
Exam Inleiding Topologie, WISB243 2018-01-29, 13:30 – 16:30

Solution to 1
(a) Let B1,B2 ∈B. If one of B1,B2 equals R, then obviously B1∩B2 ∈B. Assume

that B1,B2 are not equal to R. Then B j = [n j,a j), with n1,n2 ∈ Z and a1,a2 ∈
R. It is now readily seen that B1 ∩B2 = [n,b) with n = max(m1,m2) and b =
min(a1,a2). Hence B1∩B2 ∈B. This shows that B is a topology basis. Since
∪m<0[m,0) = (−∞,0) /∈B, we see that B is not closed under unions. It follows
that B is not a topology.

(b) Let U ∈T contain 1
2 . Then there exists [m,a)∈B with 1

2 ∈ [m,a)⊂U. We must
have m ≤ 0 and a > 1

2 , hence [0,a) ⊂U. In particular, 0 ∈U. It follows that 0
and 1

2 cannot be separated by open neighborhoods. Hence, T is not Hausdorff.

(c) The subset B0 ⊂B consisting of all intervals [m,q) with m ∈ Z and q ∈ Q is
countable. Moreover, if a > 0 then [m,a) =∪q∈Q,q<a[m,q), so B0 is a countable
basis for T . It follows that T is second countable.

(d) A non-empty basis element [m,a)∈B is contained in A if and only if m≥ 0 and
a ≤ 1

2 . The latter is equivalent to m = 0 and a ≤ 1
2 . The union of these sets is

Int(A) = [0, 1
2).

The condition x /∈ A is equivalent to the existence of m ∈ Z and a ∈ R with
x ∈ [m,a) and [m,a)∩A = /0. The latter condition forces m ≥ 1 or a < −1

2 and
we see that x /∈ A implies x ∈ [1,∞) or x ∈ (−∞,−1

2). Conversely, if x ∈ [1,∞)

or x ∈ (−∞,−1
2) then either x ∈ [1,a) for a > 1 or x ∈ [m,−1

2) for m ≤ −1. In
both cases, there exist m ∈ Z and a ∈ R such that x ∈ [m,a) and [m,a)∩A = /0.
We conclude that A equals the complement of [1,∞)∪ (−∞,−1

2) which equals
[−1

2 ,1).

(e) Assume that 0 < r < 1. Any open subset U of [0,r] containing r must contain
a subset of the form [0,r]∩ [m,a), for m ≤ r < a. The latter implies m ≤ 0 and
a > r hence [0,r] ⊂ [0,r]∩ [0,a) ⊂U hence U = [0,r]. This implies that [0,r]
cannot be written as the union of two disjoint non-empty open subsets. Hence
[0,r] is connected.

Now assume that r ≥ 1. Then [1,r] = [0,r]∩ [1,r+ 1) hence [1,r] is open and
non-empty in [0,r]. Obviously, [0,1) is open and non-empty in [0,r] and [0,r] is
the disjoint union of [0,1) and [1,r]. It follows that [0,r] is not connected.
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Solution to 2
(a) We assume that both X and Y are Hausdorff. Let a,b∈ X×Y be two points such

that a 6= b. Write a = (a1,a2) and b = (b1,b2), then we may as well assume that
a1 6= b1. By the Hausdorff property of X there exist open subsets U,V ⊂ X such
that a1 ∈U, a2 ∈ V and U ∩V = /0. Now U ×Y and V ×Y are open subsets of
X×Y containing a and b respectively, and

U×Y ∩V ×Y = (U ∩V )×Y = /0.

It follows that the product is Hausdorff.

(b) For the converse, assume that X ×Y is Hausdorff. Let a1,b1 ∈ X be distinct
points. Select a point y ∈ Y then (a1,y) and (b1,y) are distinct points in X ×Y.
By the Hausdorff property, there exist open subsets W1,W2 in X ×Y such that
(a1,y) ∈W1, (b1,y) ∈W2 and W1 ∩W2 = /0. Since W1 is open, there exists an
open subset U1 3 a1 of X such that U1×{y} ⊂W1. Likewise, there exists an
open subset U2 3 b1 of X such that U2×{y} ⊂W2. We now observe that

(U1∩U2)×{y}=U1×{y}∩U2×{y} ⊂W1∩W2 = /0.

It follows that U1∩U2 = /0. We conclude that a1,b1 are separated in X . Hence,
X is Hausdorff. In a similar way, it follows that Y is Hausdorff.

Solution to 3
1. We first show that ‘(2)⇒ (1)’. Let g : [0,∞)→ R be a continuous function such

that f ≤ g. Let a ∈ X . Let U = g−1((−∞,g(a)+ 1)). Then by continuity of g
it follows that U is open. Clearly a ∈ U. Furthermore, g ≤ g(a)+ 1 on U. It
follows that f ≤M on U, with M = g(a)+1.

2. We now address the converse implication ‘(1)⇒ (2)’. Assume that f is locally
bounded. Since X is locally compact Hausdorff and second countable, it is para-
compact.

For every a∈X there exists an open neighborhood Va of a such that f is bounded
on Va by a suitable constant Ma > 0. Let V be a collection of such open neigh-
borhoods Va, for a ∈ X .

First reasoning. Then by paracompactness, V has a locally finite refinement
U = {Ui | i ∈ I}. For every i ∈ I the neighborhood Ui is contained in a neigh-
borhood Va(i) for a suitable a(i) ∈ X , hence f is bounded by Ma(i) > 0 on the
neighborhood Ui.

