Solution to 1

(a) Let $B_{1}, B_{2} \in \mathscr{B}$. If one of B_{1}, B_{2} equals \mathbb{R}, then obviously $B_{1} \cap B_{2} \in \mathscr{B}$. Assume that B_{1}, B_{2} are not equal to \mathbb{R}. Then $B_{j}=\left[n_{j}, a_{j}\right)$, with $n_{1}, n_{2} \in \mathbb{Z}$ and $a_{1}, a_{2} \in$ \mathbb{R}. It is now readily seen that $B_{1} \cap B_{2}=[n, b)$ with $n=\max \left(m_{1}, m_{2}\right)$ and $b=$ $\min \left(a_{1}, a_{2}\right)$. Hence $B_{1} \cap B_{2} \in \mathscr{B}$. This shows that \mathscr{B} is a topology basis. Since $\cup_{m<0}[m, 0)=(-\infty, 0) \notin \mathscr{B}$, we see that \mathscr{B} is not closed under unions. It follows that \mathscr{B} is not a topology.
(b) Let $U \in \mathscr{T}$ contain $\frac{1}{2}$. Then there exists $[m, a) \in \mathscr{B}$ with $\frac{1}{2} \in[m, a) \subset U$. We must have $m \leq 0$ and $a>\frac{1}{2}$, hence $[0, a) \subset U$. In particular, $0 \in U$. It follows that 0 and $\frac{1}{2}$ cannot be separated by open neighborhoods. Hence, \mathscr{T} is not Hausdorff.
(c) The subset $\mathscr{B}_{0} \subset \mathscr{B}$ consisting of all intervals $[m, q)$ with $m \in Z$ and $q \in \mathbb{Q}$ is countable. Moreover, if $a>0$ then $[m, a)=\cup_{q \in \mathbb{Q}, q<a}[m, q)$, so \mathscr{B}_{0} is a countable basis for \mathscr{T}. It follows that \mathscr{T} is second countable.
(d) A non-empty basis element $[m, a) \in \mathscr{B}$ is contained in A if and only if $m \geq 0$ and $a \leq \frac{1}{2}$. The latter is equivalent to $m=0$ and $a \leq \frac{1}{2}$. The union of these sets is $\operatorname{Int}(A)=\left[0, \frac{1}{2}\right)$.
The condition $x \notin \bar{A}$ is equivalent to the existence of $m \in \mathbb{Z}$ and $a \in \mathbb{R}$ with $x \in[m, a)$ and $[m, a) \cap A=\emptyset$. The latter condition forces $m \geq 1$ or $a<-\frac{1}{2}$ and we see that $x \notin \bar{A}$ implies $x \in[1, \infty)$ or $x \in\left(-\infty,-\frac{1}{2}\right)$. Conversely, if $x \in[1, \infty)$ or $x \in\left(-\infty,-\frac{1}{2}\right)$ then either $x \in[1, a)$ for $a>1$ or $x \in\left[m,-\frac{1}{2}\right)$ for $m \leq-1$. In both cases, there exist $m \in Z$ and $a \in \mathbb{R}$ such that $x \in[m, a)$ and $[m, a) \cap A=\emptyset$. We conclude that \bar{A} equals the complement of $[1, \infty) \cup\left(-\infty,-\frac{1}{2}\right)$ which equals $\left[-\frac{1}{2}, 1\right)$.
(e) Assume that $0<r<1$. Any open subset U of $[0, r]$ containing r must contain a subset of the form $[0, r] \cap[m, a)$, for $m \leq r<a$. The latter implies $m \leq 0$ and $a>r$ hence $[0, r] \subset[0, r] \cap[0, a) \subset U$ hence $U=[0, r]$. This implies that $[0, r]$ cannot be written as the union of two disjoint non-empty open subsets. Hence $[0, r]$ is connected.
Now assume that $r \geq 1$. Then $[1, r]=[0, r] \cap[1, r+1)$ hence $[1, r]$ is open and non-empty in $[0, r]$. Obviously, $[0,1)$ is open and non-empty in $[0, r]$ and $[0, r]$ is the disjoint union of $[0,1)$ and $[1, r]$. It follows that $[0, r]$ is not connected.

Solution to 2

(a) We assume that both X and Y are Hausdorff. Let $a, b \in X \times Y$ be two points such that $a \neq b$. Write $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$, then we may as well assume that $a_{1} \neq b_{1}$. By the Hausdorff property of X there exist open subsets $U, V \subset X$ such that $a_{1} \in U, a_{2} \in V$ and $U \cap V=\emptyset$. Now $U \times Y$ and $V \times Y$ are open subsets of $X \times Y$ containing a and b respectively, and

$$
U \times Y \cap V \times Y=(U \cap V) \times Y=\emptyset .
$$

It follows that the product is Hausdorff.
(b) For the converse, assume that $X \times Y$ is Hausdorff. Let $a_{1}, b_{1} \in X$ be distinct points. Select a point $y \in Y$ then $\left(a_{1}, y\right)$ and $\left(b_{1}, y\right)$ are distinct points in $X \times Y$. By the Hausdorff property, there exist open subsets W_{1}, W_{2} in $X \times Y$ such that $\left(a_{1}, y\right) \in W_{1},\left(b_{1}, y\right) \in W_{2}$ and $W_{1} \cap W_{2}=\emptyset$. Since W_{1} is open, there exists an open subset $U_{1} \ni a_{1}$ of X such that $U_{1} \times\{y\} \subset W_{1}$. Likewise, there exists an open subset $U_{2} \ni b_{1}$ of X such that $U_{2} \times\{y\} \subset W_{2}$. We now observe that

$$
\left(U_{1} \cap U_{2}\right) \times\{y\}=U_{1} \times\{y\} \cap U_{2} \times\{y\} \subset W_{1} \cap W_{2}=\emptyset
$$

