Measure and Integration: Solutions Final 2013-14

(1) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra, and λ Lebesgue measure. Determine the value of

$$
\lim _{n \rightarrow \infty} \int_{(0, n)}\left(1+\frac{x}{n}\right)^{-n}\left(1-\sin \frac{x}{n}\right) d \lambda(x)
$$

(2 pts)
Solution: Let $u_{n}(x)=\mathbf{1}_{(0, n)}\left(1+\frac{x}{n}\right)^{-n}\left(1-\sin \frac{x}{n}\right)$. The positive sequence $\left(\left(1+\frac{x}{n}\right)^{-n}\right)_{n}$ decreases to $e^{-x} \mathbf{1}_{(0, \infty)}$ and the sequence $\left(1-\sin \frac{x}{n}\right)_{n}$ is bounded from below by 0 and from above by 2 and converges to 1 as $n \rightarrow \infty$. Thus, $\lim _{n \rightarrow \infty} u_{n}(x)=\mathbf{1}_{(0, \infty)} e^{-x}$, and $0 \leq u_{n}(x) \leq 2\left(1+\frac{x}{2}\right)^{-2} \mathbf{1}_{(0, \infty)}$ for $n \geq 2$ and all $x \in \mathbb{R}$. Since the function $2\left(1+\frac{x}{2}\right)^{-2} \mathbf{1}_{(0, \infty)}$ is measurable, non-negative and the improper Riemann integrable on $(0, \infty)$ exists, it follows that it is Lebesgue integrable on $(0, \infty)$. By Lebesgue Dominated Convergence Theorem (and taking the limit for $n \geq 2$), we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{(0, n)}\left(1+\frac{x}{n}\right)^{-n}\left(1-\sin \frac{x}{n}\right) d \lambda(x) & =\lim _{n \rightarrow \infty} \int u_{n}(x) d \lambda(x) \\
& =\int \mathbf{1}_{(0, \infty)} e^{-x} d \lambda(x)=\int_{0}^{\infty} e^{-x} d x=1
\end{aligned}
$$

(2) Let (X, \mathcal{F}, μ) be a finite measure space. Assume $f \in \mathcal{L}^{2}(\mu)$ satisfies $0<\|f\|_{2}<\infty$, and let $A=\{x \in X: f(x) \neq 0\}$. Show that

$$
\mu(A) \geq \frac{\left(\int f d \mu\right)^{2}}{\int f^{2} d \mu}
$$

(1.5 pts)

Solution: Since $f=0$ on A^{c}, we have $\int f d \mu=\int f \mathbf{1}_{A} d \mu$. Since μ is a finite measure and $\left(\mathbf{1}_{A}\right)^{2}=\mathbf{1}_{A}$, then

$$
\left\|\mathbf{1}_{A}\right\|_{2}=(\mu(A))^{1 / 2}<\infty
$$

Thus, $\mathbf{1}_{A} \in \mathcal{L}^{2}(\mu)$ and by Hölder's inequality

$$
\int f d \mu \leq\|f\|_{2}\left\|\mathbf{1}_{A}\right\|_{2}=\mid f \|_{2}(\mu(A))^{1 / 2}
$$

Squaring both sides and dividing by

$$
\|f\|_{2}^{2}=\int f^{2} d \mu(>0)
$$

we get

$$
\mu(A) \geq \frac{\left(\int f d \mu\right)^{2}}{\int f^{2} d \mu}
$$

(3) Let $E=\{(x, y): y<x<1,, 0<y<1\}$. We consider on E the restriction of the product Borel σ-algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f: E \rightarrow \mathbb{R}$ be given by $f(x, y)=x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right)$.
(a) Show that f is $\lambda \times \lambda$ integrable on E. (0.5 pt)
(b) Define $F:(0,1) \rightarrow \mathbb{R}$ by $F(y)=\int_{(y, 1)} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d \lambda(x)$. Determine the value of

$$
\int F(y) d \lambda(y)
$$

(2 pts)

Solution (a) : Notice that f is continuous, and hence measurable. Furthermore, $|f(x, y)| \leq$ $x^{-3 / 2}$. The function $g(x, y)=x^{-3 / 2}$ is non-negative and measurable on E, hence by Tonelli's Theorem,

$$
\begin{aligned}
\int_{E}|f(x, y)| d(\lambda \times \lambda)(x, y) & \leq \int_{E} g(x, y) d(\lambda \times \lambda)(x, y) \\
& =\int_{0}^{1} \int_{0}^{x} x^{-3 / 2} d y d x \\
& =\int_{0}^{1} x^{-1 / 2} d x=2
\end{aligned}
$$

Notice that the integrands are Riemann integrable, hence the Riemann integral equals the Lebesgue integral. This shows that f is $\lambda \times \lambda$ integrable on E.

