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(1) Consider the measure space [0, 1],B([0, 1]), λ) where λ is Lebesgue measure on [0, 1]. Define

un(x) =
n2x2

1 + n2x
for x ∈ [0, 1] and n ≥ 1. Show that

lim
n→∞

∫
[0,1]

n2x2

1 + n2x
dλ(x) = 1/2.

(1 pt)

Proof: Note that un is continuous, hence measurable. Furtheremore lim
n→∞

un(x) = x for all

x ∈ [0, 1]. For x ∈ [0, 1], one has n2x2 < 1+n2x, so that un(x) ≤ 1, and 1 ∈ L1
+(λ). By Lebesgue

Dominated Convergence Theorem, and the fact that the function f(x) = x is Riemann-integrable,

lim
n→∞

∫
[0,1]

n2x2

1 + n2x
dλ(x) =

∫
[0,1]

lim
n→∞

n2x2

1 + n2x
dλ(x) =

∫
[0,1]

x dλ = 1/2.

(1.5 pts)

(2) Suppose µ and ν are finite measures on (X,A). Show that there exists a function f ∈ L1
+(µ),

and a set A0 ∈ A with µ(A0) = 0 such that

ν(E) =

∫
E

f dµ+ ν(A0 ∩ E),

for all E ∈ A. (1.5 pts)

Proof: By Lebesgue Decomposition Theorem, there exist measures ρ and σ on A such that ρ is
absolutely continuous with respect to µ, σ is mutually singular with respect to µ, and ν = ρ+ σ.
By Radon-Nikodym Theorem, there exists f ∈ L1

+(µ) such that ρ(B) =
∫
B
f dµ. By mutual

singularity of σ and µ, there exists a set A0 ∈ A such that µ(A0) = σ(Ac
0) = 0. For any E ∈ A,

ν(E) = ρ(E) + σ(E) =

∫
E

f dµ+ σ(E).

Since σ(Ac
0 ∩ E) = 0, we have σ(E) = σ(A0 ∩ E). Also since µ(A0 ∩ E) = 0, then by absolute

continuity of ρ we have ρ(A0 ∩ E) = 0, hence ν(A0 ∩ E) = σ(A0 ∩ E) = σ(E). Therefore,

ν(E) = ρ(E) + σ(E) =

∫
E

f dµ+ ν(A0 ∩ E).

(3) Consider the measure space [0, 1),B([0, 1)), λ) where λ is Lebesgue measure on [0, 1). Let D1 =

[0, 1/2) and Dk =

[ k−1∑
i=1

2−i,

k∑
i=1

2−i
)

, k ≥ 2. Define u(x) =
√

2k−1 for x ∈ Dk, k ≥ 1. Determine

the values of p ∈ [1,∞) such that u ∈ Lp(λ). In case u ∈ Lp(λ), find the value of ||u||p. (2 pts.)

Proof Note that u =

∞∑
k=1

√
2k−11Dk

> 0. By Corollary 9.9, we have

∫
|u|p dλ =

∫ ∞∑
k=1

2(k−1)p/21Dk
dλ =

∞∑
k=1

2(k−1)p/22−k = 2−p/2
∞∑
k=1

(
2(p/2−1)

)k

.

The latter series is geometric and hence convergent if 2(p/2−1) < 1, equivalently p < 2. Since
p ≥ 1 we have u ∈ Lp(λ) for 1 ≤ p < 2. In this case we have

||u||pp =

∫
|u|p dλ = 2−p/22p/2−1

1

1− 2(p/2−1)
=

1

2− 2p/2
.
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Hence,

||u||p =

(
1

2− 2p/2

)1/p

.

(4) Let (X,A, µ) be a σ-finite measure space, and Let (uj)j ⊆ L1(µ). Suppose (uj)j converges to u

µ a.e., and that the sequence (u−j ) is uniformly integrable. Prove that lim inf
n→∞

∫
un dµ ≥

∫
u dµ.

(2 pts)

Proof Since (uj) converges to u µ a.e., then (u−j )j converges µ a.e. and hence in µ measure to

u−. By Vitali’s Theorem applied to the sequence (u−j )j , we have that (u−j )j converges to u− in

L1(µ), and hence lim
j→∞

∫
u−j dµ =

∫
u− dµ, and u ∈ L1(µ). From the above we have

lim inf
j→∞

∫
uj dµ = lim inf

j→∞

∫
u+j dµ− lim

j→∞

∫
u−j dµ = lim inf

j→∞

∫
u+j dµ−

∫
u− dµ.

