Exam Complex functions February 2005-Solutions

1a. Prove that $e^{1 / z^{n}}$ has an essential singularity at 0 when n is a positive integer. If not, then $e^{1 / z^{n}}$ is meromorphic at 0 and so $\lim _{z \rightarrow 0} e^{1 / z^{n}}$ exists (with ∞ allowed). But if we take $\left(z=\frac{1}{k}\right)_{k=1}^{\infty}$ we get $\lim _{k \rightarrow \infty} e^{k^{n}}=\infty$, wheras for $\left(z=\frac{1}{2 \pi i k}\right)_{k=1}^{\infty}$ we get $\lim _{k \rightarrow \infty} e^{2 \pi i k^{n}}=1$. So the singularity is essential.

Other proof: for every $\varepsilon>0$, the function $w=z^{n}$ maps the punctured disk $0<|z|<\varepsilon$ onto the punctured disk $0<|w|<\varepsilon^{n}$; since $e^{1 / w}$ has an essential singularity at 0 , this function maps $0<|w|<\varepsilon^{n}$ onto a dense subset of \mathbb{C}. Hence $e^{1 / z^{n}}$ maps $0<|z|<\varepsilon$ onto a dense subset of \mathbb{C}. This also implies that $e^{1 / z^{n}}$ has an essential singularity at 0 .

1b. Let $f \in \mathbb{C}[z]$ be a polynomial in z. Prove that e^{f} has an essential singularity at ∞ unless f is constant.
Suppose f nonconstant. Since f is meromorphic and nonconstant at ∞, we have that for every $R>0, w:=f(z)$ sends $|z|>R$ to a punctured neighborhood of ∞, i.e., its image contains a subset of the form $|w|>R^{\prime}$ for some for some $R^{\prime}>0$. But since e^{w} has an essential singularity at ∞, the image of $|w|>R^{\prime}$ under e^{w} is dense in \mathbb{C}. So e^{f} has then an essential singularity at ∞.
2. Consider the polynomial function $f(z):=z^{8}+2 z+1$.

2a. Determine the number of zeroes of f on $|z|<1$.
We compare f with $g(z):=2 z+1$. On $|z|=1$ we have $|2 z+1| \geq 1$ with equality only when $z=-1$, whereas $|f(z)-g(z)|=|z|^{8}=1$. So on $|z|=1$, we have $|f(z)-g(z)| \leq|g(z)|$ with equality only if $z=-1$. Since the inequality is not strict, the Rouché principle does not apply for this radius; we therefore take it slightly smaller: $|z|=1-\varepsilon$ with $\varepsilon>0$ very small. Then $|2 z+1| \geq 1-2 \varepsilon$ and $|z|^{8}=(1-\varepsilon)^{8}=1-8 \varepsilon+o(\varepsilon)$ and so $|g(z)|-|f(z)-g(z)|=6 \varepsilon+o(\varepsilon)$ on $|z|=1-\varepsilon$ and hence positive for sufficiently small $\varepsilon>0$. According to the Rouché principle, f has then in $|z|<1-\varepsilon$ as many zeroes (counted with multiplicity) as g. The latter has $z=-\frac{1}{2}$ as its only zero, so this number is one. As we can take ε as small as we please, it follows that f has only one zero in $|z|<1$. 2b. Prove that -1 is the only zero of f on the circle $|z|=1$.
If z is a zero of f with $|z|=1$, then $|2 z+1|=\left|-z^{8}\right|=1$ and this implies $z=-1$.
2c. Prove that f has no zeroes of multiplicity >1. How many zeroes will f therefore have on $|z|>1$?
If z is a zero of f of order ≥ 2, then $f(z)=f^{\prime}(z)=0$, i.e., $z^{8}+2 z+1=$ $8 z^{7}+2=0$. Hence $z^{7}=-\frac{1}{4}$ and so $0=z^{8}+2 z+1=\frac{7}{4} z+1$. It follows that $z=-\frac{4}{7}$. But $\left(-\frac{4}{7}\right)^{7} \neq-\frac{1}{4}$ and so such a z does not exist. Hence f has as many zeros as its degree, namely 8 . In view of 2 a and 2 b , this implies that f has exactly 6 zeroes on $|z|>1$.
3. Compute for $0<s<1$ the integral $\int_{0}^{2 \pi} \frac{d t}{1+s \cos t}$.