Again by paracompactness, there exists a partition of unity {ηi | i ∈ I}, with
suppηi ⊂ Ui for all i ∈ I. The function Ma(i)ηi is continuous and has support
contained in Ui.
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Second reasoning. By paracompactness, there exists a partition of unity {ηi |
i ∈ I} which is subordinated to V . Thus, for every i ∈ I there exists a Va(i) ∈ V
such that suppηi ⊂ Va(i). It follows that the function f is on Va(i) bounded by a
constant Ma(i) > 0. The function Ma(i)ηi is continuous and has support contained
in supp(ηi).

From both reasonings given above, it follows that for all i, we have f ηi≤Ma(i)ηi
on supp(ηi) hence on X . Furthermore, the sum g := ∑i Ma(i)ηi is a locally finite
sum of continuous functions, hence continuous.

Finally, for x ∈ X we have

f (x) = ∑
i∈I

f (x)ηi(x)≤∑
i∈I

Ma(i)ηi(x) = g(x).

Solution to 4
(a) For γ1,γ2 ∈ Γ we have

ργ1γ2 = (αγ1γ2,βγ1γ2) = (αγ1αγ2,βγ1βγ2) = ργ1ργ2,

and ρ1 = (α1,β1) = (idS1, idS1) = idS1×S1. Therefore, ρ defines an action of Γ on
S1×S1. For a given γ the maps αγ ,βγ : S1→ S1 are continuous, hence so is ργ =
(αγ ,βγ) : S1×S1→ S1×S1. It follows that ρ is an action by homeomorphisms
on S1×S1.

(b) Let p=(x,y). Then the orbit Γp consists of 1p= p=(x,y) and gp=(−x,−y1,y2).
Since x 6=−x, each orbit consists of precisely two points.

(c) It is obvious that f is continuous. We claim that f is injective. Indeed, let
f (s,y) = f (s′,y′), for (s,y),(s′,y′)∈ [0,1]×S1. Then y = y′ and cossπ = coss′π
and sinsπ = sins′π. Since πs∈ [0,π], the latter two conditions imply that s = s′.
Hence, f is injective. Finally, since [0,1]×S1 is compact and S1×S1 Hausdorff,
it follows that f is a topological embedding.

(d) Let z ∈ S1×S1/Γ and select (x,y) ∈ S1×S1 such that π(x,y) = z. We note that
x = (cosπs,sinπs) for a unique s ∈ [0,2).

If s ∈ [0,1] then π(x,y) = F(s,y) and we are done.

If s > 1, then −x = (cosπ(s−1),sinπ(s−1)) hence

π(x,y) = π(g(x,y)) = π(−x,βgy) = π f (s−1,βgy) = F(s−1,βgy).

Since (s−1,y) ∈ [0,1]×S1, we see that F is surjective.

(e) We observe that the map F induces an injective map F̄ : [0,1]× S1/ ∼→ S1×
S1/Γ such that F̄ ◦pr = F. Here pr : [0,1]×S1→ [0,1]×S1/ ∼ is the canonical
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projection. We claim that F̄ is a homeomorphism from [0,1]×S1/∼ onto S1×
S1/Γ. Since F is surjective, F̄ is bijective.

Now S1× S1/Γ is the quotient of a Hausdorff space by a finite group action,
hence a Hausdorff space. Since [0,1]×S1 is the product of two compact spaces,
it is compact. Therefore, the bijective continuous map F̄ : [0,1]× S1/ ∼ →
S1×S1/Γ is a homeomorphism.

(f) Since
F(1,y) = π(−1,0,y) = π(1,0,βgy) = F(0,βgy) (∗)

we see that the surjectivity of F implies that F maps [0,1)×S1 onto S1×S1/Γ.
We will now show that F is injective on [0,1)×S1. If s,s′ ∈ [0,1), y,y′ ∈ S1 and
F(s,y) = F(s′,y′) then it follows that (cosπs′,sinπs′,y′) = γ(cosπs,sinπs,y)
with either γ = 1 or γ = g. Assume the latter. Then

(cosπs′,sinπs′) = αg(cosπs,sinπs) = (−cosπs,−sinπs).

Since sinπs≥ 0 and sinπs′ ≥ 0 this implies sinπs = sinπs′ = 0 hence s = 0 = s′

and then cosπs′ = 1 = cosπs, contradiction.

We thus see that γ = 1 hence (cosπs′,sinπs′,y′) = (cosπs,sinπs,y). Hence,
s = s′ and y = y′ and the injectivity follows.

(g) We will now describe the fibers of F. From (*) we obtain that

F(1,y) = F(0,βgy).

so that the fiber of F(1,y) contains (0,βgy) and (1,y). Since F is injective on
[0,1)×S1, we see that the fiber of F(1,y) cannot contain any other point. Again
by injectivity of F on [0,1) it follows that the fiber of F(s,y) for s /∈ {0,1} can
only contain the point (s,y).

We see that for two distinct points (s,y),(s′,y′) with s≤ s′ we have (s,y)∼ (s′,y′)
if and only if s = 0, s′ = 1 and y′ = βgy = (−y1,y2).

From this it is clear that [0,1]× S1/ ∼ equipped with the quotient topology is
homeomorphic to the Klein bottle.

In particular, it follows that S1×S1/Γ is homeomorphic to the Klein bottle.
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