Measure and Integration: Solutions Retake Final 2013-14

(1) Consider the measure space $([0,1]\mathcal{B}([0,1]),\lambda)$, where $\mathcal{B}([0,1])$ is the restriction of the Borel σ algebra to [0,1], and λ is the restriction of Lebesgue measure to [0,1]. Let E_1, \dots, E_m be a collection of Borel measurable subsets of [0,1] such that every element $x \in [0,1]$ belongs to at least n sets in the collection $\{E_j\}_{j=1}^m$, where $n \leq m$. Show that there exists a $j \in \{1, \dots, m\}$ such that $\lambda(E_j) \ge \frac{n}{m}$. (1.5 pt)

Solution: By hypothesis, for any $x \in [0,1]$ we have $\sum_{j=1}^{m} \mathbf{1}_{E_j}(x) \ge n$. Assume for the sake of getting a contradiction that $\lambda(E_j) < \frac{n}{m}$ for all $1 \le j \le m$. Then,

$$n = \int_{[0,1]} n \, d\lambda \le \int \sum_{j=1}^m \mathbf{1}_{E_j}(x) \, d\lambda = \sum_{j=1}^m \lambda(E_j) < \sum_{j=1}^m \frac{n}{m} = n,$$

a contradiction. Hence, there exists $j \in \{1, \dots, m\}$ such that $\lambda(E_j) \ge \frac{n}{m}$.

(2) Let (X, \mathcal{F}, μ) be a measure space, and $1 < p, q < \infty$ conjugate numbers, i.e. 1/p + 1/q = 1. Show that if $f \in \mathcal{L}^p(\mu)$, then there exists $g \in \mathcal{L}^q(\mu)$ such that $||g||_q = 1$ and $\int fg \, d\mu = ||f||_p$. (1.5 pt)

Solution: Note that q(p-1) = p, so we define $g = \operatorname{sgn}(f) \left(\frac{f}{||f||_{r}}\right)^{p-1}$. Then, $\int |g|^q \, d\mu = \int \frac{|f|^p}{||f||_p^p} \, d\mu = 1.$

So $||g||_q = 1$ and

$$\int fg \, d\mu = \int |fg| \, d\mu = \int \frac{|f|^p}{||f||_p^{p-1}} \, d\mu = ||f||_p.$$

- (3) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra and λ is Lebesgue measure. Let $f \in \mathcal{L}^1(\lambda)$ and define for h > 0, the function $f_h(x) = \frac{1}{h} \int_{[x,x+h]} f(t) d\lambda(t)$.
 - (a) Show that f_h is Borel measurable for all h > 0. (1 pt)
 - (b) Show that $f_h \in \mathcal{L}^1(\lambda)$ and $||f_h||_1 \leq ||f||_1$. (1 pt)

Solution (a): For h > 0, define $u_h(t, x) = \frac{1}{h} \mathbf{1}_{[x, x+h]}(t) f(t)$, then u_h is $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ measurable. Applying Tonelli's Theorem (Theorem 13.8(ii)) to the positive and negative parts of the function u_h , we have that the functions

$$x \to \int u^+(t,x) \, d\lambda(t) = f_h^+(x), \text{ and } x \to \int u^-(t,x) \, d\lambda(t) = f_h^-(x)$$

are $\mathcal{B}(\mathbb{R})$ measurable. Hence, f_h is Borel measurable for all h > 0.

Solution (b): Note that

$$\int \int \frac{1}{h} \mathbf{1}_{[x,x+h]}(t) |f(t)| \, d\lambda(x) \, d\lambda(t) = \int \int \frac{1}{h} \mathbf{1}_{[t-h,t]}(x) |f(t)| \, d\lambda(x) \, d\lambda(t) = \int |f(t)| \, d\lambda(t) < \infty.$$
Hence, by Fubini's Theorem f. $\in \mathcal{L}^1(\lambda)$ and

Hence, by Fubini's Theorem $f_h \in \mathcal{L}^1(\lambda)$ and

$$\int |f_h(x)| \, d\lambda(x) = \int \int \frac{1}{h} \mathbf{1}_{[x,x+h]}(t) |f(t)| \, d\lambda(x) \, d\lambda(t) = \int |f(x)| \, d\lambda(x) = ||f||_1.$$

