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Measure and Integration: Solutions Final 2013-14

(1) Consider the measure space (R,B(R), λ), where B(R) is the Borel σ-algebra, and λ Lebesgue
measure. Determine the value of

lim
n→∞

∫
(0,n)

(1 +
x

n
)−n(1− sin

x

n
) dλ(x).

(2 pts)

Solution: Let un(x) = 1(0,n)(1+ x
n )−n(1− sin x

n ). The positive sequence
(
(1 + x

n )−n
)
n

decreases

to e−x1(0,∞) and the sequence
(
1− sin x

n

)
n

is bounded from below by 0 and from above by 2 and

converges to 1 as n→∞. Thus, limn→∞ un(x) = 1(0,∞)e
−x, and 0 ≤ un(x) ≤ 2(1 + x

2 )−21(0,∞)

for n ≥ 2 and all x ∈ R. Since the function 2(1 + x
2 )−21(0,∞) is measurable, non-negative and the

improper Riemann integrable on (0,∞) exists, it follows that it is Lebesgue integrable on (0,∞).
By Lebesgue Dominated Convergence Theorem (and taking the limit for n ≥ 2), we have

lim
n→∞

∫
(0,n)

(1 +
x

n
)−n(1− sin

x

n
) dλ(x) = lim

n→∞

∫
un(x)dλ(x)

=

∫
1(0,∞)e

−x dλ(x) =

∫ ∞
0

e−x dx = 1.

(2) Let (X,F , µ) be a finite measure space. Assume f ∈ L2(µ) satisfies 0 < ||f ||2 < ∞, and let
A = {x ∈ X : f(x) 6= 0}. Show that

µ(A) ≥
(
∫
f dµ)2∫
f2 dµ

.

(1.5 pts)

Solution: Since f = 0 on Ac, we have
∫
f dµ =

∫
f1A dµ. Since µ is a finite measure and

(1A)2 = 1A , then

||1A||2 = (µ(A))1/2 <∞.
Thus, 1A ∈ L2(µ) and by Hölder’s inequality∫

f dµ ≤ ||f ||2||1A||2 = |f ||2(µ(A))1/2.

Squaring both sides and dividing by

||f ||22 =

∫
f2 dµ (> 0),

we get

µ(A) ≥
(
∫
f dµ)2∫
f2 dµ

.

(3) Let E = {(x, y) : y < x < 1, , 0 < y < 1}. We consider on E the restriction of the product Borel
σ-algebra, and the restriction of the product Lebesgue measure λ × λ. Let f : E → R be given
by f(x, y) = x−3/2 cos(πy2x ).
(a) Show that f is λ× λ integrable on E. (0.5 pt)
(b) Define F : (0, 1)→ R by F (y) =

∫
(y,1)

x−3/2 cos(πy2x ) dλ(x). Determine the value of∫
F (y) dλ(y).

(2 pts)
1



2

Solution (a) : Notice that f is continuous, and hence measurable. Furthermore, |f(x, y)| ≤
x−3/2. The function g(x, y) = x−3/2 is non-negative and measurable on E, hence by Tonelli’s
Theorem, ∫

E

|f(x, y)| d(λ× λ)(x, y) ≤
∫
E

g(x, y) d(λ× λ)(x, y)

=

∫ 1

0

∫ x

0

x−3/2 dy dx

=

∫ 1

0

x−1/2 dx = 2.

Notice that the integrands are Riemann integrable, hence the Riemann integral equals the
Lebesgue integral. This shows that f is λ× λ integrable on E.

Solution (b) : By Fubini’s Theorem∫ ∫
f(x, y) dλ(x) dλ(y) =

∫ ∫
f(x, y) dλ(y) dλ(x).

Notice that for each fixed 0 < x < 1, the function f(x, y) is Riemann-integrable in y on the
interval (0, x) and ∫ x

0

x−3/2 cos(
πy

2x
) dy =

2

π
x−1/2,

and the function 2
πx
−1/2 is Riemann-integrable in x on the interval (0, 1), and∫ 1

0

2

π
x−1/2 dx =

4

π
.