Since (u+j ) converges to u+ µ a.e., by Fatous Lemma

lim inf
j→∞

∫
u+j dµ ≥

∫
lim inf
j→∞

u+j dµ =

∫
u+ dµ.

From the above we have

lim inf
j→∞

∫
uj dµ ≥

∫
u+ dµ−

∫
u− dµ =

∫
u dµ.

(5) Let (X,A, µ) be a σ-finite measure space, and assume u ∈ M+(A). Let φ : [0,∞) → R be
continuously differentiable (i.e. φ′ exists and is continuous) such that φ(0) = 0 and φ′ ≥ 0 for all
t ≥ 0. Show that∫

X

φ ◦ u(x) dµ =

∫
[0,∞)

φ′(t)µ({x ∈ X : u(x) ≥ t}) dλ(t).

Conclude that if u ∈ Lp
+(µ), then∫

X

up dµ = p

∫
[0,∞)

tp−1µ({x ∈ X : u(x) ≥ t}) dλ(t).

(2 pts)

Proof Note that for each r ≥ 0, the function φ′(t) is Riemann-integrable on [0, r], and by the
Fundamental Theorem of Calculus we have∫

[0,r]

φ′(t) dλ(t) = (R)

∫ r

0

φ′(t)dt = φ(r).

The set E = {(x, t) ∈ X × [0,∞) : u(x) ≥ t} is measurable, and the function φ′(t) is continuous
and thus measurable. Since the product of two measurable functions is measurable, the function
φ′(t)1E(x,t) is measurable. By Tonelli’s Theorem, and the above we have∫

[0,∞)

φ′(t)µ({x ∈ X : u(x) ≥ t}) dλ(t) =

∫
[0,∞)

∫
X

φ′(t)1{x:t≤u(x)}(x) dµ(x) dλ(t)

=

∫
[0,∞)

∫
X

φ′(t)1E(x,t)(x, t) dµ(x) dλ(t)

=

∫
X

∫
[0,∞)

φ′(t)1{t:t≤u(x)}(t) dλ(t) dµ(x)

=

∫
X

∫
[0,u(x)]

φ′(t) dλ(t) dµ(x)

=

∫
X

φ(u(x)) dµ(x) =

∫
X

φ ◦ u(x) dµ(x).



3

Finally, let φ(t) = tp for t ≥ 0, then φ is continuously differnetiable and φ′(t) = ptp−1. Thus.∫
X

up dµ =

∫
X

φ ◦ u dµ = p

∫
[0,∞)

tp−1µ({x ∈ X : u(x) ≥ t}) dλ(t).

(6) Let (X,A, µ) be a measure space and f ∈ L1(µ) ∩ L2(µ).
(a) Show that f ∈ Lp(µ) for all 1 ≤ p ≤ 2. (1 pt)
(b) Prove that lim

p↘1
||f ||pp = ||f ||1. (1 pt)

Proof (a): Let A = {x ∈ X : |f(x)| ≥ 1}, then A ∈ A and hence the function g = |f |21A+|f |1Ac

is A/B(R) measurable. Furthermore∫
|g| dµ =

∫
A

|f |2 dµ+

∫
Ac

|f | dµ ≤ ||f ||2 + ||f ||1 <∞.

Thus g ∈ L1(µ). Now, let 1 ≤ p ≤ 2, then |f(x)|p ≤ |f(x)|2 for x ∈ A. and |f(x)|p ≤ |f(x)| for
x ∈ Ac. Thus |f(x)|p ≤ g(x) for all x ∈ X implying that |f |p ∈ L1(µ), equivalently f ∈ Lp(µ).

Proof (b): Let (pn)n be a sequence in [1, 2] with lim
n→∞

pn = 1. Note that for each x ∈ X, we

have lim
n→∞

|f(x)|pn = |f(x)|, and |f(x)|pn ≤ g(x), where g is the function defined in part (a).

Since g ∈ L1(µ), then by Lebesgue Dominated Convergence Theorem we have,

lim
n→∞

||f ||pn
pn

= lim
n→∞

∫
|f |pn dµ =

∫
lim
n→∞

|f |pn dµ =

∫
|f | dµ = ||f ||1.

Thus, lim
p↘1
||f ||pp = ||f ||1.


