Solution 1

- (a) If $U \in \mathscr{T}$ and $c \in \mathbb{R}$ the pre-image $T_c^{-1}(U)$ belongs to \mathscr{T} by continuity of T_c . The pre-image is the set of $x \in \mathbb{R}$ such that $x + c \in U$, which equals U + (-c). Thus, if we take c = -a we see that $U + a \in \mathscr{T}$.
- (b) If $U \in \mathscr{T}$ then also the set $\frac{1}{2}U = V^{-1}(U)$ belongs to \mathscr{T} . By applying this repeatedly to the set [0,1) we see that $[0,2^{-n}) \in \mathscr{T}$ for every $n \in \mathbb{N}$. By applying (a) we now find that $[a,a+2^{-n}) \in \mathscr{T}$ for all $a \in \mathbb{R}$ and $n \in \mathbb{N}$.
- (c) Each set [a, a + 1) belongs to \mathscr{B} , so $\cup \mathscr{B} = \mathbb{R}$. Assume $B_1, B_2 \in \mathscr{B}$ and $x \in B_1 \cap B_2$. We will show that there exists $B_3 \in \mathscr{B}$ such that $x \in B_3 \subset B_1 \cap B_2$. It is easily seen that $B_1 \cap B_2$ is either empty or a set of the form [a, b), with a < b. Let $x \in [a, b)$. Then there exists $n \in \mathbb{N}$ such that $x + 2^{-n} < b$. Put $B_3 := [x, x + 2^{-n})$, then it is clear that B_3 satisfies all assertions.
- (d) Let \mathscr{T}_0 be the topology generated by \mathscr{B} . Then $\mathscr{T}_0 \subset \mathscr{T}$. On the other hand, if $B \in \mathscr{B}$ then it is readily verified that $V^{-1}(B) \in \mathscr{B}$ and $T_c^{-1}(B) = B c \in \mathscr{B}$ for all $c \in \mathbb{R}$. Hence, V and T_c are continuous for \mathscr{T}_0 . Also, $[0,1) \in \mathscr{T}_0$, so \mathscr{T}_0 satisfies the properties (1), (2), (3). Since \mathscr{T} is the smallest topology with this property, it follows that $\mathscr{T}_0 = \mathscr{T}$.

Solution 2

- (a) Let $x = (z,t) \in S \times J$. The orbit Γx consists of the points (z,t) and (-z,-t). Since $||z|| = 1, z \neq -z$, so (z,t) and (-z,-t) are distinct points.
- (b) Let $\xi \in X/\Gamma$ and let (z, τ) be in the fiber of ξ . By replacing (z, τ) with $(-z, -\tau)$ if necessary, we see that (z, τ) can be found with $z_2 \ge 0$. It follows that there exists $\varphi \in [0, \pi]$ such that $z = (\cos \varphi, \sin \varphi)$. Take $s = \varphi/\pi$ and $t = (\tau + 1)/2$, then $0 \le s, t \le 1$ and $\sigma(s, t) = p(z, \tau) = \xi$. Hence σ is surjective.
- (c) Since σ is constant on the classes of \sim there is a unique map $\bar{\sigma} : [0,1]^2 / \sim \rightarrow X/\Gamma$ such that $\bar{\sigma} \circ q = \sigma$. Clearly, $\bar{\sigma}$ is bijective and continuous. Since $[0,1]^2$ is compact, and q continuous, $[0,1]^2 / \sim$ is compact. Since X is Hausdorff, and Γ finite, X/Γ is Hausdorff. It follows that $\bar{\sigma}$ is an embedding. As $\bar{\sigma}$ is surjective, it is a homeomorphism.
- (d) Assertion (1) is incorrect, assertion (2) is correct.

Solution 4

(a) First assume that f is locally constant and let z ∈ Z. If y ∈ f⁻¹({z}) then there exists an open neighborhood U of y such that f is constant on U hence f = f(y) = z on U, so that U ⊂ f⁻¹({z}). It follows that every point of the fiber f⁻¹({z}) is interior, hence the fiber is open.

