Dit tentamen is in elektronische vorm beschikbaar gemaakt door de \mathcal{BC} van A-Eskwadraat. A-Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten in dit tentamen.

EXAM COMPLEX FUNCTIONS FEBRUARY 2005—SOLUTIONS

1a. Prove that e^{1/z^n} has an essential singularity at 0 when n is a positive integer. If not, then e^{1/z^n} is meromorphic at 0 and so $\lim_{z\to 0} e^{1/z^n}$ exists (with ∞ allowed). But if we take $(z = \frac{1}{k})_{k=1}^{\infty}$ we get $\lim_{k\to\infty} e^{k^n} = \infty$, wheras for $(z = \frac{1}{2\pi i k})_{k=1}^{\infty}$ we get $\lim_{k\to\infty} e^{2\pi i k^n} = 1$. So the singularity is essential.

Other proof: for every $\varepsilon > 0$, the function $w = z^n$ maps the punctured disk $0 < |z| < \varepsilon$ onto the punctured disk $0 < |w| < \varepsilon^n$; since $e^{1/w}$ has an essential singularity at 0, this function maps $0 < |w| < \varepsilon^n$ onto a dense subset of \mathbb{C} . Hence e^{1/z^n} maps $0 < |z| < \varepsilon$ onto a dense subset of \mathbb{C} . This also implies that e^{1/z^n} has an essential singularity at 0.

1b. Let $f \in \mathbb{C}[z]$ be a polynomial in z. Prove that e^f has an essential singularity at ∞ unless f is constant.

Suppose f nonconstant. Since f is meromorphic and nonconstant at ∞ , we have that for every R > 0, w := f(z) sends |z| > R to a punctured neighborhood of ∞ , i.e., its image contains a subset of the form |w| > R' for some for some R' > 0. But since e^w has an essential singularity at ∞ , the image of |w| > R' under e^w is dense in \mathbb{C} . So e^f has then an essential singularity at ∞ .

2. Consider the polynomial function $f(z) := z^8 + 2z + 1$.

2a. Determine the number of zeroes of f on |z| < 1.

We compare f with g(z) := 2z + 1. On |z| = 1 we have $|2z + 1| \ge 1$ with equality only when z = -1, whereas $|f(z) - g(z)| = |z|^8 = 1$. So on |z| = 1, we have $|f(z) - g(z)| \le |g(z)|$ with equality only if z = -1. Since the inequality is not strict, the Rouché principle does not apply for this radius; we therefore take it slightly smaller: $|z| = 1 - \varepsilon$ with $\varepsilon > 0$ very small. Then $|2z + 1| \ge 1 - 2\varepsilon$ and $|z|^8 = (1 - \varepsilon)^8 = 1 - 8\varepsilon + o(\varepsilon)$ and so $|g(z)| - |f(z) - g(z)| = 6\varepsilon + o(\varepsilon)$ on $|z| = 1 - \varepsilon$ and hence positive for sufficiently small $\varepsilon > 0$. According to the Rouché principle, f has then in $|z| < 1 - \varepsilon$ as many zeroes (counted with multiplicity) as g. The latter has $z = -\frac{1}{2}$ as its only zero, so this number is one. As we can take ε as small as we please, it follows that f has only one zero in |z| < 1. 2b. Prove that -1 is the only zero of f on the circle |z| = 1.

If z is a zero of f with |z| = 1, then $|2z + 1| = |-z^8| = 1$ and this implies z = -1.

2c. Prove that f has no zeroes of multiplicity > 1. How many zeroes will f therefore have on |z| > 1?

If z is a zero of f of order ≥ 2 , then f(z) = f'(z) = 0, i.e., $z^8 + 2z + 1 = 8z^7 + 2 = 0$. Hence $z^7 = -\frac{1}{4}$ and so $0 = z^8 + 2z + 1 = \frac{7}{4}z + 1$. It follows that $z = -\frac{4}{7}$. But $(-\frac{4}{7})^7 \neq -\frac{1}{4}$ and so such a z does not exist. Hence f has as many zeros as its degree, namely 8. In view of 2a and 2b, this implies that f has exactly 6 zeroes on |z| > 1.

