SOLUTIONS MIDTERM COMPLEX FUNCTIONS

APRIL 17 2013, 9:00-12:00

Exercise 1. There are several solutions possible.

1. It holds that $1+\omega+\omega^{2}=0$. Indeed $\omega \neq 1$ but $\omega^{3}=1$, so that

$$
0=\omega^{3}-1=(\omega-1)\left(\omega^{2}+\omega+1\right)
$$

A triangle $a b c$ is equilateral if and only if its side $(c-b)$ is the side $(b-a)$ rotated through $\frac{2 \pi}{3}$ counter-clockwise:

This is the case if and only if

$$
\begin{aligned}
c-b=\omega(b-a) & \Longleftrightarrow \omega a+(-1-\omega) b+c=0 \\
& \Longleftrightarrow \omega a+\omega^{2} b+c=0 \\
& \Longleftrightarrow \omega^{3} a+\omega^{4} b+\omega^{2} c=0 \\
& \Longleftrightarrow a+\omega b+\omega^{2} c=0,
\end{aligned}
$$

where it is also used that $\omega \neq 0$.
2. We notice that the equation $a+\omega b+\omega^{2} c=0$ is invariant under translation, rotation and contraction, i.e. under the transformations $(a, b, c) \rightarrow(e a+d, e b+d, e c+d)$ for $d, e \in \mathbb{C}$, for this one uses that $1+\omega+\omega^{2}=\left(\omega^{3}-1\right)(\omega-1)^{-1}=0$. Let us call this 'the invariance property'.
Suppose that $a b c$ is equilateral. By the invariance property we may assume that $a=1, b=\omega$ and $c=\omega^{2}$. Hence $a+\omega b+\omega^{2} c=1+\omega^{2}+$ $\omega^{4}=1+\omega+\omega^{2}=0$.
Now suppose $a+\omega b+\omega^{2} c=0$. By the invariance property we may assume that $c=0$. Then $a=-\omega b$, thus $|a|=|b|$. Also we find $|b-a|=|(1+\omega) b|=\left|-\omega^{2} b\right|=|b|$. We conclude that $a b c$ is equilateral.

Exercise 2.

a. Suppose such an f exists. Write $f=u+i v$ and $z=x+i y$, where $u=\operatorname{Re} f$ and $v=\operatorname{Im} f$ are C^{∞} functions of (x, y). By the CauchyRiemann equations we must have

$$
\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x} \quad \text { and } \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} .
$$

These equations imply that u must satisfy

$$
\Delta u:=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

in its definition domain U. Clearly, for $u(x, y)=|z|^{2}=x^{2}+y^{2}$, we have $\Delta u=4$ for all $(x, y) \in U$. We conclude that a function f with the desired properties does not exist.
b. Such an f exists. Let U be the complex plane minus the non-negative real numbers, and let $f(z)=2(\log |z|+i \arg (z))$. It is known that this definition makes f analytic, and indeed $\operatorname{Re} f(z)=\log \left(|z|^{2}\right)$.

Exercise 3. Define the polynomial $Q(z)=1+a_{n-1} z+\ldots+a_{1} z^{n-1}+a_{0} z^{n}$. By the maximum modulus principle $|Q|$ attains its maximum on the closed unit disc in a point w with $|w|=1$. Hence $\left|P\left(w^{-1}\right)\right|=\left|w^{n} P\left(w^{-1}\right)\right|=$ $|Q(w)| \geq|Q(0)|=1$. Equality is obtained precisely when the maximum of $|Q|$ is 1 , i.e. when it attains its maximum in $z=0$. The maximum modulus principle then implies that Q is constant, thus $p(z)=z^{n}$.
Exercise 4. Let

$$
f(z)=\left(\frac{z^{2}+1}{z+1}\right)^{3}=\left(z-1+\frac{2}{z+1}\right)^{3} .
$$

By the generalized Cauchy formula we get

$$
\begin{aligned}
\oint_{\gamma}\left(\frac{z^{2}+1}{z^{2}-1}\right)^{3} d z & =\oint_{\gamma} \frac{f(z)}{(z-1)^{3}} d z=\frac{2 \pi i}{2!} f^{(2)}(1) \\
& =\left.\pi i \frac{d}{d z}\right|_{z=1} 3\left(1-\frac{2}{(z+1)^{2}}\right)\left(z-1+\frac{2}{z+1}\right)^{2} \\
& =3 \pi i\left(\frac{4}{2^{3}} \cdot 1^{2}+2\left(1-\frac{2}{2^{2}}\right)^{2} \cdot 1\right)=3 \pi i .
\end{aligned}
$$

Exercise 5. Since f is analytic on the open unit disc, we can represent it with a powerseries in 0 . We notice that for the sequence $i^{2 n} /(2 n)$ we have $f(z)=-z^{2}$. Since this sequence defines a set with 0 as accumulation point we conclude that $f(z)=z^{2}$. But then

$$
f\left(\frac{i^{3}}{3}\right)=\frac{1}{9} \neq-\frac{1}{3^{2}} .
$$

We conclude that a function f with the desired properties does not exist.
Bonus exercise. Let w be a root of $P^{\prime}(z)$. If the multiplicity of w is bigger then 1 , then w is also a root of P and there is nothing left to prove. So let us suppose that w has multiplicity 1 . Then we see

$$
\begin{aligned}
0 & =\frac{P^{\prime}(w)}{P(w)}=\left.\frac{d}{d z}\right|_{z=w} \log P(z)=\left.\frac{d}{d z}\right|_{z=w} \sum_{k=1}^{n} \log \left(z-z_{k}\right) \\
& =\sum_{k=1}^{n} \frac{1}{w-z_{k}}=\sum_{k=1}^{n} \frac{\bar{w}-\overline{z_{k}}}{\left|w-z_{k}\right|^{2}} .
\end{aligned}
$$

Taking the complex conjugate yields

$$
0=\sum_{k=1}^{n} \frac{w-z_{k}}{\left|w-z_{k}\right|^{2}} \text { and thus } w=\sum_{k=1}^{n} \frac{z_{k}}{\left|w-z_{k}\right|^{2} \sum_{l=1}^{n} \frac{1}{\left|w-z_{1}\right|^{2}}}
$$

and we are done.

