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Exercise 1 (10 pt): Determine all entire functions f such that

(f(z))2 + (f ′(z))2 = 1

for all z ∈ C.

Solution. Taking the derivative, we find

0 = 2f(z)f ′(z) + 2f ′(z)f ′′(z) = 2f ′(z)(f(z) + f ′′(z)).

If g(z)h(z) = 0 on an infinite compact set, then the zeroes of g or h form an infinite set

with a point of accumulation. If g and h are moreover analytic, then g ≡ 0 or h ≡ 0.

We conclude that f ′ ≡ 0 or f + f ′′ ≡ 0. In the first case, f is constant; hence f ≡ 1

or f ≡ −1. In the second case, we know (e.g., by Exercise 6 in §II.6) that there is a

unique solution with given initial conditions. Of course cos(z) and sin(z) are solutions,

so f(z) = a cos(z) + b sin(z) is the unique solution with f(0) = a and f ′(0) = b. Finally,

a cos(z)+b sin(z) satisfies the original equation if and only if a and b are complex numbers

with a2 +b2 = 1. Answer: f ≡ 1 or f ≡ −1 or f(z) = a cos(z)+b sin(z), with a2 +b2 = 1.

Exercise 2 (10 pt):

a. (5 pt) Let f : C → C be a doubly periodic function, i.e., there exist
x1, x2 ∈ C∗, no real multiples of each other, such that

f(z) = f(z + x1) = f(z + x2)

for all z ∈ C. Suppose that f is analytic. Show that f is constant.

Solution. Let K be the parallelogram with vertices 0, x1, x2 and x1 + x2, i.e.,

K = {z = t1x1 + t2x2 | 0 ≤ t1, t2 ≤ 1}.

From the double periodicity, it follows that for all z ∈ C there exists w ∈ K with f(w) =

f(z) (note that K and its translates over integral linear combinations of x1 and x2 tile the

plane). Since f is continuous and K is compact, f is bounded on K. Hence f is bounded.

By Liouville’s theorem, we conclude that f is constant.



b. (5 pt) Determine all entire functions f such that the identities

f(z + 1) = if(z) and f(z + i) = −f(z)

hold for all z ∈ C.

Solution. Note that f(z + 4) = if(z + 3) = · · · = i4f(z) = f(z) and f(z + 2i) =

−f(z + i) = f(z) for all z ∈ C. Hence f is doubly periodic and by part (a), f is constant:

f ≡ c for some c ∈ C. Since c = ic, we find that f is identically equal to zero.

Exercise 3 (20 pt):
Prove that the following integrals converge and evaluate them.

a. (10 pt)
∫ ∞

0

1
(x2 − eπi/3)2

dx b. (10 pt)
∫ ∞

0

x− sinx

x3
dx

Solution of part (a). Convergence follows from an estimate like |x2−eπi/3| ≥ |x2−1| ≥
x2/2 for x > 2. Note that the integrand is even. We integrate f(z) = 1/(z2− eπi/3)2 over
a contour consisting of the segment from −R to R and the counterclockwise semicircle
S(R) around 0 from R to −R, for R > 1 large enough. Note that |z2 − eπi/3| ≥ R2 − 1
when |z| = R, so |

R
S(R)

f(z)dz| ≤ πR/(R2 − 1)2, so
R

S(R)
f(z)dz → 0 as R → ∞. Next,

the poles of f are at the points z with z2 = eπi/3, i.e., at z = ±eπi/6; the only pole in the
upper half plane is at α = eπi/6, inside the contour. Now

Resα(f) = Resα
1

(z − α)2(z + α)2
=

−2

(z + α)3

˛̨̨̨
z=α

=
−2

8α3
=
−1

4i
.

It follows that
R∞
−∞

1

(x2−eπi/3)2
dx = −2πi

4i
= −π

2
, so

R∞
0

1

(x2−eπi/3)2
dx = −π

4
.

Solution of part (b). The integrand can be continuously extended to the origin. Con-
vergence at infinity follows from an estimate like |(x − sin x)/x3| ≤ 2/x2 for x > 1. Let

f(z) = (iz − eiz)/z3. For 0 < ε < R, we have
R −ε

−R
f(x) dx =

R R

ε
(ix + e−ix)/x3 dx, so

2i

Z R

ε

(x− sin x)/x3 dx =

Z R

ε

(2ix− eix + e−ix)/x3 dx =Z R

ε

(ix− eix)/x3 dx +

Z R

ε

(ix + e−ix)/x3 dx =

Z R

ε

f(x) dx +

Z −ε

−R

f(x) dx.

We integrate f over a contour consisting of segments from −R to −ε and from ε to R and
semicircles around 0 in the upper half plane from −ε to ε and from R to −R. The integral
over the contour is zero. The integral over S(R) goes to zero as R → ∞, since |eiz| ≤ 1
for z in the upper half plane. The integral over the counterclockwise semicircle S(ε) can
be evaluated by means of integration by parts:Z

S(ε)

iz − eiz

z3
dz = −1

2

iz − eiz

z2

˛̨̨̨−ε

ε

+
1

2

Z
S(ε)

i− ieiz

z2
dz.



As ε → 0, the limit equals

1

2
πi(−i · i)− 1

2
lim
ε→0

„
−iε− e−iε

ε2
− iε− eiε

ε2

«
=

1

2
πi− 1

2
lim
ε→0

1

ε2
`
− iε− 1 + iε− 1

2
(iε)2 − iε + 1 + iε +

1

2
(iε)2

´
=

1

2
πi.

Hence the limit as R →∞ and ε → 0 of the integral of f(x) over the two segments equals
1
2
πi and

R∞
0

x−sin x
x3 dx = 1

2
πi/(2i) = π/4.

