Group theory - Exam

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you hand in.

2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
1) For each list of groups a) and b) below, decide which of the groups within each list are isomorphic, if any:
a) $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2}, \mathbb{Z}_{9} \times \mathbb{Z}_{2}, \mathbb{Z}_{18}$ and $\mathbb{Z}_{6} \times \mathbb{Z}_{3}(0.5 \mathrm{pt})$.
b) $S_{4}, A_{4} \times \mathbb{Z}_{2}, D_{12}$ and $\mathbb{H} \times \mathbb{Z}_{3}$, where \mathbb{H} is the quaternion group with 8 elements (0.5 pt).
2) Show that if a finite group G has only two conjugacy classes, then $G \cong \mathbb{Z}_{2}(1.0 \mathrm{pt})$.

3 a) Show that if S_{n} acts on a set with p elements and $p>n$ is a prime number then the action has more than one orbit (0.75 pt).
b) Let p be a prime. Show that the only action of \mathbb{Z}_{p} on a set with $n<p$ elements is the trivial one (0.75 pt).
4) Prove or give a counter-example for the following claim: For every m which divides 60 there is a subgroup of A_{5} of order $m(1.5 \mathrm{pt})$.
5) Let G be a finite group. We define a sequence of groups $\left(G_{i}\right)$ as follows. Let $G_{0}=G$ and define inductively $G_{i}=G_{i-1} / Z_{G_{i-1}}$, where $Z_{G_{i-1}}$ is the center of G_{i-1}, so for example, $G_{1}=G / Z_{G}$. This procedure gives rise to a sequence of groups

$$
G=G_{0} \longrightarrow G_{1} \longrightarrow G_{2} \longrightarrow \cdots
$$

where each map $G_{i-1} \longrightarrow G_{i}$ is a surjective group homomorphism whose kernel is the center of G_{i-1}.
a) Show that if $Z_{G_{i}}=\{e\}$ for some i, then $G_{n}=G_{i}$ for $n>i(0.3 \mathrm{pt})$.
b) Show that if G_{i} is Abelian, then $G_{n}=\{e\}$ for $n>i(0.3 \mathrm{pt})$.
c) Compute this sequence for D_{8}, D_{10} and $A_{5}(0.9 \mathrm{pt})$.
6) Prove or give a counter example to the following claim: Let G_{1} and G_{2} be finite groups and $H_{1} \triangleleft G_{1}$, $H_{2} \triangleleft G_{2}$ be normal subgroups such that $H_{1} \cong H_{2}$. If $G_{1} / H_{1} \cong G_{2} / H_{2}$, then $G_{1} \cong G_{2}(1.5 \mathrm{pt})$.
7) Let G be a group of order $231=3 \cdot 7 \cdot 11$. Show that the 11 and the 7 -Sylows are normal. Show that the 11-Sylow is in the center of $G(1.5 \mathrm{pt})$.
8) Show that a group of order $392=2^{3} \cdot 7^{2}$ is not simple (1.5 pt).

1) For each list of groups a) and b) below, decide which of the groups within each list are isomorphic, if any:
a) $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \mathbb{Z}_{6} \times \mathbb{Z}_{5}, \mathbb{Z}_{30}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{15}(0.5 \mathrm{pt})$.
b) $S_{4}, A_{4} \times \mathbb{Z}_{2}, D_{12}$ and $\mathbb{H} \times \mathbb{Z}_{3}$, where \mathbb{H} is the quaternion group with 8 elements (0.5 pt).
2) Let $\mathcal{S} \subset S_{5}$ be the set of 5 -cycles, sitting inside the group of permutations of 5 elements. Then S_{5} acts on \mathcal{S} by conjugation:

$$
\sigma \cdot \tau:=\sigma \tau \sigma^{-1}, \quad \sigma \in S_{5} \quad \tau \in \mathcal{S}
$$

Compute the orbit and the stabilizer of the 5 -cycle (1 2345). (1.0 pt).
3) Let G be a finite group and $x \in G$.
a) Show that the set of elements of G which commute with x is a subgroup of G. This subgroup is denoted by $C(x)$. (0.75 pt)
b) Show that the index of $C(x)$ in G is the number of elements in the conjugacy class of x. (0.75 pt)

