
EXAM COMPLEX FUNCTIONS FEBRUARY 2005—SOLUTIONS

1a. Prove that e1/zn

has an essential singularity at 0 when n is a positive integer.
If not, then e1/zn

is meromorphic at 0 and so limz→0 e1/zn

exists (with ∞ allowed).
But if we take (z = 1

k )∞k=1 we get limk→∞ ekn

= ∞, wheras for (z = 1
2πik )∞k=1

we get limk→∞ e2πikn

= 1. So the singularity is essential.
Other proof: for every ε > 0, the function w = zn maps the punctured disk

0 < |z| < ε onto the punctured disk 0 < |w| < εn; since e1/w has an essential
singularity at 0, this function maps 0 < |w| < εn onto a dense subset of C. Hence
e1/zn

maps 0 < |z| < ε onto a dense subset of C. This also implies that e1/zn

has
an essential singularity at 0.

1b. Let f ∈ C[z] be a polynomial in z. Prove that ef has an essential singularity
at ∞ unless f is constant.
Suppose f nonconstant. Since f is meromorphic and nonconstant at ∞, we have
that for every R > 0, w := f(z) sends |z| > R to a punctured neighborhood of ∞,
i.e., its image contains a subset of the form |w| > R′ for some for some R′ > 0.
But since ew has an essential singularity at ∞, the image of |w| > R′ under ew is
dense in C. So ef has then an essential singularity at ∞.

2. Consider the polynomial function f(z) := z8 + 2z + 1.
2a. Determine the number of zeroes of f on |z| < 1.
We compare f with g(z) := 2z + 1. On |z| = 1 we have |2z + 1| ≥ 1 with
equality only when z = −1, whereas |f(z) − g(z)| = |z|8 = 1. So on |z| = 1,
we have |f(z) − g(z)| ≤ |g(z)| with equality only if z = −1. Since the inequality
is not strict, the Rouché principle does not apply for this radius; we therefore take
it slightly smaller: |z| = 1 − ε with ε > 0 very small. Then |2z + 1| ≥ 1 − 2ε
and |z|8 = (1 − ε)8 = 1 − 8ε + o(ε) and so |g(z)| − |f(z) − g(z)| = 6ε + o(ε)
on |z| = 1 − ε and hence positive for sufficiently small ε > 0. According to
the Rouché principle, f has then in |z| < 1 − ε as many zeroes (counted with
multiplicity) as g. The latter has z = − 1

2 as its only zero, so this number is one. As
we can take ε as small as we please, it follows that f has only one zero in |z| < 1.
2b. Prove that −1 is the only zero of f on the circle |z| = 1.
If z is a zero of f with |z| = 1, then |2z + 1| = | − z8| = 1 and this implies
z = −1.
2c. Prove that f has no zeroes of multiplicity > 1. How many zeroes will f

therefore have on |z| > 1?
If z is a zero of f of order ≥ 2, then f(z) = f ′(z) = 0, i.e., z8 + 2z + 1 =
8z7 + 2 = 0. Hence z7 = −1

4 and so 0 = z8 + 2z + 1 = 7
4z + 1. It follows that

z = −4
7 . But (− 4

7)7 6= −1
4 and so such a z does not exist. Hence f has as many

zeros as its degree, namely 8. In view of 2a and 2b, this implies that f has exactly
6 zeroes on |z| > 1.

3. Compute for 0 < s < 1 the integral
∫ 2π
0

dt
1+s cos t .

This is a trigonometric integral and so we use the substitution z := eit. Then
1
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dt = −iz−1dz and cos t = 1
2(z + z−1) so that

∫ 2π

0

dt

1 + s cos t
= −i

∫

|z|=1

dz

z(1 + s
2 (z + z−1))

= −2i

s

∫

|z|=1

dz

z2 + 2
sz + 1

.

The denominator z2 + 2
sz + 1 factors as (z − z+)(z − z−) with z± = −s−1 ±√

s−2 − 1. It has z+ as its unique zero lying in |z| < 1 and the residue of (z2 +
2
sz + 1)−1 in this point is (z+ − z−)−1 = (2.

√
s−2 − 1)−1. So the integral we are

after is by the residue theorem equal to

−2i

s
.2πi

1

2.
√

s−2 − 1
=

2π√
1 − s2

.

4. Prove that the integral
∫ ∞
−∞

cos 2x
x2+1

dx converges and compute its value.

The integral converges (absolutely) because for |x| > 1, | cos 2x
x2+1 | ≤ 2|x|−2 and

∫ ∞
1 2x−2dx < ∞. In order to compute it, we consider for R > 1 the integral

I(R) :=

∫

ΓR

e2iz

z2 + 1
,

where ΓR is the closed path which first traverses the real interval [−R,R] and then
the semicircle Γ′

R : t ∈ [0, π] 7→ Reit. The integral I(R) is computed by means
of the residue formula: we factor the denominator z2 + 1 = (z − i)(z + i). Its
zero inside ΓR is i and the residue of (z2 + 1)−1e2iz at this point is (2i)−1e−2. It
follows that I(R) = 2πi(2i)−1e−2 = πe−2.

For t ∈ [0, π] and R > 1, we have
∣

∣

∣

∣

∣

e2iR(eit)

e2it + 1

∣

∣

∣

∣

∣

=
e−2R Im(eit)

|e2it + 1| ≤ e−2R sin t

R2 − 1
≤ 1

R2 − 1
.

and so
∣

∣

∣

∣

∣

∫

Γ′

R

eiz

z2 + 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ π

0

e(iReit)

e2it + 1
.iReit dt

∣

∣

∣

∣

∣

≤ π
R

R2 − 1
.

The latter goes to zero as R → ∞. It follows that limR→∞

∫ R
−R

e2ix

x2+1dx = πe−2.

Taking the real part yields
∫ ∞
−∞

cos 2x
x2+1

dx = πe−2.

5. Give a biholomorphic map from the open unit disk onto the open half disk
defined by |z| < 1, Im(z) > 0.
Recall that w 7→ (w−i)(w+i)−1 maps the upper half plane H+ onto the open unit
disk ∆. So its inverse, z 7→ w = −i(z + 1)(z − 1)−1, maps ∆ biholomorphically
onto H+. The function w = 1

2(ζ + ζ−1) maps the lower half disk ∆− biholomor-

phically onto H+: if ζ ∈ ∆−, then Im(w) = |ζ|2−1
2|ζ|2 Im(ζ) > 0 so that w ∈ H+.

The inverse map H+ → ∆− is given by picking the root of ζ2−2ζw +1: one root
satisfies |ζ| > 1 and Im(ζ) > 0 and the other |ζ| < 1 and Im(ζ) < 0. We take
the latter and denote it by ζ(w) (in fact, ζ(w) = −w +

√
w2 − 1, where the square

root is taken with its argument in (0, π)). Then z 7→ −ζ(−i(z + 1)(z − 1)−1) is
as desired.
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