Instructor: Carel Faber
Assistants: Stefan Franssen, Bjarne Kosmeijer, Roy Wang

SOLUTIONS ENDTERM COMPLEX FUNCTIONS

JUNE 28, 2016, 8:30-11:30

Exercise $1(10 p t)$: Determine all entire functions f such that

$$
(f(z))^{2}+\left(f^{\prime}(z)\right)^{2}=1
$$

for all $z \in \mathbb{C}$.
Solution. Taking the derivative, we find

$$
0=2 f(z) f^{\prime}(z)+2 f^{\prime}(z) f^{\prime \prime}(z)=2 f^{\prime}(z)\left(f(z)+f^{\prime \prime}(z)\right) .
$$

If $g(z) h(z)=0$ on an infinite compact set, then the zeroes of g or h form an infinite set with a point of accumulation. If g and h are moreover analytic, then $g \equiv 0$ or $h \equiv 0$. We conclude that $f^{\prime} \equiv 0$ or $f+f^{\prime \prime} \equiv 0$. In the first case, f is constant; hence $f \equiv 1$ or $f \equiv-1$. In the second case, we know (e.g., by Exercise 6 in §II.6) that there is a unique solution with given initial conditions. Of course $\cos (z)$ and $\sin (z)$ are solutions, so $f(z)=a \cos (z)+b \sin (z)$ is the unique solution with $f(0)=a$ and $f^{\prime}(0)=b$. Finally, $a \cos (z)+b \sin (z)$ satisfies the original equation if and only if a and b are complex numbers with $a^{2}+b^{2}=1$. Answer: $f \equiv 1$ or $f \equiv-1$ or $f(z)=a \cos (z)+b \sin (z)$, with $a^{2}+b^{2}=1$.

Exercise $2(10 \mathrm{pt})$:

a. (5 pt) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a doubly periodic function, i.e., there exist $x_{1}, x_{2} \in \mathbb{C}^{*}$, no real multiples of each other, such that

$$
f(z)=f\left(z+x_{1}\right)=f\left(z+x_{2}\right)
$$

for all $z \in \mathbb{C}$. Suppose that f is analytic. Show that f is constant.

Solution. Let K be the parallelogram with vertices $0, x_{1}, x_{2}$ and $x_{1}+x_{2}$, i.e.,

$$
K=\left\{z=t_{1} x_{1}+t_{2} x_{2} \mid 0 \leq t_{1}, t_{2} \leq 1\right\} .
$$

From the double periodicity, it follows that for all $z \in \mathbb{C}$ there exists $w \in K$ with $f(w)=$ $f(z)$ (note that K and its translates over integral linear combinations of x_{1} and x_{2} tile the plane). Since f is continuous and K is compact, f is bounded on K. Hence f is bounded. By Liouville's theorem, we conclude that f is constant.
b. (5 pt) Determine all entire functions f such that the identities

$$
f(z+1)=i f(z) \quad \text { and } \quad f(z+i)=-f(z)
$$

hold for all $z \in \mathbb{C}$.

Solution. Note that $f(z+4)=i f(z+3)=\cdots=i^{4} f(z)=f(z)$ and $f(z+2 i)=$ $-f(z+i)=f(z)$ for all $z \in \mathbb{C}$. Hence f is doubly periodic and by part (a), f is constant: $f \equiv c$ for some $c \in \mathbb{C}$. Since $c=i c$, we find that f is identically equal to zero.

Exercise 3 (20 pt):

Prove that the following integrals converge and evaluate them.

$$
\text { a. }(10 p t) \int_{0}^{\infty} \frac{1}{\left(x^{2}-e^{\pi i / 3}\right)^{2}} d x \quad \text { b. }(10 p t) \int_{0}^{\infty} \frac{x-\sin x}{x^{3}} d x
$$