Conversely, assume every fiber is open, and let $y \in Y$. Put z = f(y) and $U := f^{-1}(\{z\})$. Then U is open and contains y. Furthermore, f is constant on U. We see that f is locally constant.

(b) First assume that f is locally constant. Let V ⊂ Z be any subset. Then f⁻¹(V) is the union of the fibers f⁻¹({z}), for z ∈ V. All fibers are open by (a), hence f⁻¹(V) is open. It follows that f is continuous.

Conversely, assume that f is continuous for the discrete topology on Z. Then for every $z \in Z$ the set $\{z\}$ is open for the discrete topology, hence $f^{-1}(\{z\})$ is open. It follows from (a) that f is locally constant.

(c) By (b), we know that f is continuous for the discrete topology on Z. It follows that f(Y) is connected for the induced topology on f(Y), which is the discrete topology. If $z \in f(Y)$ then $\{z\}$ and $f(Y) \setminus \{z\}$ are disjoint open subsets of f(Y), and we see that one of them must be empty. Hence $f(Y) = \{z\}$ and we see that f is constant.

Alternative reasoning: Let *Y* be connected, and $f: Y \to Z$ locally constant. If $Y = \emptyset$, there is nothing to prove. Select $y \in Y$ and put z := f(y). Then the fiber $U_1 := f^{-1}(z)$ is open by (a) and contains *y* hence is not empty. Its complement U_2 in *Y* equals $f^{-1}(Z \setminus \{z\})$ which is open by (b). From the connectedness of *Y* we conclude that $U_2 = \emptyset$. Hence $U_1 = Y$ and we see that $f(Y) = \{z\}$, hence, *f* is constant.

(d) Assume that *Y* is not connected. Then $Y = U \cup V$ for certain disjoint non-empty open subsets *U* and *V* of *Y*. We take $Z = \{0, 1\}$ and define f(y) = 0 if $y \in U$ and f(y) = 1 for $y \in V$. Then clearly, *f* is locally constant, but not constant.

Solution 3

(a) For every $a \in X$ there exists an open neighborhood U_a and a constant $m_a > 0$ such that $f_a \ge m_a$ on U_a .

The U_a , for $a \in X$, cover X. By compactness there exists a finite collection a_1, \ldots, a_n of points of X such that $X \subset \bigcup_{j=1}^n U_{a_j}$. It follows that $f \ge \min_{1 \le j \le n} m_{a_j}$ on each of the sets U_i hence on X. Hence, (a) is valid, with $m_X := \min_{1 \le j \le n} m_{a_j}$.

(b) For every $x \in X$ there exists an open neighborhood U_x of x in X and a constant $m_x > 0$ such that $f \ge m_x$ on U_x . The open sets U_x , for $x \in X$, form an open

covering of X. By paracompactness, this cover has a locally finite refinement, $\{V_i \mid i \in I\}$. By definition of refinement, for every $i \in I$ there exists an $x_i \in X$ such that $V_i \leq U_{x_i}$. It follows that $f \geq m_i := m_{x_i}$ on V_i .

(c) Let V_i, m_i be as above. Then there exists a partition of unity $\{\eta_i \mid i \in I\}$ which is subordinated to $\{V_i \mid i \in I\}$. Now $0 \le \eta_i \le 1$ and $\eta_i = 0$ outside V_i . Therefore, $\eta_i f \ge m_i \eta_i$ on V_i and on $X \setminus V_i$ hence on X. We now note that for every $x \in X$ we have (with finitely many nonzero terms)

$$f(x) = \sum_{i \in I} \eta_i(x) f(x) \ge \sum_{i \in I} m_i \eta_i(x).$$

As the family $\{\eta_i \mid i \in I\}$ is locally finite, the sum

$$\mu := \sum_i m_i \eta_i$$

is a locally finite sum of continuous functions, hence continuous. Since $\sum_i \eta_i = 1$, we have $\mu > 0$ everywhere. Hence μ is a continuous function $X \to (0, \infty)$ and we have shown that $f \ge \mu$ on X.