RETAKE COMPLEX FUNCTIONS

JULY 21 2015, 9:00-12:00

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- Include your partial solutions, even if you were unable to complete an exercise.

Exercise $1(10 \boldsymbol{p t})$: Let γ be a closed path in \mathbb{C} that winds $k \in \mathbb{Z}$ times around $z_{0} \in \mathbb{C}$. Let $f(z)=\left(z-z_{0}\right)^{n}$, where $n \in \mathbb{N}$. How many times does $f \circ \gamma$ (i.e. the image of γ under f) wind around 0 ?

Exercise 2 (20 pt): Prove the following Cauchy's bound: Every complex root of the algebraic equation

$$
z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=0 \quad\left(a_{j} \in \mathbb{C}\right)
$$

satisfies

$$
|z|<1+\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \cdots,\left|a_{n-1}\right|\right\} .
$$

Exercise 3 (20 pt): Prove that Joukowski's function

$$
f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

provides an analytic isomorphism between the open upper half-plane $H \subset \mathbb{C}$ and the set $U=\{z \in H:|z|>1\}$.
Exercise 4 (30 pt): Let $n \geq 1$ be an integer number. Consider the complex function

$$
f(z)=\frac{1}{\left(1+z^{2}\right)^{n+1}} .
$$

a. (5 pt) Find and classify all singular points of f in \mathbb{C}.
b. (15 pt) Compute the residue of f in each singular point.

Turn the page!
c. (10 pt) Prove that

$$
\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{n+1}} d x=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n} \pi
$$

Exercise 5 (20 pt): Let $f: \mathbb{C} \rightarrow \mathbb{C}$ and $g: \mathbb{C} \rightarrow \mathbb{C}$ be two analytic functions that have an equal (finite) number of zeros. Prove that there exist an analytic function $h: \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$ and a closed path γ, with the interior containing all zeros of f and g, such that

$$
|f(z)-h(z) g(z)|<|f(z)|
$$

on γ.
Bonus Exercise (10 pt): Prove that

$$
\int_{C_{2}} \frac{1}{z-1} \sin \left(\frac{1}{z}\right) d z=0
$$

where C_{2} is the circle of radius 2 with center $z=0$, that is traced counterclockwise once.