Solution of part (a). Convergence follows from an estimate like $\left|x^{2}-e^{\pi i / 3}\right| \geq\left|x^{2}-1\right| \geq$ $x^{2} / 2$ for $x>2$. Note that the integrand is even. We integrate $f(z)=1 /\left(z^{2}-e^{\pi i / 3}\right)^{2}$ over a contour consisting of the segment from $-R$ to R and the counterclockwise semicircle $S(R)$ around 0 from R to $-R$, for $R>1$ large enough. Note that $\left|z^{2}-e^{\pi i / 3}\right| \geq R^{2}-1$ when $|z|=R$, so $\left|\int_{S(R)} f(z) d z\right| \leq \pi R /\left(R^{2}-1\right)^{2}$, so $\int_{S(R)} f(z) d z \rightarrow 0$ as $R \rightarrow \infty$. Next, the poles of f are at the points z with $z^{2}=e^{\pi i / 3}$, i.e., at $z= \pm e^{\pi i / 6}$; the only pole in the upper half plane is at $\alpha=e^{\pi i / 6}$, inside the contour. Now

$$
\operatorname{Res}_{\alpha}(f)=\operatorname{Res}_{\alpha} \frac{1}{(z-\alpha)^{2}(z+\alpha)^{2}}=\left.\frac{-2}{(z+\alpha)^{3}}\right|_{z=\alpha}=\frac{-2}{8 \alpha^{3}}=\frac{-1}{4 i}
$$

It follows that $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}-e^{\pi i / 3}\right)^{2}} d x=\frac{-2 \pi i}{4 i}=-\frac{\pi}{2}$, so $\int_{0}^{\infty} \frac{1}{\left(x^{2}-e^{\pi i / 3}\right)^{2}} d x=-\frac{\pi}{4}$.
Solution of part (b). The integrand can be continuously extended to the origin. Convergence at infinity follows from an estimate like $\left|(x-\sin x) / x^{3}\right| \leq 2 / x^{2}$ for $x>1$. Let $f(z)=\left(i z-e^{i z}\right) / z^{3}$. For $0<\epsilon<R$, we have $\int_{-R}^{-\epsilon} f(x) d x=\int_{\epsilon}^{R}\left(i x+e^{-i x}\right) / x^{3} d x$, so

$$
\begin{aligned}
2 i \int_{\epsilon}^{R}(x-\sin x) / x^{3} d x=\int_{\epsilon}^{R}\left(2 i x-e^{i x}+e^{-i x}\right) / x^{3} d x & = \\
\int_{\epsilon}^{R}\left(i x-e^{i x}\right) / x^{3} d x+\int_{\epsilon}^{R}\left(i x+e^{-i x}\right) / x^{3} d x & =\int_{\epsilon}^{R} f(x) d x+\int_{-R}^{-\epsilon} f(x) d x
\end{aligned}
$$

We integrate f over a contour consisting of segments from $-R$ to $-\epsilon$ and from ϵ to R and semicircles around 0 in the upper half plane from $-\epsilon$ to ϵ and from R to $-R$. The integral over the contour is zero. The integral over $S(R)$ goes to zero as $R \rightarrow \infty$, since $\left|e^{i z}\right| \leq 1$ for z in the upper half plane. The integral over the counterclockwise semicircle $S(\epsilon)$ can be evaluated by means of integration by parts:

$$
\int_{S(\epsilon)} \frac{i z-e^{i z}}{z^{3}} d z=-\left.\frac{1}{2} \frac{i z-e^{i z}}{z^{2}}\right|_{\epsilon} ^{-\epsilon}+\frac{1}{2} \int_{S(\epsilon)} \frac{i-i e^{i z}}{z^{2}} d z
$$

As $\epsilon \rightarrow 0$, the limit equals

$$
\begin{aligned}
\frac{1}{2} \pi i(-i \cdot i)- & \frac{1}{2} \lim _{\epsilon \rightarrow 0}\left(\frac{-i \epsilon-e^{-i \epsilon}}{\epsilon^{2}}-\frac{i \epsilon-e^{i \epsilon}}{\epsilon^{2}}\right) \\
& =\frac{1}{2} \pi i-\frac{1}{2} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{2}}\left(-i \epsilon-1+i \epsilon-\frac{1}{2}(i \epsilon)^{2}-i \epsilon+1+i \epsilon+\frac{1}{2}(i \epsilon)^{2}\right)=\frac{1}{2} \pi i .
\end{aligned}
$$

Hence the limit as $R \rightarrow \infty$ and $\epsilon \rightarrow 0$ of the integral of $f(x)$ over the two segments equals $\frac{1}{2} \pi i$ and $\int_{0}^{\infty} \frac{x-\sin x}{x^{3}} d x=\frac{1}{2} \pi i /(2 i)=\pi / 4$.