It follows that $U_{1} \cap U_{2}=\emptyset$. We conclude that a_{1}, b_{1} are separated in X. Hence, X is Hausdorff. In a similar way, it follows that Y is Hausdorff.

Solution to 3

1. We first show that '(2) \Rightarrow (1)'. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that $f \leq g$. Let $a \in X$. Let $U=g^{-1}((-\infty, g(a)+1))$. Then by continuity of g it follows that U is open. Clearly $a \in U$. Furthermore, $g \leq g(a)+1$ on U. It follows that $f \leq M$ on U, with $M=g(a)+1$.
2. We now address the converse implication ' $(1) \Rightarrow(2)$ '. Assume that f is locally bounded. Since X is locally compact Hausdorff and second countable, it is paracompact.

For every $a \in X$ there exists an open neighborhood V_{a} of a such that f is bounded on V_{a} by a suitable constant $M_{a}>0$. Let \mathscr{V} be a collection of such open neighborhoods V_{a}, for $a \in X$.
First reasoning. Then by paracompactness, \mathscr{V} has a locally finite refinement $\mathscr{U}=\left\{U_{i} \mid i \in I\right\}$. For every $i \in I$ the neighborhood U_{i} is contained in a neighborhood $V_{a(i)}$ for a suitable $a(i) \in X$, hence f is bounded by $M_{a(i)}>0$ on the neighborhood U_{i}.

Again by paracompactness, there exists a partition of unity $\left\{\eta_{i} \mid i \in I\right\}$, with $\operatorname{supp} \eta_{i} \subset U_{i}$ for all $i \in I$. The function $M_{a(i)} \eta_{i}$ is continuous and has support contained in U_{i}.

Second reasoning. By paracompactness, there exists a partition of unity $\left\{\eta_{i} \mid\right.$ $i \in I\}$ which is subordinated to \mathscr{V}. Thus, for every $i \in I$ there exists a $V_{a(i)} \in \mathscr{V}$ such that supp $\eta_{i} \subset V_{a(i)}$. It follows that the function f is on $V_{a(i)}$ bounded by a constant $M_{a(i)}>0$. The function $M_{a(i)} \eta_{i}$ is continuous and has support contained in $\operatorname{supp}\left(\eta_{i}\right)$.
From both reasonings given above, it follows that for all i, we have $f \eta_{i} \leq M_{a(i)} \eta_{i}$ on $\operatorname{supp}\left(\eta_{i}\right)$ hence on X. Furthermore, the sum $g:=\sum_{i} M_{a(i)} \eta_{i}$ is a locally finite sum of continuous functions, hence continuous.
Finally, for $x \in X$ we have

$$
f(x)=\sum_{i \in I} f(x) \eta_{i}(x) \leq \sum_{i \in I} M_{a(i)} \eta_{i}(x)=g(x) .
$$

Solution to 4

(a) For $\gamma_{1}, \gamma_{2} \in \Gamma$ we have

$$
\rho_{\gamma_{1} \gamma_{2}}=\left(\alpha_{\gamma_{1} \gamma_{2}}, \beta_{\gamma_{1} \gamma_{2}}\right)=\left(\alpha_{\gamma_{1}} \alpha_{\gamma_{2}}, \beta_{\gamma_{1}} \beta_{\gamma_{2}}\right)=\rho_{\gamma_{1}} \rho_{\gamma_{2}}
$$

and $\rho_{1}=\left(\alpha_{1}, \beta_{1}\right)=\left(\mathrm{id}_{S^{1}}, \mathrm{id}_{S^{1}}\right)=\mathrm{id}_{S^{1} \times S^{1}}$. Therefore, ρ defines an action of Γ on $S^{1} \times S^{1}$. For a given γ the maps $\alpha_{\gamma}, \beta_{\gamma}: S^{1} \rightarrow S^{1}$ are continuous, hence so is $\rho_{\gamma}=$ $\left(\alpha_{\gamma}, \beta_{\gamma}\right): S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}$. It follows that ρ is an action by homeomorphisms on $S^{1} \times S^{1}$.
(b) Let $p=(x, y)$. Then the orbit Γp consists of $1 p=p=(x, y)$ and $g p=\left(-x,-y_{1}, y_{2}\right)$. Since $x \neq-x$, each orbit consists of precisely two points.
(c) It is obvious that f is continuous. We claim that f is injective. Indeed, let $f(s, y)=f\left(s^{\prime}, y^{\prime}\right)$, for $(s, y),\left(s^{\prime}, y^{\prime}\right) \in[0,1] \times S^{1}$. Then $y=y^{\prime}$ and $\cos s \pi=\cos s^{\prime} \pi$ and $\sin s \pi=\sin s^{\prime} \pi$. Since $\pi s \in[0, \pi]$, the latter two conditions imply that $s=s^{\prime}$. Hence, f is injective. Finally, since $[0,1] \times S^{1}$ is compact and $S^{1} \times S^{1}$ Hausdorff, it follows that f is a topological embedding.
(d) Let $z \in S^{1} \times S^{1} / \Gamma$ and select $(x, y) \in S^{1} \times S^{1}$ such that $\pi(x, y)=z$. We note that $x=(\cos \pi s, \sin \pi s)$ for a unique $s \in[0,2)$.
If $s \in[0,1]$ then $\pi(x, y)=F(s, y)$ and we are done.
If $s>1$, then $-x=(\cos \pi(s-1), \sin \pi(s-1))$ hence

