ENDTERM COMPLEX FUNCTIONS

JUNE 27 2012, 9:00-12:00

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.

Exercise 1 (7 pt) Compute

$$
\sum_{n=0}^{\infty} \frac{\sin (n t)}{n!} \quad(t \in \mathbb{R})
$$

Hint: Rewrite the series using the exponential function.
Exercise 2 (20 pt) Prove that the following integrals converge and evaluate them.

$$
\text { a. }(10 p t) \int_{0}^{\infty} \frac{1}{\left(x^{2}+i\right)^{2}} d x \quad \text { b. }(10 p t) \int_{-\infty}^{\infty} \frac{1-\cos x}{x^{2}} d x
$$

Exercise 3 (10 pt) Let f be an entire function satisfying $|f(-z)|<|f(z)|$ for all z in the upper halfplane $(\operatorname{Im}(z)>0)$.
a. ($7 p t$) Prove that $g(z)=f(z)+f(-z)$ can only have real roots.
b. (3 pt) Prove that $z \sin (z)=\cos (z)$ only has real solutions.

Exercise $4(8 \boldsymbol{p t})$ Is there an analytic isomorphism between the open unit disc D and $\mathbb{C} \backslash\{a\}$ with $a \in \mathbb{C}$?

Bonus exercise (15 pt) Let $f: \mathbb{C} \backslash\{x \in \mathbb{R} \mid x \leq 0$ or $x=1\} \rightarrow \mathbb{C}$ be the sum of $(\log z)^{-2}$ along all the branches of the logarithm, i.e.

$$
f(z)=\sum_{n=-\infty}^{\infty} \frac{1}{(\log (z)+2 \pi i n)^{2}}
$$

a. (5pt) Prove that f is meromorphic on $\mathbb{C} \backslash\{x \in \mathbb{R} \mid x \leq 0\}$.
b. (5 pt) Prove that f can be analytically continued to $\mathbb{C} \backslash\{1\}$.
c. (5 pt) Prove this analytic continuation is a rational function.