Exercise 4 (10 pt): Let f : C → C be defined by:

f(z) =

{
e−

1
z4 if z 6= 0;

0 if z = 0.

a. (5 pt) Show that f satisfies the Cauchy-Riemann equations on the
whole of C.

Solution. Since f is holomorphic on C\{0}, it satisfies the C-R equations there. Next,

note that if z is real or imaginary, then z4 is real, so f is real along the real and imaginary

axes. So vx(0, 0) = vy(0, 0) = 0 and ux(0, 0) = limx→0
u(x,0)−0

x
= limx→0(e

−1/x4
)/x =

0 = limy→0(e
−1/y4

)/y = limy→0
u(0,y)−0

y
= uy(0, 0), hence the C-R equations hold at the

origin as well. (We used that (iy)4 = y4.)

b. (5 pt) Is f analytic? Motivate your answer.

Solution. Taking z = teiπ/4, we have z4 = −t4, so limt→0 f(z) = +∞, so f is not even

continuous at 0. Alternatively, the restriction of f to C\{0} admits a Laurent expansion

at 0 with infinitely many negative terms, so 0 is an essential singularity of the restriction,

not a removable one.

Exercise 5 (10 pt):
Let f be an entire function that sends the real axis to the real axis and the
imaginary axis to the imaginary axis. Show that f is an odd function.

Solution. First, f(0) ∈ R ∩ iR, so f(0) = 0. Put g(z) = f(z) + f(−z); we need to

show that g ≡ 0. The power series expansion for g at 0 is of the form
P∞

k=1 a2kz2k and

converges everywhere. Assume that g 6≡ 0; let m > 0 be minimal such that a2m 6= 0.

Then g(z) = a2mz2m(1 + h(z)), where h(z) is a convergent power series without constant

term, thus |h(z)| is small for |z| small enough. In particular, | arg(1+h(z))| is small for |z|
small enough. Substituting z = r with r a small nonzero real number, we find that a2m is

approximately real; but substituting z = ir, we find that a2m is approximately imaginary.

This is a contradiction, so g ≡ 0, so f is odd. (Approximately real means a2m = Reiφ



with −t < φ < t or π − t < φ < π + t for some small t > 0; approximately imaginary

means a2m = Reiφ with π/2− t < φ < π/2 + t or 3π/2− t < φ < 3π/2 + t.)

Exercise 6 (20 pt):
Let U ⊆ C be a connected open set. Let {fn} be a sequence of complex
functions on U which converges uniformly on every compact subset of U
to the limit function f . (I.e., for every compact subset K of U , {fn|K}
converges uniformly on K to f |K.)

a. (5 pt) Give an example where the fn are injective and holomorphic,
but f is constant.

Solution. Take fn(z) = z/n, for example. Then f ≡ 0. Given K compact, there exists

R > 0 such that |z| ≤ R for all z ∈ K. So for n > N := R/ε we have that ||fn − f ||K < ε.

Moreover, the fn are injective and holomorphic, but f is constant.

b. (5 pt) Give an example where the fn are injective and (real) differen-
tiable, but f is neither constant nor injective.

Hint: When is z 7→ z + az̄ injective? Holomorphic?

Solution. We note that z 7→ z + az̄ is holomorphic exactly when a = 0. Assume z1 6= z2.

They have the same image when (z1 − z2) + a(z1 − z2) = 0. This implies |a| = 1 and,

conversely, when |a| = 1, there exist z1 6= z2 with the same image. So z 7→ z + az̄ is

injective exactly when |a| 6= 1. Take fn(z) = z + (1 + 1/n)z̄, converging uniformly on

compact subsets to f(z) = z + z̄. Then the fn are injective and real differentiable, but f

is neither constant nor injective.

c. (10 pt) Prove: if the fn are injective and holomorphic, then f is either
constant or injective.

Hint 1: Reduce the problem to the following special case: If f(z0) =
f(z1) = 0, with z0 6= z1, and fn(z0) = 0 for all n, then f ≡ 0.

Hint 2: Now look at the orders of f and the fn at z1.

Solution. Suppose f is not injective. Then there exist z0 6= z1 with f(z0) = f(z1).
Assume fn → f , uniformly on compact subsets. Then fn(z0) → f(z0). Subtracting
fn(z0) from fn and f(z0) from f , we may assume fn(z0) = 0; and the new fn converge to
the new f , uniformly on compact subsets. We know f(z0) = f(z1) = 0 and should prove
f ≡ 0. This accomplishes the suggested reduction.
Suppose that f 6≡ 0. Then f is not locally constant near z1, since U is (open and)
connected. So the order of f at z1 is positive, say m > 0. Then we know that there exists
a suitable local coordinate w at z1 such that f(w) = wm in a neighborhood V ⊂ U of z1.



Choose r > 0 so that the closed disc D = {|w| ≤ r} is contained in V and doesn’t contain
z0. Choose ε > 0 with ε < rm. Choose n such that ||fn − f ||D < ε. Rouché’s theorem
gives us that fn and f have the same number of zeros inside {|w| = r}, i.e., at least m
when counted with multiplicity. So fn has a zero other than z0, contradicting injectivity.
This proves that f ≡ 0.
Alternatively, staying closer to the second hint, z1 is an isolated zero of f , hence |f(z)|
has a positive lower bound on a small enough circle γ around z1, so that 1/fn → 1/f ,
f ′n → f ′, and f ′n/fn → f ′/f , all convergences uniform on γ. Then

ordz1 fn =
1

2πi

Z
γ

f ′n(z)

fn(z)
dz;

on the one hand, this equals zero, but on the other hand, it converges to ordz1 f , which is

positive, as n →∞; a contradiction again.