Exercise $4(10$ pt $):$ Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined by:

$$
f(z)= \begin{cases}e^{-\frac{1}{z^{4}}} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{cases}
$$

a. (5 pt) Show that f satisfies the Cauchy-Riemann equations on the whole of \mathbb{C}.

Solution. Since f is holomorphic on $\mathbb{C} \backslash\{0\}$, it satisfies the C-R equations there. Next, note that if z is real or imaginary, then z^{4} is real, so f is real along the real and imaginary axes. So $v_{x}(0,0)=v_{y}(0,0)=0$ and $u_{x}(0,0)=\lim _{x \rightarrow 0} \frac{u(x, 0)-0}{x}=\lim _{x \rightarrow 0}\left(e^{-1 / x^{4}}\right) / x=$ $0=\lim _{y \rightarrow 0}\left(e^{-1 / y^{4}}\right) / y=\lim _{y \rightarrow 0} \frac{u(0, y)-0}{y}=u_{y}(0,0)$, hence the C-R equations hold at the origin as well. (We used that $(i y)^{4}=y^{4}$.)
b. (5 pt) Is f analytic? Motivate your answer.

Solution. Taking $z=t e^{i \pi / 4}$, we have $z^{4}=-t^{4}$, so $\lim _{t \rightarrow 0} f(z)=+\infty$, so f is not even continuous at 0 . Alternatively, the restriction of f to $\mathbb{C} \backslash\{0\}$ admits a Laurent expansion at 0 with infinitely many negative terms, so 0 is an essential singularity of the restriction, not a removable one.

Exercise 5 (10 pt):

Let f be an entire function that sends the real axis to the real axis and the imaginary axis to the imaginary axis. Show that f is an odd function.

Solution. First, $f(0) \in \mathbb{R} \cap i \mathbb{R}$, so $f(0)=0$. Put $g(z)=f(z)+f(-z)$; we need to show that $g \equiv 0$. The power series expansion for g at 0 is of the form $\sum_{k=1}^{\infty} a_{2 k} z^{2 k}$ and converges everywhere. Assume that $g \not \equiv 0$; let $m>0$ be minimal such that $a_{2 m} \neq 0$. Then $g(z)=a_{2 m} z^{2 m}(1+h(z))$, where $h(z)$ is a convergent power series without constant term, thus $|h(z)|$ is small for $|z|$ small enough. In particular, $|\arg (1+h(z))|$ is small for $|z|$ small enough. Substituting $z=r$ with r a small nonzero real number, we find that $a_{2 m}$ is approximately real; but substituting $z=i r$, we find that $a_{2 m}$ is approximately imaginary. This is a contradiction, so $g \equiv 0$, so f is odd. (Approximately real means $a_{2 m}=R e^{i \phi}$
with $-t<\phi<t$ or $\pi-t<\phi<\pi+t$ for some small $t>0$; approximately imaginary means $a_{2 m}=R e^{i \phi}$ with $\pi / 2-t<\phi<\pi / 2+t$ or $3 \pi / 2-t<\phi<3 \pi / 2+t$.)

Exercise 6 (20 pt):

Let $U \subseteq \mathbb{C}$ be a connected open set. Let $\left\{f_{n}\right\}$ be a sequence of complex functions on U which converges uniformly on every compact subset of U to the limit function f. (I.e., for every compact subset K of $U,\left\{f_{n} \mid K\right\}$ converges uniformly on K to $f \mid K$.)
a. (5 pt) Give an example where the f_{n} are injective and holomorphic, but f is constant.

