Solution to 1

- (a) Let B₁, B₂ ∈ ℬ. If one of B₁, B₂ equals ℝ, then obviously B₁ ∩ B₂ ∈ ℬ. Assume that B₁, B₂ are not equal to ℝ. Then B_j = [n_j, a_j), with n₁, n₂ ∈ ℤ and a₁, a₂ ∈ ℝ. It is now readily seen that B₁ ∩ B₂ = [n,b) with n = max(m₁,m₂) and b = min(a₁,a₂). Hence B₁ ∩ B₂ ∈ ℬ. This shows that ℬ is a topology basis. Since ∪_{m<0}[m,0] = (-∞,0) ∉ ℬ, we see that ℬ is not closed under unions. It follows that ℬ is not a topology.
- (b) Let $U \in \mathscr{T}$ contain $\frac{1}{2}$. Then there exists $[m, a) \in \mathscr{B}$ with $\frac{1}{2} \in [m, a) \subset U$. We must have $m \leq 0$ and $a > \frac{1}{2}$, hence $[0, a) \subset U$. In particular, $0 \in U$. It follows that 0 and $\frac{1}{2}$ cannot be separated by open neighborhoods. Hence, \mathscr{T} is not Hausdorff.
- (c) The subset ℬ₀ ⊂ ℬ consisting of all intervals [m,q) with m ∈ Z and q ∈ Q is countable. Moreover, if a > 0 then [m,a) = ∪_{q∈Q,q<a}[m,q), so ℬ₀ is a countable basis for 𝒯. It follows that 𝒯 is second countable.
- (d) A non-empty basis element [m,a) ∈ ℬ is contained in A if and only if m ≥ 0 and a ≤ ½. The latter is equivalent to m = 0 and a ≤ ½. The union of these sets is Int(A) = [0, ½).

The condition $x \notin \overline{A}$ is equivalent to the existence of $m \in \mathbb{Z}$ and $a \in \mathbb{R}$ with $x \in [m, a)$ and $[m, a) \cap A = \emptyset$. The latter condition forces $m \ge 1$ or $a < -\frac{1}{2}$ and we see that $x \notin \overline{A}$ implies $x \in [1, \infty)$ or $x \in (-\infty, -\frac{1}{2})$. Conversely, if $x \in [1, \infty)$ or $x \in (-\infty, -\frac{1}{2})$ then either $x \in [1, a)$ for a > 1 or $x \in [m, -\frac{1}{2})$ for $m \le -1$. In both cases, there exist $m \in Z$ and $a \in \mathbb{R}$ such that $x \in [m, a)$ and $[m, a) \cap A = \emptyset$. We conclude that \overline{A} equals the complement of $[1, \infty) \cup (-\infty, -\frac{1}{2})$ which equals $[-\frac{1}{2}, 1)$.

(e) Assume that 0 < r < 1. Any open subset U of [0,r] containing r must contain a subset of the form [0,r] ∩ [m,a), for m ≤ r < a. The latter implies m ≤ 0 and a > r hence [0,r] ⊂ [0,r] ∩ [0,a) ⊂ U hence U = [0,r]. This implies that [0,r] cannot be written as the union of two disjoint non-empty open subsets. Hence [0,r] is connected.

Now assume that $r \ge 1$. Then $[1,r] = [0,r] \cap [1,r+1)$ hence [1,r] is open and non-empty in [0,r]. Obviously, [0,1) is open and non-empty in [0,r] and [0,r] is the disjoint union of [0,1) and [1,r]. It follows that [0,r] is not connected.

Solution to 2

(a) We assume that both X and Y are Hausdorff. Let a, b ∈ X × Y be two points such that a ≠ b. Write a = (a₁, a₂) and b = (b₁, b₂), then we may as well assume that a₁ ≠ b₁. By the Hausdorff property of X there exist open subsets U, V ⊂ X such that a₁ ∈ U, a₂ ∈ V and U ∩ V = Ø. Now U × Y and V × Y are open subsets of X × Y containing a and b respectively, and

$$U \times Y \cap V \times Y = (U \cap V) \times Y = \emptyset.$$

It follows that the product is Hausdorff.

