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(1) Let (X,A, µ) be a finite measure space, and f ∈ M(A). Show that for every ε > 0, there exists
a set A ∈ A and k ≥ 1 such that µ(A) < ε and |f(x)| ≤ k for all x ∈ Ac. (1 pt)

Proof: Let Dn = {x ∈ X : |f(x)| ≤ n}. then Dn ↗ X. By Lower continuity of µ, we have

∞ > µ(X) = µ

( ∞⋃
n=1

Dn

)
= lim
n→∞

µ(Dn).

So given ε > 0 there exists k sufficiently large so that

µ(Dk) > µ(X)− ε.

Let A = Dc
k, then µ(A) = µ(X)− µ(Dk) < ε, and for all x ∈ Ac = Dk we have |f(x)| ≤ k.

(2) Consider the measure space [0, 1],B([0, 1]), λ) where λ is Lebesgue measure on [0, 1]. Define

un(x) =
nx

1 + n2x2
for x ∈ [0, 1] and n ≥ 1. Show that

lim
n→∞

∫
[0,1]

nx

1 + n2x2
dλ(x) = 0.

(1.5 pts)

Proof: Note that un is continuous, hence measurable. Furtheremore lim
n→∞

un(x) = 0 for all

x ∈ [0, 1]. Now the inequality (1−nx)2 ≥ 0 implies that 1 +n2x2 ≥ 2nx, and hence un(x) ≤ 1/2
for all n and x ∈ [0, 1]. Since λ is a finite measure, the constant function w(x) = 1/2 is in L1

+(λ).
This implies un ∈ L1

+(λ), and by Lebesgue Dominated Convergence Theorem,

lim
n→∞

∫
[0,1]

nx

1 + n2x2
dλ(x) =

∫
[0,1]

lim
n→∞

nx

1 + n2x2
dλ(x) = 0.

(3) Let µ and ν be finite measures on (X,A). Show that µ and ν are mutually singular if and only
if for every ε > 0, there exists a set E ∈ A such that µ(E) < ε and ν(Ec) < ε. (2 pts)

Proof: Suppose µ and ν are mutually singular, then there exists a set A ∈ A such that µ(A) =
ν(Ac) = 0. Given any ε > 0, take E = A. Trivially µ(E) = ν(Ec) < ε.

Conversely, assume the condition. Then for any n ≥ 1, there exists a set An ∈ A such that

µ(An) < 1/2n and ν(Acn) < 1/2n. Let A =

∞⋂
m=1

∞⋃
n=m

An. Since

∞∑
n=1

µ(An) ≤
∞∑
n=1

1/2n = 1 < ∞,

then by Borel-Cantelli Lemma µ(A) = 0. Similarly, if we define B =

∞⋂
m=1

∞⋃
n=m

Acn, then ν(B) = 0.

Observe that Ac ⊆ B, hence ν(Ac) = 0 and µ and ν are mutually singular.

(4) Let (X,A, µ) be a measure space, and (un)n ⊂ Lp(µ) converging in Lp(µ) to a function u ∈ Lp(µ).
Show that for every ε > 0 there exists δ > 0 such that if A ∈ A with µ(A) < δ, then

∫
A
|un|p dµ < ε

for all n ≥ 1. (2 pts)

Proof: Let ε > 0. By assupmtion lim
n→∞

||un − u||p = 0, hence there exists N ≥ 1 such that

||un − u||p =

∫
|un − u|p dµ < ε/2p+1, for all n ≥ N.
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Note that the measures ν(A) =
∫
A
|u|p dµ and νi(A) =

∫
A
|ui|p dµ, i = 1, · · · , N−1 are absolutely

continuous with respect to µ, hence there exists a δ > 0 such that if A ∈ A with µ(A) < δ then∫
A

|u|p dµ < ε/2p+1, and

∫
A

|ui|p dµ < ε, i = 1, · · · , N − 1.

Recall that |ui|p ≤ 2p
(
|u|p + |ui − u|p

)
. For i ≥ N , and A ∈ A with µ(A) < δ we have,∫

A

|ui|p dµ ≤ 2p
∫
A

|u|p dµ+ 2p
∫
|ui − u|p dµ < ε/2 + ε/2 = ε.