Solution. Take $f_{n}(z)=z / n$, for example. Then $f \equiv 0$. Given K compact, there exists $R>0$ such that $|z| \leq R$ for all $z \in K$. So for $n>N:=R / \epsilon$ we have that $\left\|f_{n}-f\right\|_{K}<\epsilon$. Moreover, the f_{n} are injective and holomorphic, but f is constant.
b. (5 pt) Give an example where the f_{n} are injective and (real) differentiable, but f is neither constant nor injective.
Hint: When is $z \mapsto z+a \bar{z}$ injective? Holomorphic?

Solution. We note that $z \mapsto z+a \bar{z}$ is holomorphic exactly when $a=0$. Assume $z_{1} \neq z_{2}$. They have the same image when $\left(z_{1}-z_{2}\right)+a \overline{\left(z_{1}-z_{2}\right)}=0$. This implies $|a|=1$ and, conversely, when $|a|=1$, there exist $z_{1} \neq z_{2}$ with the same image. So $z \mapsto z+a \bar{z}$ is injective exactly when $|a| \neq 1$. Take $f_{n}(z)=z+(1+1 / n) \bar{z}$, converging uniformly on compact subsets to $f(z)=z+\bar{z}$. Then the f_{n} are injective and real differentiable, but f is neither constant nor injective.
c. (10 pt) Prove: if the f_{n} are injective and holomorphic, then f is either constant or injective.

Hint 1: Reduce the problem to the following special case: If $f\left(z_{0}\right)=$ $f\left(z_{1}\right)=0$, with $z_{0} \neq z_{1}$, and $f_{n}\left(z_{0}\right)=0$ for all n, then $f \equiv 0$.
Hint 2: Now look at the orders of f and the f_{n} at z_{1}.

Solution. Suppose f is not injective. Then there exist $z_{0} \neq z_{1}$ with $f\left(z_{0}\right)=f\left(z_{1}\right)$. Assume $f_{n} \rightarrow f$, uniformly on compact subsets. Then $f_{n}\left(z_{0}\right) \rightarrow f\left(z_{0}\right)$. Subtracting $f_{n}\left(z_{0}\right)$ from f_{n} and $f\left(z_{0}\right)$ from f, we may assume $f_{n}\left(z_{0}\right)=0$; and the new f_{n} converge to the new f, uniformly on compact subsets. We know $f\left(z_{0}\right)=f\left(z_{1}\right)=0$ and should prove $f \equiv 0$. This accomplishes the suggested reduction.
Suppose that $f \not \equiv 0$. Then f is not locally constant near z_{1}, since U is (open and) connected. So the order of f at z_{1} is positive, say $m>0$. Then we know that there exists a suitable local coordinate w at z_{1} such that $f(w)=w^{m}$ in a neighborhood $V \subset U$ of z_{1}.

Choose $r>0$ so that the closed disc $D=\{|w| \leq r\}$ is contained in V and doesn't contain z_{0}. Choose $\epsilon>0$ with $\epsilon<r^{m}$. Choose n such that $\left\|f_{n}-f\right\|_{D}<\epsilon$. Rouché's theorem gives us that f_{n} and f have the same number of zeros inside $\{|w|=r\}$, i.e., at least m when counted with multiplicity. So f_{n} has a zero other than z_{0}, contradicting injectivity. This proves that $f \equiv 0$.
Alternatively, staying closer to the second hint, z_{1} is an isolated zero of f, hence $|f(z)|$ has a positive lower bound on a small enough circle γ around z_{1}, so that $1 / f_{n} \rightarrow 1 / f$, $f_{n}^{\prime} \rightarrow f^{\prime}$, and $f_{n}^{\prime} / f_{n} \rightarrow f^{\prime} / f$, all convergences uniform on γ. Then

$$
\operatorname{ord}_{z_{1}} f_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f_{n}^{\prime}(z)}{f_{n}(z)} d z ;
$$

on the one hand, this equals zero, but on the other hand, it converges to $\operatorname{ord}_{z_{1}} f$, which is positive, as $n \rightarrow \infty$; a contradiction again.

