Measure and Integration: Solution Final 2015-16

(1) Consider the measure space $[0,1], \mathcal{B}([0,1]), \lambda$ where λ is Lebesgue measure on [0,1]. Define $u_n(x) = \frac{n^2 x^2}{1 + n^2 x}$ for $x \in [0, 1]$ and $n \ge 1$. Show that

$$\lim_{n \to \infty} \int_{[0,1]} \frac{n^2 x^2}{1 + n^2 x} \, d\lambda(x) = 1/2.$$

(1 pt)

Proof: Note that u_n is continuous, hence measurable. Furtheremore $\lim_{n \to \infty} u_n(x) = x$ for all $x \in [0,1]$. For $x \in [0,1]$, one has $n^2 x^2 < 1 + n^2 x$, so that $u_n(x) \leq 1$, and $1 \in \mathcal{L}^1_+(\lambda)$. By Lebesgue Dominated Convergence Theorem, and the fact that the function f(x) = x is Riemann-integrable,

$$\lim_{n \to \infty} \int_{[0,1]} \frac{n^2 x^2}{1 + n^2 x} \, d\lambda(x) = \int_{[0,1]} \lim_{n \to \infty} \frac{n^2 x^2}{1 + n^2 x} \, d\lambda(x) = \int_{[0,1]} x \, d\lambda = 1/2.$$

- (1.5 pts)
- (2) Suppose μ and ν are finite measures on (X, \mathcal{A}) . Show that there exists a function $f \in \mathcal{L}^1_+(\mu)$, and a set $A_0 \in \mathcal{A}$ with $\mu(A_0) = 0$ such that

$$\nu(E) = \int_E f \, d\mu + \nu(A_0 \cap E),$$

for all $E \in \mathcal{A}$. (1.5 pts)

Proof: By Lebesgue Decomposition Theorem, there exist measures ρ and σ on \mathcal{A} such that ρ is absolutely continuous with respect to μ , σ is mutually singular with respect to μ , and $\nu = \rho + \sigma$. By Radon-Nikodym Theorem, there exists $f \in \mathcal{L}^1_+(\mu)$ such that $\rho(B) = \int_B f d\mu$. By mutual singularity of σ and μ , there exists a set $A_0 \in \mathcal{A}$ such that $\mu(A_0) = \sigma(A_0^c) = 0$. For any $E \in \mathcal{A}$,

$$\nu(E) = \rho(E) + \sigma(E) = \int_E f \, d\mu + \sigma(E).$$

Since $\sigma(A_0^{\circ} \cap E) = 0$, we have $\sigma(E) = \sigma(A_0 \cap E)$. Also since $\mu(A_0 \cap E) = 0$, then by absolute continuity of ρ we have $\rho(A_0 \cap E) = 0$, hence $\nu(A_0 \cap E) = \sigma(A_0 \cap E) = \sigma(E)$. Therefore,

$$\nu(E) = \rho(E) + \sigma(E) = \int_E f \, d\mu + \nu(A_0 \cap E).$$

(3) Consider the measure space $[0,1), \mathcal{B}([0,1)), \lambda$ where λ is Lebesgue measure on [0,1). Let $D_1 =$ [0, 1/2) and $D_k = \left[\sum_{i=1}^{k-1} 2^{-i}, \sum_{i=1}^k 2^{-i}\right), k \ge 2$. Define $u(x) = \sqrt{2^{k-1}}$ for $x \in D_k, k \ge 1$. Determine the values of $p \in [1, \infty)$ such that $u \in \mathcal{L}^p(\lambda)$. In case $u \in \mathcal{L}^p(\lambda)$, find the value of $||u||_p$. (2 pts.)

Proof Note that $u = \sum_{k=1}^{\infty} \sqrt{2^{k-1}} \mathbf{1}_{D_k} > 0$. By Corollary 9.9, we have

$$\int |u|^p d\lambda = \int \sum_{k=1}^{\infty} 2^{(k-1)p/2} \mathbf{1}_{D_k} d\lambda = \sum_{k=1}^{\infty} 2^{(k-1)p/2} 2^{-k} = 2^{-p/2} \sum_{k=1}^{\infty} \left(2^{(p/2-1)} \right)^k.$$

The latter series is geometric and hence convergent if $2^{(p/2-1)} < 1$, equivalently p < 2. Since $p \geq 1$ we have $u \in \mathcal{L}^p(\lambda)$ for $1 \leq p < 2$. In this case we have

$$||u||_p^p = \int |u|^p \, d\lambda = 2^{-p/2} 2^{p/2-1} \frac{1}{1 - 2^{(p/2-1)}} = \frac{1}{2 - 2^{p/2}}.$$

Hence,

$$||u||_p = \left(\frac{1}{2-2^{p/2}}\right)^{1/p}.$$

(4) Let (X, \mathcal{A}, μ) be a σ -finite measure space, and Let $(u_j)_j \subseteq \mathcal{L}^1(\mu)$. Suppose $(u_j)_j$ converges to u μ a.e., and that the sequence (u_j^-) is uniformly integrable. Prove that $\liminf_{n \to \infty} \int u_n \, d\mu \geq \int u \, d\mu$. (2 pts)

Proof Since (u_j) converges to $u \ \mu$ a.e., then $(u_j^-)_j$ converges μ a.e. and hence in μ measure to u^- . By Vitali's Theorem applied to the sequence $(u_j^-)_j$, we have that $(u_j^-)_j$ converges to u^- in $\mathcal{L}^1(\mu)$, and hence $\lim_{j \to \infty} \int u_j^- d\mu = \int u^- d\mu$, and $u \in \mathcal{L}^1(\mu)$. From the above we have

$$\liminf_{j \to \infty} \int u_j \, d\mu = \liminf_{j \to \infty} \int u_j^+ \, d\mu - \lim_{j \to \infty} \int u_j^- \, d\mu = \liminf_{j \to \infty} \int u_j^+ \, d\mu - \int u^- \, d\mu$$

