Solutions Final Measure and Integration 2012-13

(1) Let (E, \mathcal{B}, ν) be a measure space, and $h: E \rightarrow \mathbb{R}$ a non-negative measurable function. Define a measure μ on (E, \mathcal{B}) by $\mu(A)=\int_{A} h d \nu$ for $A \in \mathcal{B}$. Show that for every non-negative measurable function $F: E \rightarrow \mathbb{R}$ one has

$$
\int_{E} F d \mu=\int_{E} F h d \nu
$$

Conclude that the result is still true for $F \in \mathcal{L}^{1}(\mu)$ which is not necessarily non-negative. (Hint: use a standard argument starting with indicator functions)

Proof Suppose first that $F=1_{A}$ is the indicator function of some measurable set $A \in \mathcal{B}$. Then,

$$
\int_{E} F d \mu=\mu(A)=\int_{A} h d \nu=\int_{E} 1_{A} h d \nu=\int_{E} F h d \nu
$$

Suppose now that $F=\sum_{k=1}^{n} \alpha_{k} 1_{A_{k}}$ is a non-negative measurable step function. Then,

$$
\int_{E} F d \mu=\sum_{k=1}^{n} \alpha_{k} \mu\left(A_{k}\right)=\sum_{k=1}^{n} \alpha_{k} \int_{E} 1_{A} h d \nu=\int_{E} \sum_{k=1}^{n} \alpha_{k} 1_{A} h d \nu=\int_{E} F h d \nu .
$$

Suppose that F is a non-negative measurable function, then there exists a sequence of nonnegative measurable step functions F_{n} such that $F_{n} \uparrow F$. Then, $F_{n} h \uparrow F h$, and by Beppo-Levi,

$$
\int_{E} F d \mu=\lim _{n \rightarrow \infty} \int_{E} F_{n} d \mu=\lim _{n \rightarrow \infty} \int_{E} F_{n} h d \nu=\int_{E} F h d \nu
$$

Finally, suppose that $F \in \mathcal{L}^{1}(\mu)$. Since F^{+}, F^{-}are non-negative, we have

$$
\int_{E} F^{+} d \mu=\int_{E} F^{+} h d \nu \text { and } \int_{E} F^{-} d \mu=\int_{E} F^{-} h d \nu
$$

Since $F \in \mathcal{L}^{1}(\mu)$, from the above we see that $F h \in \mathcal{L}^{1}(\nu)$, hence

$$
\int_{E} F d \mu=\int_{E} F^{+} d \mu-\int_{E} F^{-} d \mu=\int_{E} F^{+} h d \nu-\int_{E} F^{-} h d \nu=\int_{E} F h d \nu
$$

(2) Consider the measure space $((0, \infty), \mathcal{B}((0, \infty), \lambda)$, where $\mathcal{B}((0, \infty))$ and λ are the restrictions of the Borel σ-algebra and Lebesgue measure to the interval $(0, \infty)$. Show that

$$
\lim _{n \rightarrow \infty} \int_{(0, n)}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d \lambda(x)=1
$$

(Hint: note that $1+x \leq e^{x}$).
Proof: Let $u_{n}(x)=\mathbf{1}_{(0, n)}\left(1+\frac{x}{n}\right)^{n} e^{-2 x}$, then $\lim _{n \rightarrow \infty} u_{n}(x)=\mathbf{1}_{(0, \infty)} e^{-x}$. Using the fact that $1+x \leq e^{x}$, we see that $u_{n}(x) \leq \mathbf{1}_{(0, \infty)} e^{-x}$. Since the function e^{-x} is positive, measurable and the improper Riemann integrable on $[0, \infty)$ exists, it follows that it is Lebesgue integrable on $[0, \infty)$ (and hence also on $(0, \infty)$). By Lebesgue Dominated Convergence Theorem, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{(0, n)}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d \lambda(x) & =\lim _{n \rightarrow \infty} \int u_{n}(x) d \lambda(x) \\
& =\int \mathbf{1}_{(0, \infty)} e^{-x} d \lambda(x)=\int_{0}^{\infty} e^{-x} d x=1
\end{aligned}
$$

(3) Let (X, \mathcal{A}, μ) be a probability space (i.e. $\mu(X)=1$) and let $\left\{f_{n}\right\}$ be a sequence in $\mathcal{L}^{1}(\mu)$ such that $\int_{X}\left|f_{n}\right| d \mu=n$ for all $n \geq 1$. Let

$$
A_{n}=\left\{x:\left|f_{n}(x)-\int_{X} f_{n} d \mu\right| \geq n^{3}\right\} .
$$