This is a trigonometric integral and so we use the substitution $z:=e^{i t}$. Then
$d t=-i z^{-1} d z$ and $\cos t=\frac{1}{2}\left(z+z^{-1}\right)$ so that

$$
\int_{0}^{2 \pi} \frac{d t}{1+s \cos t}=-i \int_{|z|=1} \frac{d z}{z\left(1+\frac{s}{2}\left(z+z^{-1}\right)\right)}=-\frac{2 i}{s} \int_{|z|=1} \frac{d z}{z^{2}+\frac{2}{s} z+1} .
$$

The denominator $z^{2}+\frac{2}{s} z+1$ factors as $\left(z-z_{+}\right)\left(z-z_{-}\right)$with $z_{ \pm}=-s^{-1} \pm$ $\sqrt{s^{-2}-1}$. It has z_{+}as its unique zero lying in $|z|<1$ and the residue of $\left(z^{2}+\right.$ $\left.\frac{2}{s} z+1\right)^{-1}$ in this point is $\left(z_{+}-z_{-}\right)^{-1}=\left(2 . \sqrt{s^{-2}-1}\right)^{-1}$. So the integral we are after is by the residue theorem equal to

$$
-\frac{2 i}{s} \cdot 2 \pi i \frac{1}{2 . \sqrt{s^{-2}-1}}=\frac{2 \pi}{\sqrt{1-s^{2}}} .
$$

4. Prove that the integral $\int_{-\infty}^{\infty} \frac{\cos 2 x}{x^{2}+1} d x$ converges and compute its value.

The integral converges (absolutely) because for $|x|>1,\left|\frac{\cos 2 x}{x^{2}+1}\right| \leq 2|x|^{-2}$ and $\int_{1}^{\infty} 2 x^{-2} d x<\infty$. In order to compute it, we consider for $R>1$ the integral

$$
I(R):=\int_{\Gamma_{R}} \frac{e^{2 i z}}{z^{2}+1},
$$

where Γ_{R} is the closed path which first traverses the real interval $[-R, R]$ and then the semicircle $\Gamma_{R}^{\prime}: t \in[0, \pi] \mapsto R e^{i t}$. The integral $I(R)$ is computed by means of the residue formula: we factor the denominator $z^{2}+1=(z-i)(z+i)$. Its zero inside Γ_{R} is i and the residue of $\left(z^{2}+1\right)^{-1} e^{2 i z}$ at this point is $(2 i)^{-1} e^{-2}$. It follows that $I(R)=2 \pi i(2 i)^{-1} e^{-2}=\pi e^{-2}$.

For $t \in[0, \pi]$ and $R>1$, we have

$$
\left|\frac{e^{2 i R\left(e^{i t}\right)}}{e^{2 i t}+1}\right|=\frac{e^{-2 R \operatorname{Im}\left(e^{i t}\right)}}{\left|e^{2 i t}+1\right|} \leq \frac{e^{-2 R \sin t}}{R^{2}-1} \leq \frac{1}{R^{2}-1} .
$$

and so

$$
\left|\int_{\Gamma_{R}^{\prime}} \frac{e^{i z}}{z^{2}+1}\right|=\left|\int_{0}^{\pi} \frac{e^{\left(i R e^{i t}\right)}}{e^{2 i t}+1} \cdot i R e^{i t} d t\right| \leq \pi \frac{R}{R^{2}-1} .
$$

The latter goes to zero as $R \rightarrow \infty$. It follows that $\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{e^{2 i x}}{x^{2}+1} d x=\pi e^{-2}$. Taking the real part yields $\int_{-\infty}^{\infty} \frac{\cos 2 x}{x^{2}+1} d x=\pi e^{-2}$.
5. Give a biholomorphic map from the open unit disk onto the open half disk defined by $|z|<1, \operatorname{Im}(z)>0$.
Recall that $w \mapsto(w-i)(w+i)^{-1}$ maps the upper half plane H_{+}onto the open unit disk Δ. So its inverse, $z \mapsto w=-i(z+1)(z-1)^{-1}$, maps Δ biholomorphically onto H_{+}. The function $w=\frac{1}{2}\left(\zeta+\zeta^{-1}\right)$ maps the lower half disk Δ_{-}biholomorphically onto H_{+}: if $\zeta \in \Delta_{-}$, then $\operatorname{Im}(w)=\frac{|\zeta|^{2}-1}{2|\zeta|^{2}} \operatorname{Im}(\zeta)>0$ so that $w \in H_{+}$. The inverse map $H_{+} \rightarrow \Delta_{-}$is given by picking the root of $\zeta^{2}-2 \zeta w+1$: one root satisfies $|\zeta|>1$ and $\operatorname{Im}(\zeta)>0$ and the other $|\zeta|<1$ and $\operatorname{Im}(\zeta)<0$. We take the latter and denote it by $\zeta(w)$ (in fact, $\zeta(w)=-w+\sqrt{w^{2}-1}$, where the square root is taken with its argument in $(0, \pi))$. Then $z \mapsto-\zeta\left(-i(z+1)(z-1)^{-1}\right)$ is as desired.