(b) For the converse, assume that $X \times Y$ is Hausdorff. Let $a_1, b_1 \in X$ be distinct points. Select a point $y \in Y$ then (a_1, y) and (b_1, y) are distinct points in $X \times Y$. By the Hausdorff property, there exist open subsets W_1, W_2 in $X \times Y$ such that $(a_1, y) \in W_1, (b_1, y) \in W_2$ and $W_1 \cap W_2 = \emptyset$. Since W_1 is open, there exists an open subset $U_1 \ni a_1$ of X such that $U_1 \times \{y\} \subset W_1$. Likewise, there exists an open subset $U_2 \ni b_1$ of X such that $U_2 \times \{y\} \subset W_2$. We now observe that

$$(U_1 \cap U_2) \times \{y\} = U_1 \times \{y\} \cap U_2 \times \{y\} \subset W_1 \cap W_2 = \emptyset.$$

It follows that $U_1 \cap U_2 = \emptyset$. We conclude that a_1, b_1 are separated in X. Hence, X is Hausdorff. In a similar way, it follows that Y is Hausdorff.

Solution to 3

- We first show that '(2) ⇒ (1)'. Let g: [0,∞) → ℝ be a continuous function such that f ≤ g. Let a ∈ X. Let U = g⁻¹((-∞,g(a) + 1)). Then by continuity of g it follows that U is open. Clearly a ∈ U. Furthermore, g ≤ g(a) + 1 on U. It follows that f ≤ M on U, with M = g(a) + 1.
- 2. We now address the converse implication '(1) \Rightarrow (2)'. Assume that *f* is locally bounded. Since *X* is locally compact Hausdorff and second countable, it is paracompact.

For every $a \in X$ there exists an open neighborhood V_a of a such that f is bounded on V_a by a suitable constant $M_a > 0$. Let \mathscr{V} be a collection of such open neighborhoods V_a , for $a \in X$.

First reasoning. Then by paracompactness, \mathscr{V} has a locally finite refinement $\mathscr{U} = \{U_i \mid i \in I\}$. For every $i \in I$ the neighborhood U_i is contained in a neighborhood $V_{a(i)}$ for a suitable $a(i) \in X$, hence f is bounded by $M_{a(i)} > 0$ on the neighborhood U_i .

Again by paracompactness, there exists a partition of unity $\{\eta_i \mid i \in I\}$, with $\sup \eta_i \subset U_i$ for all $i \in I$. The function $M_{a(i)} \eta_i$ is continuous and has support contained in U_i .

Second reasoning. By paracompactness, there exists a partition of unity $\{\eta_i \mid i \in I\}$ which is subordinated to \mathscr{V} . Thus, for every $i \in I$ there exists a $V_{a(i)} \in \mathscr{V}$ such that supp $\eta_i \subset V_{a(i)}$. It follows that the function f is on $V_{a(i)}$ bounded by a constant $M_{a(i)} > 0$. The function $M_{a(i)} \eta_i$ is continuous and has support contained in supp (η_i) .

From both reasonings given above, it follows that for all *i*, we have $f\eta_i \leq M_{a(i)}\eta_i$ on supp (η_i) hence on *X*. Furthermore, the sum $g := \sum_i M_{a(i)} \eta_i$ is a locally finite sum of continuous functions, hence continuous.

Finally, for $x \in X$ we have

$$f(x) = \sum_{i \in I} f(x) \eta_i(x) \le \sum_{i \in I} M_{a(i)} \eta_i(x) = g(x).$$

Solution to 4

(a) For $\gamma_1, \gamma_2 \in \Gamma$ we have

$$\rho_{\gamma_1\gamma_2} = (\alpha_{\gamma_1\gamma_2}, \beta_{\gamma_1\gamma_2}) = (\alpha_{\gamma_1}\alpha_{\gamma_2}, \beta_{\gamma_1}\beta_{\gamma_2}) = \rho_{\gamma_1}\rho_{\gamma_2}$$

and $\rho_1 = (\alpha_1, \beta_1) = (\mathrm{id}_{S^1}, \mathrm{id}_{S^1}) = \mathrm{id}_{S^1 \times S^1}$. Therefore, ρ defines an action of Γ on $S^1 \times S^1$. For a given γ the maps $\alpha_{\gamma}, \beta_{\gamma} : S^1 \to S^1$ are continuous, hence so is $\rho_{\gamma} = (\alpha_{\gamma}, \beta_{\gamma}) : S^1 \times S^1 \to S^1 \times S^1$. It follows that ρ is an action by homeomorphisms on $S^1 \times S^1$.