(a) Show that $\mu\left(\bigcap_{m \geq 1} \bigcup_{n \geq m} A_{n}\right)=0$. (Hint: use Exercise 6.9 (Borel-Cantelli Lemma)).
(b) Use part (a) to show that for every $\epsilon>0$ there exists $m_{0} \geq 1$ such that

$$
\mu\left\{x \in X:\left|f_{n}(x)\right|<n^{3}+n, \text { for all } n \geq m_{0}\right\}>1-\epsilon .
$$

Proof (a) By Markov Inequality we have

$$
\mu\left(A_{n}\right) \leq \frac{1}{n^{3}} \int_{X}\left|f_{n}(x)-\int_{X} f_{n} d \mu\right| d \mu \leq \frac{2 n}{n^{3}}=\frac{2}{n^{2}} .
$$

Since $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\sum_{n=1}^{\infty} \frac{2}{n^{2}}<\infty$, it follows by Borel-Cantelli Lemma (Exercise 6.9) that

$$
\mu\left(\bigcap_{m \geq 1} \bigcup_{n \geq m} A_{n}\right)=0 .
$$

Proof (b) By part (a) we have $\mu\left(\bigcup_{m \geq 1} \cap_{n \geq m} A_{n}^{c}\right)=1$. By Theorem 4.4(iii),

$$
\lim _{m \rightarrow \infty} \mu\left(\bigcap_{n \geq m} A_{n}^{c}\right)=\mu\left(\bigcup_{m \geq 1} \bigcap_{n \geq m} A_{n}^{c}\right)=1 .
$$

Hence, given $\epsilon>0$ there exists $m_{0} \geq 1$ such that $\mu\left(\bigcap_{n \geq m_{0}} A_{n}^{c}\right)>1-\epsilon$. But for $x \in \bigcap_{n \geq m_{0}} A_{n}^{c}$ one has for $n \geq m_{0}$,

$$
\left|f_{n}(x)\right|-\left|\int f_{n} d \mu\right| \leq\left|f_{n}(x)-\int f_{n}(x) d \mu\right|<n^{3},
$$

and thus, $\left|f_{n}(x)\right|<n^{3}+n$. This implies that

$$
\mu\left\{x \in X:\left|f_{n}(x)\right|<n^{3}+n, \text { for all } n \geq m_{0}\right\} \geq \mu\left(\bigcap_{n \geq m_{0}} A_{n}^{c}\right)>1-\epsilon .
$$

(4) Let (X, \mathcal{A}, μ) be a σ-finite measure space and $\left(A_{i}\right)$ a sequence in \mathcal{A} such that $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$.
(a) Show that $\mathbf{1}_{A_{n}} \xrightarrow{\mu} 0$, i.e. the sequence $\left(\mathbf{1}_{A_{n}}\right)$ converges to 0 in measure.
(b) Show that for any $u \in \mathcal{L}^{1}(\mu)$, one has $u \mathbf{1}_{A_{n}} \xrightarrow{\mu} 0$.
(c) Show that for any $u \in \mathcal{L}^{1}(\mu)$, one has

$$
\sup _{n} \int_{\left\{|u| \mathbf{1}_{A_{n}}>|u|\right\}}|u| \mathbf{1}_{A_{n}} d \mu=0 .
$$

(d) Show that $\lim _{n \rightarrow \infty} \int_{A_{n}} u d \mu=0$.

Proof (a): For any $0<\epsilon<1$ and any $A \in \mathcal{A}$ with $\mu(A)<\infty$, we have

$$
\mu\left(A \cap\left\{\mathbf{1}_{A_{n}}>\epsilon\right\}\right)=\mu\left(A \cap A_{n}\right) \leq \mu\left(A_{n}\right) .
$$

Thus, $\lim \sup _{n \rightarrow \infty} \mu\left(A \cap\left\{\mathbf{1}_{A_{n}}>\epsilon\right\}\right)=0$ and hence $\lim _{n \rightarrow \infty} \mu\left(A \cap\left\{\mathbf{1}_{A_{n}}>\epsilon\right\}\right)=0$. This implies $\mathbf{1}_{A_{n}} \xrightarrow{\mu} 0$.
Proof (b): Let $u \in \mathcal{L}^{1}(\mu)$. For any $\epsilon>0$ and any $A \in \mathcal{A}$ with $\mu(A)<\infty$, one has

$$
\mu\left(A \cap\left\{|u| \mathbf{1}_{A_{n}}>\epsilon\right\}\right)=\mu\left(A \cap A_{n} \cap\{|u|>\epsilon\}\right) \leq \mu\left(A_{n}\right) .
$$

This shows that $\lim _{n \rightarrow \infty} \mu\left(A \cap\left\{|u| \mathbf{1}_{A_{n}}>\epsilon\right\}\right)=0$, and hence $u \mathbf{1}_{A_{n}} \xrightarrow{\mu} 0$.

