Inleiding Topologie (WISB243) 21-04-2010

During the exam, you may use the lecture notes.
Important: motivate/proce your answers to the questions. When making pictures, try to make them as clear as possible. When using a result from the lecture notes, please give a clear reference.

Question 1

Let X be the (interior of an) open triangle, as drawn in the picture (the edges are not part of X !), viewed as a topological space with the topology induced from \mathbb{R}^{2}. Let $A \subset X$ be the open disk drawn in the picture (tangent to the edges of the closed triangle). Compute the closure and the boundary of X.

$\mathrm{X}=$ an open triangle

$\mathrm{A}=$ an open disk inside X

Figure 1: x and $A \subset X$

Question 2

Let X be obtained by taking two disjoint copies of the interval $[0,2]$ (with the Euclidean topology) and gluing each t in the first copy with the corresponding t in the second copy, for all $t \in[0,2]$ different from the middle point. Explicitely, one may take the space

$$
Y=[0,2] \times 0 \cup[0,2] \times 1 \subset \mathbb{R}^{2}
$$

with the topology induced from the Euclidean topology, and X is the space obtained from Y by gluing $(t, 0)$ to $(t, 1)$ for all $t \in[0,2], t \neq 1$. We endow X with the quotient topology.
a) Is X Hausdorff? But connected? But compact?
b) Can you find $A, B \subset X$ which, with the topology induced from X, are compact, but such that $A \cap B$ is not compact?
c) Show that X can also be obtained as a quotient of the circle S^{1}.

Question 3

Let X, Y and Z be the spaced drawn in .
a) Show that any two of them are not homeomorphic.
b) Compute their one-point compactifications X^{+}, Y^{+}and Z^{+}.
c) Which two of the spaced X^{+}, Y^{+}and Z^{+}are homeomorphic and which are not? (1 point)

Figure 2: X, Y and Z

Question 4

lET M be the Moebius band. For any continuous function $F: S^{1} \rightarrow M$ we denote by M_{f} the complement of its image:

$$
M_{f}:=M-f\left(S^{1}\right)
$$

and we denote by M_{f}^{+}the one-point compactification of M_{f}.
a) Show that for any f, M_{f} is open in M, it is locally compact but not compact.
b) Find an example of f such that M_{f}^{+}is homeomorphic to D^{2}. Then one for which it is homeomorphic to S^{2}. And then one for \mathbb{P}^{2}.