- (b) Let p = (x, y). Then the orbit Γp consists of 1p = p = (x, y) and $gp = (-x, -y_1, y_2)$. Since $x \neq -x$, each orbit consists of precisely two points.
- (c) It is obvious that f is continuous. We claim that f is injective. Indeed, let f(s,y) = f(s',y'), for $(s,y), (s',y') \in [0,1] \times S^1$. Then y = y' and $\cos s\pi = \cos s'\pi$ and $\sin s\pi = \sin s'\pi$. Since $\pi s \in [0,\pi]$, the latter two conditions imply that s = s'. Hence, f is injective. Finally, since $[0,1] \times S^1$ is compact and $S^1 \times S^1$ Hausdorff, it follows that f is a topological embedding.
- (d) Let $z \in S^1 \times S^1/\Gamma$ and select $(x, y) \in S^1 \times S^1$ such that $\pi(x, y) = z$. We note that $x = (\cos \pi s, \sin \pi s)$ for a unique $s \in [0, 2)$.

If
$$s \in [0, 1]$$
 then $\pi(x, y) = F(s, y)$ and we are done.

If
$$s > 1$$
, then $-x = (\cos \pi (s - 1), \sin \pi (s - 1))$ hence

$$\pi(x,y) = \pi(g(x,y)) = \pi(-x,\beta_g y) = \pi f(s-1,\beta_g y) = F(s-1,\beta_g y).$$

Since $(s-1, y) \in [0, 1] \times S^1$, we see that *F* is surjective.

(e) We observe that the map F induces an injective map $\overline{F} : [0,1] \times S^1 / \sim \to S^1 \times S^1 / \Gamma$ such that $\overline{F} \circ \text{pr} = F$. Here $\text{pr} : [0,1] \times S^1 \to [0,1] \times S^1 / \sim$ is the canonical

projection. We claim that \overline{F} is a homeomorphism from $[0,1] \times S^1 / \sim$ onto $S^1 \times S^1 / \Gamma$. Since F is surjective, \overline{F} is bijective.

Now $S^1 \times S^1/\Gamma$ is the quotient of a Hausdorff space by a finite group action, hence a Hausdorff space. Since $[0,1] \times S^1$ is the product of two compact spaces, it is compact. Therefore, the bijective continuous map $\overline{F} : [0,1] \times S^1/\sim \rightarrow S^1 \times S^1/\Gamma$ is a homeomorphism.

(f) Since

$$F(1,y) = \pi(-1,0,y) = \pi(1,0,\beta_g y) = F(0,\beta_g y) \qquad (*)$$

we see that the surjectivity of *F* implies that *F* maps $[0,1) \times S^1$ onto $S^1 \times S^1/\Gamma$. We will now show that *F* is injective on $[0,1) \times S^1$. If $s, s' \in [0,1)$, $y, y' \in S^1$ and F(s,y) = F(s',y') then it follows that $(\cos \pi s', \sin \pi s', y') = \gamma(\cos \pi s, \sin \pi s, y)$ with either $\gamma = 1$ or $\gamma = g$. Assume the latter. Then

$$(\cos \pi s', \sin \pi s') = \alpha_g(\cos \pi s, \sin \pi s) = (-\cos \pi s, -\sin \pi s)$$

Since $\sin \pi s \ge 0$ and $\sin \pi s' \ge 0$ this implies $\sin \pi s = \sin \pi s' = 0$ hence s = 0 = s' and then $\cos \pi s' = 1 = \cos \pi s$, contradiction.

We thus see that $\gamma = 1$ hence $(\cos \pi s', \sin \pi s', y') = (\cos \pi s, \sin \pi s, y)$. Hence, s = s' and y = y' and the injectivity follows.

(g) We will now describe the fibers of F. From (*) we obtain that

$$F(1,y) = F(0,\beta_g y).$$

so that the fiber of F(1,y) contains $(0,\beta_g y)$ and (1,y). Since F is injective on $[0,1) \times S^1$, we see that the fiber of F(1,y) cannot contain any other point. Again by injectivity of F on [0,1) it follows that the fiber of F(s,y) for $s \notin \{0,1\}$ can only contain the point (s,y).

We see that for two distinct points (s, y), (s', y') with $s \le s'$ we have $(s, y) \sim (s', y')$ if and only if s = 0, s' = 1 and $y' = \beta_g y = (-y_1, y_2)$.

From this it is clear that $[0,1] \times S^1 / \sim$ equipped with the quotient topology is homeomorphic to the Klein bottle.

In particular, it follows that $S^1 \times S^1 / \Gamma$ is homeomorphic to the Klein bottle.