Herkansing Inleiding Topologie, WISB243 2019-04-15, 13:30 – 16:30

Solution 1

(a) The union of [0, 1) and [2, 3) does not belong to \mathscr{B} , so \mathscr{B} is not a topology. We will show it is a basis. First of all, if $x \in \mathbb{R}$ then $x \in [n, n+1)$ for an integer $n \in \mathbb{Z}$. Hence, $\mathbb{R} = \bigcup \mathscr{B}$.

Secondly, let $x \in [p_1,q_1) \cap [p_2,q_2)$, where p_1,q_1,p_2,q_2 are rational numbers such that $p_1 < q_1$ and $p_2 < q_2$. Then $p_2 \le x < q_1$ and $p_1 \le x < q_2$, hence $x \in [\max(p_1,p_2), \min(q_1,q_2)) \subset [p_1,q_1) \cap [p_2,q_2)$. It follows that \mathscr{B} is a basis.

- (b) Since Q is countable, so is Q × Q, and it follows that ℬ is countable. It follows that (ℝ, ℑ) is second countable, hence also first countable.
- (c) The intervals (a,b) with a,b ∈ ℝ, a < b form a basis 𝔅_e for the Euclidean topology on ℝ. If x ∈ (a,b), there exist rational numbers p,q ∈ ℚ such that a e</sub> and hence the Euclidean topology.
- (d) Since [0,1) ∈ ℬ it follows that [0,1) is open for 𝒮. Since [0,1] is closed for the Euclidean topology, it is so for 𝒮. On the other hand, ℝ \ [1,2) is closed for 𝒮, hence [0,1] = [0,1] \ [1,2) is closed for 𝒮. From what we proved, [0,1) and ℝ \ [0,1) form a partition of ℝ into sets from 𝒮. Therefore, (ℝ,𝒮) is not connected.
- (e) Define U_n := [1 1/n, 1 1/(n+1)) for n ∈ Z, n ≥ 1. The sets U_n belong to 𝔅 and have [0, 1) as their union. Since the union is disjoint, the open cover {U_n}_{n≥1} of [0, 1) is infinite, and has no finite subcover. It follows that [0, 1) is not compact. Now [0, 1) is closed in ℝ by (d), hence also closed in [0, 1]. Therfore, the latter set cannot be compact.

Solution 2

(a) The fibers of $\pi|_B : B \to \pi(B)$ form a partition of *B*. Clearly, R_B is the equivalence relation determined by that partition. Thus, the equivalence classes of R_B are the following fibers:

$$(\pi|_B)^{-1}(\pi(b)) = B \cap \pi^{-1}(\pi(b)) = B \cap R[b], \qquad (b \in B).$$

These are the sets $\{(s,t)\}$ with 0 < s < 1, $|t| \le 1$, and $\{(0,t), (1,-t)\}$ with $-1 \le t \le 1$.

(b) From the description of the equivalence classes we see that X/R_B is the Möbius band.

- (c) The equivalence classes for R_B are the fibers of the map $g: B \to \pi(B)$ given by $g = \pi|_B$. It follows that there exists a map $\bar{g}: B/R_B \to \pi(B)$ such that $g \circ \pi_B = g$. Let f be the composition of \bar{g} with the inclusion map $i: \pi(B) \to X/R$ (or \bar{g} viewed as map $B/R_B \to X/R$). Then $f \circ \pi_B = i \circ g = \pi|_B$.
- (d) If $\xi_1, \xi_2 \in B/R_B$ we write $\xi_j = \pi_B(b_j)$, for suitable $b_1, b_2 \in B$. From $f(\xi_1) = f(\xi_2)$ it follows that $\pi(b_j) = f(\pi_B(b_j)) = f(\xi_j)$ is independent of *j*. Therefore, $b_1R_Bb_2$ and we conclude $\xi_1 = \xi_2$. It follows that *f* is injective.

Since π is continuous $X \to X/R_B$, so is its restriction $\pi|_B$ and we see that $f \circ \pi_B$: $B \to X/R$ is continuous. It now follows from a proven property of the quotient topology on B/R_B that $f : B/R_B \to X/R$ is continuous.

Finally, *B* is (closed and bounded in \mathbb{R}^2 hence) compact and π_B is continuous, hence B/R_B is compact. Furthermore, X/R is Hausdorff. We just proved that $f: B/R_B \to X/R$ is injective continuous. By a well known result it follows that *f* is an embedding.

Solution 3

(a) Since $\varphi^2 = id_M$ it follows that φ is bijective with inverse $\varphi^{-1} = \varphi$. It follows that both φ and its inverse are continuous. Hence, φ is a homeomorphism.

Clearly, *xRx*. If *xRy*, then either y = x or $y = \varphi(x)$. In the latter case, $\varphi(y) = x$. Hence $x \in \{y, \varphi(y)\}$ and we see that *yRx*. Finally, if *xRy* and *yRz*, then $y \in \{x, \varphi(x)\}$ and $z \in \{y, \varphi(y)\}$. If y = x then $z \in \{x, \varphi(x)\}$. If $y = \varphi(x)$ then $z \in \{y, \varphi(y)\} = \{\varphi(x), x\}$. In both cases, *xRz*. If follows that *R* is an equivalence relation.

Alternative: note that $\Gamma := {id_M, \varphi}$ with composition is a group of homeomorphisms, and $xRy \iff y \in \Gamma x$, so *R* is an equivalence relation.