3. Compute for 0 < s < 1 the integral $\int_0^{2\pi} \frac{dt}{1+s\cos t}$. This is a trigonometric integral and so we use the substitution $z := e^{it}$. Then $dt = -iz^{-1}dz$ and $\cos t = \frac{1}{2}(z + z^{-1})$ so that

$$\int_0^{2\pi} \frac{dt}{1+s\cos t} = -i \int_{|z|=1} \frac{dz}{z(1+\frac{s}{2}(z+z^{-1}))} = -\frac{2i}{s} \int_{|z|=1} \frac{dz}{z^2+\frac{2}{s}z+1}.$$

The denominator $z^2 + \frac{2}{s}z + 1$ factors as $(z - z_+)(z - z_-)$ with $z_{\pm} = -s^{-1} \pm \sqrt{s^{-2} - 1}$. It has z_+ as its unique zero lying in |z| < 1 and the residue of $(z^2 + \frac{2}{s}z + 1)^{-1}$ in this point is $(z_+ - z_-)^{-1} = (2 \cdot \sqrt{s^{-2} - 1})^{-1}$. So the integral we are after is by the residue theorem equal to

$$-\frac{2i}{s} \cdot 2\pi i \frac{1}{2 \cdot \sqrt{s^{-2} - 1}} = \frac{2\pi}{\sqrt{1 - s^2}}.$$

4. Prove that the integral $\int_{-\infty}^{\infty} \frac{\cos 2x}{x^2+1} dx$ converges and compute its value. The integral converges (absolutely) because for |x| > 1, $|\frac{\cos 2x}{x^2+1}| \le 2|x|^{-2}$ and $\int_{1}^{\infty} 2x^{-2} dx < \infty$. In order to compute it, we consider for R > 1 the integral

$$I(R) := \int_{\Gamma_R} \frac{e^{2iz}}{z^2 + 1},$$

where Γ_R is the closed path which first traverses the real interval [-R, R] and then the semicircle $\Gamma'_R : t \in [0, \pi] \mapsto Re^{it}$. The integral I(R) is computed by means of the residue formula: we factor the denominator $z^2 + 1 = (z - i)(z + i)$. Its zero inside Γ_R is *i* and the residue of $(z^2 + 1)^{-1}e^{2iz}$ at this point is $(2i)^{-1}e^{-2}$. It follows that $I(R) = 2\pi i (2i)^{-1}e^{-2} = \pi e^{-2}$.

For $t \in [0, \pi]$ and R > 1, we have

$$\left|\frac{e^{2iR(e^{it})}}{e^{2it}+1}\right| = \frac{e^{-2R\operatorname{Im}(e^{it})}}{|e^{2it}+1|} \le \frac{e^{-2R\sin t}}{R^2-1} \le \frac{1}{R^2-1}.$$

and so

$$\left| \int_{\Gamma'_R} \frac{e^{iz}}{z^2 + 1} \right| = \left| \int_0^\pi \frac{e^{(iRe^{it})}}{e^{2it} + 1} . iRe^{it} \, dt \right| \le \pi \frac{R}{R^2 - 1}.$$

The latter goes to zero as $R \to \infty$. It follows that $\lim_{R\to\infty} \int_{-R}^{R} \frac{e^{2ix}}{x^2+1} dx = \pi e^{-2}$. Taking the real part yields $\int_{-\infty}^{\infty} \frac{\cos 2x}{x^2+1} dx = \pi e^{-2}$.

5. Give a biholomorphic map from the open unit disk onto the open half disk defined by |z| < 1, Im(z) > 0.

Recall that $w \mapsto (w-i)(w+i)^{-1}$ maps the upper half plane H_+ onto the open unit disk Δ . So its inverse, $z \mapsto w = -i(z+1)(z-1)^{-1}$, maps Δ biholomorphically onto H_+ . The function $w = \frac{1}{2}(\zeta + \zeta^{-1})$ maps the lower half disk Δ_- biholomorphically onto H_+ : if $\zeta \in \Delta_-$, then $\operatorname{Im}(w) = \frac{|\zeta|^2 - 1}{2|\zeta|^2} \operatorname{Im}(\zeta) > 0$ so that $w \in H_+$. The inverse map $H_+ \to \Delta_-$ is given by picking the root of $\zeta^2 - 2\zeta w + 1$: one root satisfies $|\zeta| > 1$ and $\operatorname{Im}(\zeta) > 0$ and the other $|\zeta| < 1$ and $\operatorname{Im}(\zeta) < 0$. We take the latter and denote it by $\zeta(w)$ (in fact, $\zeta(w) = -w + \sqrt{w^2 - 1}$, where the square root is taken with its argument in $(0,\pi)$). Then $z \mapsto -\zeta(-i(z+1)(z-1)^{-1})$ is as desired.