Mathematisch Instituut

Boedapestlaan 6

3584 CD Utrecht

Measure and Integration: Retake Final 2015-16

- (1) Let (X, \mathcal{A}, μ) be a finite measure space, and $f \in \mathcal{M}(\mathcal{A})$. Show that for every $\epsilon > 0$, there exists a set $A \in \mathcal{A}$ and $k \ge 1$ such that $\mu(A) < \epsilon$ and $|f(x)| \le k$ for all $x \in A^c$. (1 pt)
- (2) Consider the measure space $[0,1], \mathcal{B}([0,1]), \lambda)$ where λ is Lebesgue measure on [0,1]. Define $u_n(x) = \frac{nx}{1+n^2x^2}$ for $x \in [0,1]$ and $n \ge 1$. Show that

$$\lim_{n \to \infty} \int_{[0,1]} \frac{nx}{1 + n^2 x^2} \, d\lambda(x) = 0.$$

(1.5 pts)

- (3) Let μ and ν be finite measures on (X, \mathcal{A}) . Show that μ and ν are mutually singular **if and only if** for every $\epsilon > 0$, there exists a set $E \in \mathcal{A}$ such that $\mu(E) < \epsilon$ and $\nu(E^c) < \epsilon$. (2 pts)
- (4) Let (X, \mathcal{A}, μ) be a measure space, and $(u_n)_n \subset \mathcal{L}^p(\mu)$ converging in $\mathcal{L}^p(\mu)$ to a function $u \in \mathcal{L}^p(\mu)$. Show that for every $\epsilon > 0$ there exists $\delta > 0$ such that if $A \in \mathcal{A}$ with $\mu(A) < \delta$, then $\int_A |u_n|^p d\mu < \epsilon$ for all $n \ge 1$. (2 pts)
- (5) Consider the measure space $([0,\infty), \mathcal{B}([0,\infty)), \lambda)$, where $\mathcal{B}([0,\infty))$ is the Borel σ -algebra, and λ is Lebesgue measure on $[0,\infty)$. Let $f(x,y) = ye^{-(1+x^2)y^2}$ for $0 \le x, y < \infty$.
 - (a) Show that $f \in \mathcal{L}^1(\lambda \times \lambda)$, and determine the value of $\int_{[0,\infty)\times[0,\infty)} f d(\lambda \times \lambda)$. (1 pt)
 - (b) Prove that $\int_{[0,\infty)\times[0,\infty)} f d(\lambda \times \lambda) = \left(\int_{[0,\infty)} e^{-x^2} d\lambda(x)\right)^2$. Use part (a) to deduce the value of $\int_{[0,\infty)} e^{-x^2} d\lambda(x)$. (1 pt)
- (6) Let (X, \mathcal{A}, μ) be a σ -finite measure space, and Let $(u_j)_j \subseteq \mathcal{L}^p(\mu), p \ge 1$. Suppose $(u_j)_j$ converges to $u \ \mu$ a.e., and that the sequence $((u_j^p)^-)$ is uniformly integrable. Prove that

$$\liminf_{n \to \infty} \int u_n^p \, d\mu \ge \int u^p \, d\mu$$

(1.5 pts)