$$
\pi(x, y)=\pi(g(x, y))=\pi\left(-x, \beta_{g} y\right)=\pi f\left(s-1, \beta_{g} y\right)=F\left(s-1, \beta_{g} y\right) .
$$

Since $(s-1, y) \in[0,1] \times S^{1}$, we see that F is surjective.
(e) We observe that the map F induces an injective map $\bar{F}:[0,1] \times S^{1} / \sim \rightarrow S^{1} \times$ S^{1} / Γ such that $\bar{F} \circ \mathrm{pr}=F$. Here pr : $[0,1] \times S^{1} \rightarrow[0,1] \times S^{1} / \sim$ is the canonical
projection. We claim that \bar{F} is a homeomorphism from $[0,1] \times S^{1} / \sim$ onto $S^{1} \times$ S^{1} / Γ. Since F is surjective, \bar{F} is bijective.
Now $S^{1} \times S^{1} / \Gamma$ is the quotient of a Hausdorff space by a finite group action, hence a Hausdorff space. Since $[0,1] \times S^{1}$ is the product of two compact spaces, it is compact. Therefore, the bijective continuous map $\bar{F}:[0,1] \times S^{1} / \sim \rightarrow$ $S^{1} \times S^{1} / \Gamma$ is a homeomorphism.
(f) Since

$$
\begin{equation*}
F(1, y)=\pi(-1,0, y)=\pi\left(1,0, \beta_{g} y\right)=F\left(0, \beta_{g} y\right) \tag{*}
\end{equation*}
$$

we see that the surjectivity of F implies that F maps $[0,1) \times S^{1}$ onto $S^{1} \times S^{1} / \Gamma$. We will now show that F is injective on $[0,1) \times S^{1}$. If $s, s^{\prime} \in[0,1), y, y^{\prime} \in S^{1}$ and $F(s, y)=F\left(s^{\prime}, y^{\prime}\right)$ then it follows that $\left(\cos \pi s^{\prime}, \sin \pi s^{\prime}, y^{\prime}\right)=\gamma(\cos \pi s, \sin \pi s, y)$ with either $\gamma=1$ or $\gamma=g$. Assume the latter. Then

$$
\left(\cos \pi s^{\prime}, \sin \pi s^{\prime}\right)=\alpha_{g}(\cos \pi s, \sin \pi s)=(-\cos \pi s,-\sin \pi s)
$$

Since $\sin \pi s \geq 0$ and $\sin \pi s^{\prime} \geq 0$ this implies $\sin \pi s=\sin \pi s^{\prime}=0$ hence $s=0=s^{\prime}$ and then $\cos \pi s^{\prime}=1=\cos \pi s$, contradiction.
We thus see that $\gamma=1$ hence $\left(\cos \pi s^{\prime}, \sin \pi s^{\prime}, y^{\prime}\right)=(\cos \pi s, \sin \pi s, y)$. Hence, $s=s^{\prime}$ and $y=y^{\prime}$ and the injectivity follows.
(g) We will now describe the fibers of F. From (*) we obtain that

$$
F(1, y)=F\left(0, \beta_{g} y\right) .
$$

so that the fiber of $F(1, y)$ contains $\left(0, \beta_{g} y\right)$ and $(1, y)$. Since F is injective on $[0,1) \times S^{1}$, we see that the fiber of $F(1, y)$ cannot contain any other point. Again by injectivity of F on $[0,1)$ it follows that the fiber of $F(s, y)$ for $s \notin\{0,1\}$ can only contain the point (s, y).
We see that for two distinct points $(s, y),\left(s^{\prime}, y^{\prime}\right)$ with $s \leq s^{\prime}$ we have $(s, y) \sim\left(s^{\prime}, y^{\prime}\right)$ if and only if $s=0, s^{\prime}=1$ and $y^{\prime}=\beta_{g} y=\left(-y_{1}, y_{2}\right)$.
From this it is clear that $[0,1] \times S^{1} / \sim$ equipped with the quotient topology is homeomorphic to the Klein bottle.
In particular, it follows that $S^{1} \times S^{1} / \Gamma$ is homeomorphic to the Klein bottle.