Thus,∫
F (y) dλ(y) =

∫ ∫
f(x, y) dλ(x) dλ(y) =

∫ 1

0

∫ x

0

x−3/2 cos(
πy

2x
) dy dx =

4

π
.

(4) Let 1 ≤ p < ∞, and suppose (X,A, µ) is a measure space. Let (fn)n ∈ Lp(µ) be a sequence
converging to f in Lp i.e. limn→∞ ||fn − f ||p = 0.
(a) Show that ∫

|f |p dµ ≤ lim inf
n→∞

∫
|fn|p dµ.

(1 pt)
(b) Show that lim

n→∞
npµ({|f | > n}) = 0. (1 pt)

Solution (a): This is a simple consquence of the triangle inequality applied to the Lp-norm and
in fact the lim inf can be replaced by lim and the inequality by equality, namely

|||fn||p − ||f ||p| ≤ ||fn − f ||p.
Taking limits, we get the desired result. (Remark: if we replace Lp-convergence by convergence
in measure, then the inequality is really needed).

Solution (b): Note that f ∈ Lp(µ) and hence by Corollary 10.13,

µ({|f |p =∞}) = µ({|f | =∞}) = 0.

Thus,
lim
n→∞

|f |p1{|f |>n} = |f |p1{|f |=∞} = 0 µ a.e.

Since for each n, |f |p1{|f |>n} ≤ |f |p and |f |p ∈ L1(µ), we have by Lebesgue Dominated Conver-
gence Theorem,

lim
n→∞

∫
|f |p1{|f |>n} dµ = 0.

Now,

npµ({|f | > n}) =

∫
np1{|f |>n} dµ ≤

∫
|f |p1{|f |>n} dµ,

and from the above we get lim
n→∞

npµ({|f | > n}) = 0.
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(5) Let (X,A, µ) be a finite measure space and fn, f ∈ M(A), n ≥ 1. Show that fn converges to f

in µ measure if and only if lim
n→∞

∫
|fn − f |

1 + |fn − f |
dµ = 0. (2 pts)

Solution: First note that
|fn − f |

1 + |fn − f |
≤ 1 for all n ≥ 1, and since µ(X) <∞ we have 1 ∈ L1(µ).

Now assume that fn
µ−→ f , and let ε, δ > 0 , then there exists N such that

µ({x ∈ X : |fn(x)− f(x)| > δ}) < ε, for all n ≥ N.
Let A = {x ∈ X : |fn(x)− f(x)| > δ}, then for all n ≥ N∫

|fn − f |
1 + |fn − f |

dµ =

∫
A

|fn − f |
1 + |fn − f |

dµ+

∫
Ac

|fn − f |
1 + |fn − f |

dµ ≤
∫
A

1 dµ+

∫
Ac

δ dµ.

Thus, for all n ≥ N ∫
|fn − f |

1 + |fn − f |
dµ ≤ ε+ δµ(X).

Thus, lim
n→∞

∫
|fn − f |

1 + |fn − f |
dµ = 0.

Conversely, assume lim
n→∞

∫
|fn − f |

1 + |fn − f |
dµ = 0, and let ε > 0. There exists N such that∫

|fn − f |
1 + |fn − f |

dµ < ε2/(1 + ε), for all n ≥ N.

Observe first that

|fn − f | > ε ⇐⇒ |fn − f |
1 + |fn − f |

>
ε

1 + ε
.

Thus, by Markov Inequality, we have for all n ≥ N

µ({x ∈ X : |fn(x)− f(x)| > ε}) = µ({x ∈ X :
|fn − f |

1 + |fn − f |
>

ε

1 + ε
}) ≤ 1 + ε

ε

∫
|fn − f |

1 + |fn − f |
dµ < ε.

Thus, fn
µ−→ f .


