x_{2}\right|$ small, x_{2}^{5} is negligible; hence, after division by the common factor x_{1}^{2} the equation $g(x)=0$ takes the form $x_{1}^{3}=5 a x_{2}^{2}$, which is the equation of an ordinary cusp. This suggest that F has a cusp at 0 .
(v) Prove that F actually possesses two cusps at 0 . This can be done with simple calculations; if necessary, however, one may use without proof

$$
\begin{aligned}
\phi^{\prime \prime}(t) & =\frac{10 a}{\left(1+t^{5}\right)^{3}}\binom{6 t^{10}-18 t^{5}+1}{t\left(3 t^{10}-19 t^{5}+3\right)} \\
\phi^{\prime \prime \prime}(t) & =-\frac{30 a}{\left(1+t^{5}\right)^{4}}\binom{5 t^{4}\left(2 t^{10}-16 t^{5}+7\right)}{4 t^{5}\left(t^{10}-17 t^{5}+13\right)-1}
\end{aligned}
$$