Solution (b) : By Fubini's Theorem

$$
\iint f(x, y) d \lambda(x) d \lambda(y)=\iint f(x, y) d \lambda(y) d \lambda(x)
$$

Notice that for each fixed $0<x<1$, the function $f(x, y)$ is Riemann-integrable in y on the interval $(0, x)$ and

$$
\int_{0}^{x} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d y=\frac{2}{\pi} x^{-1 / 2}
$$

and the function $\frac{2}{\pi} x^{-1 / 2}$ is Riemann-integrable in x on the interval $(0,1)$, and

$$
\int_{0}^{1} \frac{2}{\pi} x^{-1 / 2} d x=\frac{4}{\pi}
$$

Thus,

$$
\int F(y) d \lambda(y)=\iint f(x, y) d \lambda(x) d \lambda(y)=\int_{0}^{1} \int_{0}^{x} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d y d x=\frac{4}{\pi}
$$

(4) Let $1 \leq p<\infty$, and suppose (X, \mathcal{A}, μ) is a measure space. Let $\left(f_{n}\right)_{n} \in \mathcal{L}^{p}(\mu)$ be a sequence converging to f in \mathcal{L}^{p} i.e. $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$.
(a) Show that

$$
\int|f|^{p} d \mu \leq \liminf _{n \rightarrow \infty} \int\left|f_{n}\right|^{p} d \mu
$$

(1 pt)
(b) Show that $\lim _{n \rightarrow \infty} n^{p} \mu(\{|f|>n\})=0$. (1 pt)

Solution (a): This is a simple consquence of the triangle inequality applied to the \mathcal{L}_{p}-norm and in fact the liminf can be replaced by lim and the inequality by equality, namely

$$
\left|\left|\left|f_{n}\left\|_{p}-\right\| f\left\|_{p} \mid \leq\right\| f_{n}-f \|_{p}\right.\right.\right.
$$

Taking limits, we get the desired result. (Remark: if we replace \mathcal{L}_{p}-convergence by convergence in measure, then the inequality is really needed).

Solution (b): Note that $f \in \mathcal{L}^{p}(\mu)$ and hence by Corollary 10.13,

$$
\mu\left(\left\{|f|^{p}=\infty\right\}\right)=\mu(\{|f|=\infty\})=0
$$

Thus,

$$
\lim _{n \rightarrow \infty}|f|^{p} \mathbf{1}_{\{|f|>n\}}=|f|^{p} \mathbf{1}_{\{|f|=\infty\}}=0 \text { } \mu \text { a.e. }
$$

Since for each $n,|f|^{p} \mathbf{1}_{\{|f|>n\}} \leq|f|^{p}$ and $|f|^{p} \in \mathcal{L}^{1}(\mu)$, we have by Lebesgue Dominated Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int|f|^{p} \mathbf{1}_{\{|f|>n\}} d \mu=0
$$

Now,

$$
n^{p} \mu(\{|f|>n\})=\int n^{p} \mathbf{1}_{\{|f|>n\}} d \mu \leq \int|f|^{p} \mathbf{1}_{\{|f|>n\}} d \mu
$$

and from the above we get $\lim _{n \rightarrow \infty} n^{p} \mu(\{|f|>n\})=0$.
(5) Let (X, \mathcal{A}, μ) be a finite measure space and $f_{n}, f \in \mathcal{M}(\mathcal{A}), n \geq 1$. Show that f_{n} converges to f in μ measure if and only if $\lim _{n \rightarrow \infty} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0$. (2 pts)

Solution: First note that $\frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} \leq 1$ for all $n \geq 1$, and since $\mu(X)<\infty$ we have $1 \in \mathcal{L}^{1}(\mu)$.
Now assume that $f_{n} \xrightarrow{\mu} f$, and let $\epsilon, \delta>0$, then there exists N such that

$$
\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\delta\right\}\right)<\epsilon, \text { for all } n \geq N .
$$

Let $A=\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\delta\right\}$, then for all $n \geq N$

$$
\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=\int_{A} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+\int_{A^{c}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \int_{A} 1 d \mu+\int_{A^{c}} \delta d \mu .
$$

Thus, for all $n \geq N$

$$
\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \epsilon+\delta \mu(X) .
$$

Thus, $\lim _{n \rightarrow \infty} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0$.
Conversely, assume $\lim _{n \rightarrow \infty} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0$, and let $\epsilon>0$. There exists N such that

$$
\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu<\epsilon^{2} /(1+\epsilon), \text { for all } n \geq N .
$$

Observe first that

$$
\left|f_{n}-f\right|>\epsilon \Longleftrightarrow \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}>\frac{\epsilon}{1+\epsilon} .
$$

Thus, by Markov Inequality, we have for all $n \geq N$
$\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)=\mu\left(\left\{x \in X: \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}>\frac{\epsilon}{1+\epsilon}\right\}\right) \leq \frac{1+\epsilon}{\epsilon} \int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu<\epsilon$.
Thus, $f_{n} \xrightarrow{\mu} f$.