Proof (c): Let $u \in \mathcal{L}^{1}(\mu)$. Note that $|u| \mathbf{1}_{A_{n}} \leq|u|$, thus the set $\left\{|u| \mathbf{1}_{A_{n}}>|u|\right\}$ is empty. By Theorem 10.9(ii), we have

$$
\int_{\left\{|u| \mathbf{1}_{A_{n}}>|u|\right\}}|u| \mathbf{1}_{A_{n}} d \mu=0
$$

for all n and hence $\sup _{j} \int_{\left\{|u| \mathbf{1}_{A_{n}}>|u|\right\}}|u| \mathbf{1}_{A_{n}} d \mu=0$.
Proof (d): By part (c) we see that the sequence $\left(|u| \mathbf{1}_{A_{n}}\right)$ is uniformly integrable. Hence, by part (b) and Vitali's Theorem 16.6 we have

$$
\lim _{n \rightarrow \infty} \int|u| \mathbf{1}_{A_{n}} d \mu=\lim _{n \rightarrow \infty}\left\|u \mathbf{1}_{A_{n}}\right\|_{1}=0
$$

Since

$$
\limsup _{n \rightarrow \infty}\left|\int u \mathbf{1}_{A_{n}} d \mu\right| \leq \limsup _{n \rightarrow \infty} \int|u| \mathbf{1}_{A_{n}} d \mu=\lim _{n \rightarrow \infty} \int|u| \mathbf{1}_{A_{n}} d \mu
$$

the result follows.
(5) Let $E=\{(x, y): 0<x<\infty, 0<y<1\}$. We consider on E the restriction of the product Borel σ-algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f: E \rightarrow \mathbb{R}$ be given by $f(x, y)=y \sin x e^{-x y}$.
(a) Show that f is $\lambda \times \lambda$ integrable on E.
(b) Applying Fubini's Theorem to the function f, show that

$$
\int_{0}^{\infty} \frac{\sin x}{x}\left(\frac{1-e^{-x}}{x}-e^{-x}\right) d x=\frac{1}{2} \log 2
$$

Proof (a) Notice that f is continuous, and hence measurable. Furthermore, $|f(x, y)| \leq y e^{-x y}$. The fuction $g(x, y)=y e^{-x y}$ is non-negative measurable function, hence by Tonelli's Theorem,

$$
\begin{aligned}
\int_{E}|f(x, y)| d(\lambda \times \lambda)(x, y) & \leq \int_{E} y e^{-x y} d(\lambda \times \lambda)(x, y) \\
& =\int_{0}^{1} \int_{0}^{\infty} y e^{-x y} d x d y \\
& =\int_{0}^{1} 1 d y=1
\end{aligned}
$$

Notice that the integrands are Riemann integrable, hence the Riemann integral equals the Lebesgue integral, also the second equality is obtained by integration by parts. This shows that f is $\lambda \times \lambda$ integrable on E.

Proof (b) By Fubini's Theorem,

$$
\int_{E} f(x, y) d(\lambda \times \lambda)(x, y)=\int_{0}^{1} \int_{0}^{\infty} y \sin x e^{-x y} d x d y=\int_{0}^{\infty} \int_{0}^{1} y \sin x e^{-x y} d y d x
$$

Using integration by parts, one has

$$
\int_{0}^{\infty} y \sin x e^{-x y} d x=\frac{y}{y^{2}+1}
$$

Hence,

$$
\int_{E} f(x, y) d(\lambda \times \lambda)(x, y)=\int_{0}^{1} \frac{y}{y^{2}+1} d y=\frac{1}{2} \log 2
$$

On the other hand, again by integration by parts one has,

$$
\int_{0}^{1} y \sin x e^{-x y} d y=\frac{\sin x}{x}\left(\frac{1-e^{-x}}{x}-e^{-x}\right)
$$

Therefore,

$$
\int_{0}^{\infty} \frac{\sin x}{x}\left(\frac{1-e^{-x}}{x}-e^{-x}\right) d x=\frac{1}{2} \log 2
$$