4 a) Let $n>4$. Show that if A_{n} acts on a set with $m<n$ elements then each orbit has size 1 . (0.75 pt).
b) Show that if \mathbb{Z}_{p} acts on a set and p is prime, then each orbit has size 1 or p. $(0.75 \mathrm{pt})$
5) Let G be a finite group. We define a sequence of groups $\left(G_{i}\right)$ as follows. Let $G_{0}=G$ and define inductively $G_{i}=G_{i-1} / Z_{G_{i-1}}$, where $Z_{G_{i-1}}$ is the center of G_{i-1}, so for example, $G_{1}=G / Z_{G}$. This procedure gives rise to a sequence of groups

$$
G=G_{0} \longrightarrow G_{1} \longrightarrow G_{2} \longrightarrow \cdots
$$

where each map $G_{i-1} \longrightarrow G_{i}$ is a surjective group homomorphism whose kernel is the center of G_{i-1}.
a) Show that if $Z_{G_{i}}=\{e\}$ for some i, then $G_{n}=G_{i}$ for $n>i(0.3 \mathrm{pt})$.
b) Show that if G_{i} is Abelian, then $G_{n}=\{e\}$ for $n>i(0.3 \mathrm{pt})$.
c) Compute this sequence for S_{5}, D_{8} and $D_{10}(0.9 \mathrm{pt})$.
6) Let G be a group of order $385=5 \cdot 7 \cdot 11$. Show that the 11 and the 7 -Sylows are normal. Show that the 7 -Sylow is in the center of $G(1.5 \mathrm{pt})$.
7) Show that a group of order $132=2^{2} \cdot 3 \cdot 11$ is not simple $(1.5 \mathrm{pt})$.

8 a) Let G act on a set \mathcal{X}, let $p \in \mathcal{X}$ and let H be the stabilizer of p. Show that the stabilizer of $g \cdot p$ is the subgroup $g H^{-1}$. Conclude that H is normal if and only if it is the stabilizer all the points in the orbit of p. (0.5 pt)
b) Let H be a subgroup of a finite group G and let \mathcal{X} be the set of left H-cosets. Show that the formula

$$
g(x H)=g x H
$$

defines an action of G on \mathcal{X} and hence it also defines an action of H on \mathcal{X}. Prove that H is a normal subgroup of G if and only if every orbit of the induced action of H on \mathcal{X} is trivial, i.e., if and only if

$$
h x H=x H \quad \text { for all } h \in H, x \in G .(0.5 \mathrm{pt})
$$

c) Let G be a finite group and let p be the smallest prime which divides the order of G. Show that if $H<G$ is a subgroup of index p (i.e., H has exactly p left cosets) then H is normal (hint: use the 1) Let D_{n} be the dihedral group given by

$$
D_{n}=\left\langle a, b: a^{n}=b^{2}=e ; b a b^{-1}=a^{-1}\right\rangle .
$$

a) Compute $Z_{D_{n}}$, the center of D_{n}, for $n>1$. Analyse carefully the cases $n=2, n$ even and greater than 2 and n odd.
b) Show that if $n>1$, then $D_{2 n} / Z_{D_{2 n}}$ is isomorphic to D_{n}.
2) For each list of groups a) and b) below, decide which of the groups within that list are isomorphic, if any:
a) D_{3}, S_{3} and the group generated by

$$
\left\langle a, b: a^{3}=b^{2}=e ; a b a^{-1}=b a\right\rangle .
$$

b) $D_{12}, \mathbb{Z}_{4} \times D_{3}$ and S_{4}.
3) Let G be a finite group. We define a sequence $\left(G_{i}\right)$ of subgroups of G as follows. We let $G_{0}=G$ and define inductively G_{i} as the group generated by

$$
G_{i}=\left\langle g h g^{-1} h^{-1}: g \in G \text { and } h \in G_{i-1}\right\rangle
$$

