Herkansing, Inleiding Topologie, August 22, 2012

Exercise 1 On $X = \mathbb{R}$ consider the topology:

$$\mathcal{T} = \{(-a, a) : 0 \le a \le \infty\}.$$

- (i) Is (X, \mathcal{T}) metrizable? (0.5 p)
- (ii) Is (X, \mathcal{T}) 1st countable? (0.5 p)
- (iii) Is (X, \mathcal{T}) connected? (0.5 p)
- (iv) Is the sequence $x_n = (-1)^n + \frac{1}{n}$ convergent in (X, \mathcal{T}) ? To what? (0.5 p)
- (v) Find the interior and the closure of A = (-1, 2) in (X, \mathcal{T}) . (0.5 p)
- (vi) Show that any continuous function $f: X \to \mathbb{R}$ is constant. (0.5 p)

Exercise 2 Let M be the Moebius band. For a continuous map $f: S^1 \longrightarrow M$ we denote

$$X_f := M - f(S^1).$$

- (i) Show that, for any f, X_f is locally compact but not compact. (0.5 p)
- (ii) Is there a function f such that X_f^+ is homeomorphic to the projective space \mathbb{P}^2 ? (0.5 p)

Exercise 3

(i) Let A be a commutative algebra over \mathbb{R} and assume that $a_0, a_1, \ldots, a_n \in A$ generate A, i.e. that any $a \in A$ can be written as

$$a = P(a_0, \ldots, a_n),$$

for some $P \in \mathbb{R}[X_0, \ldots, X_n]$. Let X_A be the topological spectrum of A. Show that

$$f: X_A \longrightarrow \mathbb{R}^{n+1}, \quad f(\chi) = (\chi(a_0), \dots, \chi(a_n))$$

is an embedding. (1.5 p)

(ii) If A = Pol(K) is the algebra of real-valued polynomial functions on a subset $K \subset \mathbb{R}^{n+1}$ and a_i are the polynomial functions

$$a_i: K \longrightarrow \mathbb{R}, \ a_i(x_1, \dots, x_n) = x_i, \ (0 \le i \le n),$$

show that the image of the resulting f contains K. (0.5 p)

(iii) For the sphere $S^n \subset \mathbb{R}^{n+1}$, deduce that the spectrum of the algebra $\text{Pol}(S^n)$ is homeomorphic to S^n . (1 p)

Exercise 4 (1 p) Prove that there is no continuous map $g : \mathbb{C} \longrightarrow \mathbb{C}$ with the property that $g(z)^2 = z$ for all $z \in \mathbb{C}$.

Exercise 5 (1 p) On $(0, \infty)$ we define the action of the group $(\mathbb{Z}, +)$ by:

$$\mathbb{Z} \times (0,\infty) \longrightarrow (0,\infty), \quad (n,r) \mapsto 2^n r.$$

Show that the quotient $(0, \infty)/\mathbb{Z}$ is homeomorphic to S^1 .

Exercise 6 (1 p) Let X be a normal space. Show that, for $A, B \subset X$, A and B have the same closure in X if and only if, for any continuous function $f : X \longrightarrow \mathbb{R}$, one has the equivalence

$$f|_A = 0 \iff f|_B = 0.$$

Note: Please motivate all your answers.