- (4) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ Lebesgue measure.
 - (a) Show that for any $u \in \mathcal{L}^1(\lambda)$, one has $u \mathbf{1}_{[n-1/n,n+1/n]} \xrightarrow{\lambda} 0$. (1 pt)
 - (b) Show that for any $u \in \mathcal{L}^1(\lambda)$, the sequence $(|u|\mathbf{1}_{[n-1/n,n+1/n]})$ is uniform integrable. (1 pt)
 - (c) Show that for any $u \in \mathcal{L}^1(\lambda)$ one has, $\lim_{n \to \infty} \int_{[n-1/n, n+1/n]} u \, d\lambda = 0$. (1 pt)

Proof (a): Let $u \in \mathcal{L}^1(\lambda)$, and set $A_n = [n - 1/n, n + 1/n]$. For any $\epsilon > 0$ and any $A \in \mathcal{A}$ with $\lambda(A) < \infty$, one has

$$\lambda(A \cap \{|u|\mathbf{1}_{A_n} > \epsilon\}) = \lambda(A \cap A_n \cap \{|u| > \epsilon\}) \le \lambda(A_n) = 1/2n.$$

This shows that $\lim_{n\to\infty} \lambda(A \cap \{|u|\mathbf{1}_{A_n} > \epsilon\}) = 0$, and hence $u\mathbf{1}_{A_n} \xrightarrow{\lambda} 0$.

Proof (b): Let $u \in \mathcal{L}^1(\lambda)$. Note that $|u|\mathbf{1}_{A_n} \leq |u|$, thus the set $\{|u|\mathbf{1}_{A_n} > |u|\}$ is empty. By Theorem 10.9(ii), we have

$$\int_{\{|u|\mathbf{1}_{A_n} > |u|\}} |u|\mathbf{1}_{A_n} \, d\lambda = 0$$

for all *n* and hence $\sup_n \int_{\{|u|\mathbf{1}_{A_n} > |u|\}} |u|\mathbf{1}_{A_n} d\lambda = 0$. Taking $w_{\epsilon} = |u|$ for any ϵ we see that the sequence $(|u|\mathbf{1}_{A_n})$ is uniformly integrable.

Proof (c): By part (b), the sequence $(|u|\mathbf{1}_{A_n})$ is uniformly integrable. Hence, by part (a) and Vitali's Theorem 16.6 we have

$$\lim_{n \to \infty} \int |u| \mathbf{1}_{A_n} \, d\lambda = \lim_{n \to \infty} ||u \mathbf{1}_{A_n}||_1 = 0.$$

Since

 $\limsup_{\substack{n \to \infty \\ \text{follows}}} |\int u \mathbf{1}_{A_n} \, d\lambda| \le \limsup_{n \to \infty} \int |u| \mathbf{1}_{A_n} \, d\lambda = \lim_{n \to \infty} \int |u| \mathbf{1}_{A_n} \, d\lambda = 0$

the result follows.

(5) Let (X, \mathcal{A}, μ) be a measure space and $f \in \mathcal{L}^1(\mu)$. Define $A_n = \{x \in X : 1/n \le |f(x)| < n\}$, for $n \ge 1$. Show that for every $\epsilon > 0$, there exists a positive integer N, such that $\mu(A_N) < \infty$ and $\int_{A_{\gamma}^{c_1}} |f| d\mu < \epsilon$. (2 pts)

Solution: Note that $A_1 \subseteq A_2 \subseteq \cdots$ and $\bigcup_{n=1}^{\infty} A_n = \{x \in X : 0 < |f(x)| < \infty\}$. Define $A_0 = \{x \in X : f(x) = 0\}$, and $A_\infty = \{x \in X : |f(x)| = \infty\}$,

and set $A = \bigcup_{n=1}^{\infty} A_n$, then, $X = A_0 \cup A \cup A_\infty$ is a disjoint union. By integrability of f, we have $\mu(A_\infty) = 0$ and since f = 0 on A_0 , we $\int |f| d\mu = \int_A |f| d\mu$. Since $|f| \mathbf{1}_{A_n} \nearrow |f| \mathbf{1}_A$, we get by Beppo-Levi that

$$\lim_{n \to \infty} \int_{A_n} |f| \, d\mu = \int_A |f| \, d\mu = \int |f| \, d\mu.$$

Now given $\epsilon > 0$, choose N sufficiently large so that

$$\int_{A_N} |f| \, d\mu \ge \int |f| \, d\mu - \epsilon = \int_{A_N} |f| \, d\mu + \int_{A_N^c} |f| \, d\mu - \epsilon.$$

Since $\int_{A_N} |f| d\mu < \infty$, this implies that $\int_{A_N^c} |f| d\mu < \epsilon$. By definition of A_N we get

$$\mu(A_N) = \int \mathbf{1}_{A_N} \, d\mu \le \int_{A_N} N|f| \, d\mu = N \int |f| \, d\mu < \infty.$$