So, for example, G_{1} is the commutator subgroup of G.
a) Show that each G_{i} is subgroup of G_{i-1}. Further, show that $G_{i} \triangleleft G_{i-1}$ and that the quotient G_{i-1} / G_{i} is Abelian.
b) Show that if, for some $i_{0}, G_{i_{0}}=G_{i_{0}+1}$ then $G_{n}=G_{i_{0}}$ for all $n>i_{0}$.
c) Compute the sequence of subgroups G_{i} above for $G=D_{8}, D_{10}$ and A_{5}.
4) Show that if G has order $p_{1} p_{2} \cdots p_{n}$, for p_{i} primes with $p_{i} \leq p_{i+1}$ and $H<G$ is a subgroup of order $p_{2} \cdots p_{n}$, then H is normal.
5) Let G be a group of order $n p^{k}$, with $n>1, k>0, p>2$ and n and p coprimes.
a) Show that if $n<p$ then G is not simple,
b) Show that if $n<2 p$ and $k>1$, then G is not simple,
c) Show that if $k>n / p$ and $n<p^{2}$, then G is not simple.
6) In what follows let G be a finite group and $K, H<G$. Prove or give counter-examples to the following claims.
a) If $K \triangleleft G$, then $K \cap H \triangleleft H$.
b) If K is a p-Sylow of G then $K \cap H$ is a p-Sylow of H.
7) Let $p>2$. What is the order of a p-Sylow of $S_{2 p}$? Give an example of one such group. Finally, find all p-Sylows of $S_{2 p}$.

1) For each list of groups a) and b) below, decide which of the groups within each list are isomorphic, if any:
a) $\mathbb{Z}_{20}, \mathbb{Z}_{4} \times \mathbb{Z}_{5}, \mathbb{Z}_{2} \times \mathbb{Z}_{10}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5}$.
b) $\mathbb{Z}_{2} \times D_{7}, \mathbb{Z}_{2} \times \mathbb{Z}_{14}, D_{14}$.
2) Let G be the set of sequences of integers endowed with the following product operation $+: G \times G \longrightarrow G$

$$
\left(a_{1}, a_{2}, \cdots, a_{n}, \cdots\right)+\left(b_{1}, b_{2}, \cdots, b_{n}, \cdots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \cdots, a_{n}+b_{n}, \cdots\right)
$$

Show that this operation makes G into a group. Show that $\mathbb{Z} \times G \cong G$ and hence conclude that, for groups, it may be the case that $A \times C \cong B \times C$ even though $A \nsubseteq B .^{1}$

[^0]3) Let $n>m$ be natural numbers, $n>4$, let X be a set with m elements. Show that the orbits of any action of S_{n} on X have size 1 or 2 .
4) Let G be a group, S_{G} be group of bijections from G into itself and $\operatorname{Aut}(G) \subset S_{G}$ be the group of automorphisms of G. Consider the map Ad : $G \longrightarrow S_{G}$, given by
$$
\operatorname{Ad}(g): G \longrightarrow G \quad \operatorname{Ad}(g)(x)=g x g^{-1}
$$
a) Show that $\operatorname{Ad}: G \longrightarrow \operatorname{Aut}(G)$, i.e., for every $g \in G, \operatorname{Ad}(g): G \longrightarrow G$ is an automorphism;
b) Show that $\operatorname{Ad}: G \longrightarrow \operatorname{Aut}(G)$ is a group homomorphism and that the image of Ad is a normal subgroup of $\operatorname{Aut}(G)$. The image of Ad is called the group of inner automorphisms.
c) Show that the kernel of $\operatorname{Ad}: G \longrightarrow \operatorname{Aut}(G)$ is the center of G and conclude that the group of inner automorphisms is isomorphic to the quotient G / Z_{G}.
d) Give an example of a group which has an automorphism which is not an inner automorphism.
5) Classify all groups or order $2009=7^{2} \cdot 41$.
6) Let G be a group and $n \in \mathbb{N}$
a) Let $H_{i}<G$ be subgroups, for $i \in\{1, \cdots, n\}$, show that
$$
\cap_{i=1}^{n} H_{i}
$$
is a subgroup of G.
b) If G is finite and p be a prime. Show that the intersection of all p-Sylows of G is a normal subgroup.
7) Let G be a finite group and $K, H<G$. Prove or give a counter-example to the following claims.
a) If $K \triangleleft H$ and $H \triangleleft G$ then $K \triangleleft G$.
b) If K is the only p-Sylow of G, then $K \cap H$ is a p-Sylow of H.

[^0]: ${ }^{1}$ I'd never ask this in an exam, but at home you may try to prove that for finite groups it is true that $A \times C \cong B \times C$ implies $A \cong B$. If you just want to see a proof, take a look at Hirshon's paper On cancellation in groups.