- (b) Let x ∈ π⁻¹(π(V)). Then π(x) ∈ π(V) or yRx for an element y ∈ V. Hence x ∈ {y, φ(y)} ⊂ V ∪ φ(V). This shows that π⁻¹(π(V)) ⊂ V ∪ φ(V).
 Conversely, if x ∈ V ∪ φ(V), then π(x) ∈ π(V) ∪ π(φ(V)) = π(V). Hence the identity.
- (c) If U is open, then $\pi^{-1}(\pi(U))$ is open by (b), hence $\pi(U)$ is open for the quotient topology.
- (d) The set $\varphi^{-1}(U_{j_m})$ is open, since φ is continuous. Furthermore, this set contains $\varphi^{-1}\varphi(m) = m$. It follows that $V_m = U_{i_m} \cap \varphi^{-1}(U_{j_m})$ contains *m*, is open and satisfies the other properties.
- (e) If *M* is compact, then so is $\pi(M) = M/R$ by continuity of *M*. Conversely, assume that M/R is compact. We will show that *M* is compact. Let $\{U_i\}_{i \in I}$ be an open covering of *M*. Then there exist indices i_m and j_m with the properties of (d), since

 $\{U_i\}$ is a covering. Let V_m be as in (d). Then the sets $\pi(V_m)$ are open and cover $\pi(M)$. By compactness of the latter, there exists a finite set of points m_1, \ldots, m_k such that

$$\pi(M) \subset \pi(V_{m_1}) \cup \cdots \cup \pi(V_{m_N}).$$

By taking preimages under π we obtain

$$M \subset \cup_{l=1}^{k} \pi^{-1} \pi(V_{m_{l}}) = \cup_{l=1}^{k} (V_{m_{l}} \cup \varphi(V_{m_{l}})) \subset \cup_{l=1}^{k} (U_{i_{m_{l}}} \cup U_{j_{m_{l}}})$$

this shows that $\{U_i\}_{i \in I}$ admits a finite subcover. Hence, M is compact.

Solution 4

- (a) Clearly, ψf ∈ C(M) and supp(ψf) ⊂ suppψ ∩ suppf ⊂ U. Since suppf is compact and suppψ closed, it follows that suppψ ∩ suppf is compact, hence ψf ∈ C_c(U).
- (b) By (a) the map $I_{\psi}: C_c(M) \to \mathbb{R}$ is well-defined and linear. If $f \ge 0$, then $\psi f \ge 0$, so $I_{\psi}(f) = I(\psi f) \ge 0$, and we see that I_{ψ} is a positive integral.
- (c) Since *M* is locally compact and second countable it is paracompact, hence allows partitions of unity. By the assumption, there exists an open cover $\{U_j\}_{j\in J}$ of *M* and for each $j \in J$ a strictly positive integral on U_j . Let $\{\eta_j\}_{j\in J}$ be a partition of unity subordinate to $\{U_j\}_{j\in J}$. Then by (b), for each $j \in J$ the map $(I_j)_{\eta_j}$ is a positive integral on *M*. For each $f \in C_c(M)$ we have that only finitely many functions $\eta_j f$ are non-zero and have compact support contained in U_j , so

$$I(f) = \sum_{j \in J} I_j(\eta_j f) = \sum_{j \in J} (I_j)_{\eta_j}(f)$$

is a finite sum of positive real numbers. It readily follows that *I* is a positive integral on *M*. If I(f) = 0 then each of the terms in the above sum must be zero, hence $\eta_j f = 0$ for all *j*. It follows that $f = \sum_{j \in J} \eta_j f = 0$. Therefore, *I* is strictly positive.

(d) Since a topological manifold is locally compact Hausdorff and second countable, all of the above applies. Therefore, we just need to show that for each $m \in M$ there exists an open neighborhood U and a positive integral I on U. There exists an open neighborhood U of m which is homeomorphic to \mathbb{R}^n which in turn is homeomorphic to $V := (0,1)^n$. Let $\chi : U \to V$ be a homeomorphism. The Riemann integral provides a strictly positive integral I_r on V. For $f \in C_c(U)$ we note that $f \circ \chi^{-1} \in C_c(V)$ and we define $I(f) = I_r(f \circ \chi^{-1})$. Then I is readily seen to be linear and positive. If I(f) = 0, then $f \circ \chi^{-1} = 0$ hence f = 0 on Uand since supp $f \subset U$ it follows that f = 0. Thus, I is strictly positive.

Solution 5

- (a) The function $\eta_i : X \to \mathbb{R}$ is continuous, and $\mathbb{R} \setminus \{0\}$ is open in \mathbb{R} . Therefore, $V_i = \eta_i^{-1}(\mathbb{R} \setminus \{0\})$ is open in *X*. Let $x \in X$, then $\sum_{i \in I} \eta_i(x) = 1$ (with only finitely many η_i different from zero). It follows that $\eta_i(x) \neq 0$ for at least one *i*, hence $x \in V_i$. We conclude that $X = \bigcup_{i \in I} V_i$, hence \mathscr{V} is an open covering of *X*.
- (b) By definition, $\overline{V}_i = \operatorname{supp} \eta_i$. Since $\{\eta_i\}$ is subordinate to \mathscr{U} , it follows that $\overline{V}_i = \operatorname{supp} \eta_i \subset U_i$.
- (c) Since $V_i \subset \overline{V}_i \subset U_i$, it follows that \mathscr{V} is a refinement. It remains to be shown that \mathscr{V} is locally finite. Let $x \in X$. Since the family $\{\operatorname{supp} \eta_i\}_{i \in I}$ is locally finite, it follows that there exists a neighborhood N of x such that $I_N := \{i \in I \mid \operatorname{supp} \eta_i \cap N \neq \emptyset\}$ is finite. If $V_i \cap N \neq \emptyset$, then $i \in I_N$, so the collection \mathscr{V}_i is locally finite.
- (d) First assume (1). Then by a theorem (2) is valid. Now assume (2). Then in the above we have shown that every open covering of X has a locally finite refinement. By definition this implies (1).