Since (u_i^+) converges to $u^+ \mu$ a.e., by Fatous Lemma

$$\liminf_{j \to \infty} \int u_j^+ \, d\mu \ge \int \liminf_{j \to \infty} u_j^+ \, d\mu = \int u^+ \, d\mu.$$

From the above we have

$$\liminf_{j \to \infty} \int u_j \, d\mu \ge \int u^+ \, d\mu - \int u^- \, d\mu = \int u \, d\mu.$$

(5) Let (X, \mathcal{A}, μ) be a σ -finite measure space, and assume $u \in \mathcal{M}^+(\mathcal{A})$. Let $\phi : [0, \infty) \to \mathbb{R}$ be continuously differentiable (i.e. ϕ' exists and is continuous) such that $\phi(0) = 0$ and $\phi' \ge 0$ for all $t \ge 0$. Show that

$$\int_X \phi \circ u(x) \, d\mu = \int_{[0,\infty)} \phi'(t) \mu(\{x \in X : u(x) \ge t\}) \, d\lambda(t).$$

Conclude that if $u \in \mathcal{L}^p_+(\mu)$, then

$$\int_{X} u^{p} d\mu = p \int_{[0,\infty)} t^{p-1} \mu(\{x \in X : u(x) \ge t\}) d\lambda(t).$$

(2 pts)

Proof Note that for each $r \ge 0$, the function $\phi'(t)$ is Riemann-integrable on [0, r], and by the Fundamental Theorem of Calculus we have

$$\int_{[0,r]} \phi'(t) \, d\lambda(t) = (R) \int_0^r \phi'(t) dt = \phi(r).$$

The set $E = \{(x,t) \in X \times [0,\infty) : u(x) \ge t\}$ is measurable, and the function $\phi'(t)$ is continuous and thus measurable. Since the product of two measurable functions is measurable, the function $\phi'(t)\mathbf{1}_{E(x,t)}$ is measurable. By Tonelli's Theorem, and the above we have

$$\begin{split} \int_{[0,\infty)} \phi'(t) \mu(\{x \in X : u(x) \ge t\}) \, d\lambda(t) &= \int_{[0,\infty)} \int_X \phi'(t) \mathbf{1}_{\{x:t \le u(x)\}}(x) \, d\mu(x) \, d\lambda(t) \\ &= \int_{[0,\infty)} \int_X \phi'(t) \mathbf{1}_{E(x,t)}(x,t) \, d\mu(x) \, d\lambda(t) \\ &= \int_X \int_{[0,\infty)} \phi'(t) \mathbf{1}_{\{t:t \le u(x)\}}(t) \, d\lambda(t) \, d\mu(x) \\ &= \int_X \int_{[0,u(x)]} \phi'(t) \, d\lambda(t) \, d\mu(x) \\ &= \int_X \phi(u(x)) \, d\mu(x) = \int_X \phi \circ u(x) \, d\mu(x). \end{split}$$

Finally, let $\phi(t) = t^p$ for $t \ge 0$, then ϕ is continuously differentiable and $\phi'(t) = pt^{p-1}$. Thus.

$$\int_X u^p \, d\mu = \int_X \phi \circ u \, d\mu = p \int_{[0,\infty)} t^{p-1} \mu(\{x \in X : u(x) \ge t\}) \, d\lambda(t).$$

- (6) Let (X, \mathcal{A}, μ) be a measure space and $f \in \mathcal{L}^1(\mu) \cap \mathcal{L}^2(\mu)$.
 - (a) Show that $f \in \mathcal{L}^p(\mu)$ for all $1 \le p \le 2$. (1 pt)
 - (b) Prove that $\lim_{p \searrow 1} ||f||_p^p = ||f||_1$. (1 pt)

Proof (a): Let $A = \{x \in X : |f(x)| \ge 1\}$, then $A \in \mathcal{A}$ and hence the function $g = |f|^2 \mathbf{1}_A + |f| \mathbf{1}_{A^c}$ is $\mathcal{A}/\mathcal{B}(\mathbb{R})$ measurable. Furthermore

$$\int |g| \, d\mu = \int_A |f|^2 \, d\mu + \int_{A^c} |f| \, d\mu \le ||f||_2 + ||f||_1 < \infty$$

Thus $g \in \mathcal{L}^1(\mu)$. Now, let $1 \le p \le 2$, then $|f(x)|^p \le |f(x)|^2$ for $x \in A$. and $|f(x)|^p \le |f(x)|$ for $x \in A^c$. Thus $|f(x)|^p \le g(x)$ for all $x \in X$ implying that $|f|^p \in \mathcal{L}^1(\mu)$, equivalently $f \in \mathcal{L}^p(\mu)$.

Proof (b): Let $(p_n)_n$ be a sequence in [1,2] with $\lim_{n\to\infty} p_n = 1$. Note that for each $x \in X$, we have $\lim_{n\to\infty} |f(x)|^{p_n} = |f(x)|$, and $|f(x)|^{p_n} \leq g(x)$, where g is the function defined in part (a). Since $g \in \mathcal{L}^1(\mu)$, then by Lebesgue Dominated Convergence Theorem we have,

$$\lim_{n \to \infty} ||f||_{p_n}^{p_n} = \lim_{n \to \infty} \int |f|^{p_n} \, d\mu = \int \lim_{n \to \infty} |f|^{p_n} \, d\mu = \int |f| \, d\mu = ||f||_1.$$

Thus, $\lim_{p \searrow 1} ||f||_p^p = ||f||_1.$