Hence the result holds for all i.

(5) Consider the measure space ([0,∞),B([0,∞)), λ), where B([0,∞)) is the Borel σ-algebra, and λ

is Lebesgue measure on [0,∞). Let f(x, y) = ye−(1+x
2)y2 for 0 ≤ x, y <∞.

(a) Show that f ∈ L1(λ× λ), and determine the value of
∫
[0,∞)×[0,∞)

f d(λ× λ). (1 pt)

(b) Prove that
∫
[0,∞)×[0,∞)

f d(λ×λ) =

(∫
[0,∞)

e−x
2

dλ(x)

)2

. Use part (a) to deduce the value

of
∫
[0,∞)

e−x
2

dλ(x). (1 pt)

Proof(a): The function f is non-negative and continuous, and hence measurable. For each fixed

x ≥ 0, the improper Riemann-integral of the function y → ye−(1+x
2)y2 exists, hence∫

[0,∞)

ye−(1+x
2)y2 dλ(y) = (R)

∫ ∞
0

ye−(1+x
2)y2 dy =

1

2(1 + x2)
.

Similarly the improper Riemann-integral of the function x→ 1

2(1 + x2)
exists and hence∫

[0,∞)

1

2(1 + x2)
dλ(x) = (R)

∫ ∞
0

1

2(1 + x2)
dx =

π

4
.

By Tonelli’s Theorem∫
[0,∞)×[0,∞)

f d(λ× λ) =

∫
[0,∞)

∫
[0,∞)

ye−(1+x
2)y2 dλ(y) dλ(x) =

π

4
.

This implies that f ∈ L1(λ× λ), and the integral has value π
4 .

Proof(b): First note that with a simple substitution u = xy, one has by Theorem 7.10 that∫
[0,∞)

ye−(1+x
2)y2 dλ(x) =

∫
[0,∞)

e−y
2

e−u
2

dλ(u).

Hence, ∫
[0,∞)

∫
[0,∞)

ye−(1+x
2)y2 dλ(x) dλ(y) =

(∫
[0,∞)

e−y
2

dλ(y)

)2

.

By Tonelli’s Theorem we have∫
[0,∞)×[0,∞)

f d(λ× λ) =

∫
[0,∞)

∫
[0,∞)

ye−(1+x
2)y2 dλ(x) dλ(y) =

(∫
[0,∞)

e−y
2

dλ(y)

)2

.

From part (a), we have (∫
[0,∞)

e−y
2

dλ(y)

)2

=
π

4
,

hence ∫
[0,∞)

e−y
2

dλ(y) =

√
π

4
.
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(6) Let (X,A, µ) be a σ-finite measure space, and Let (uj)j ⊆ Lp(µ), p ≥ 1. Suppose (uj)j converges

to u µ a.e., and that the sequence ((upj )
−) is uniformly integrable. Prove that lim inf

n→∞

∫
upn dµ ≥∫

up dµ. (1.5 pts)

Proof Since (uj) converges to u µ a.e., then (upj ) converges to up µ a.e and ((upj )
−)j converges

µ a.e. and hence in µ measure to (up)−. By Vitali’s Theorem applied to the sequence (u−j )j ,

we have that (u−j )j converges to u− in Lp(µ), and hence lim
j→∞

∫
(upj )

− dµ =

∫
(up)− dµ, and

u ∈ Lp(µ). From the above we have

lim inf
j→∞

∫
upj dµ = lim inf

j→∞

∫
(upj )

+ dµ− lim
j→∞

∫
(upj )

− dµ = lim inf
j→∞

∫
(up)+j dµ−

∫
(up)− dµ.

Since ((upj )
+) converges to (up)+ µ a.e., by Fatous Lemma

lim inf
j→∞

∫
(upj )

+ dµ ≥
∫

lim inf
j→∞

(upj )
+.

From the above we have

lim inf
j→∞

∫
upj dµ ≥

∫
(upj )

+ dµ−
∫

(upj )
− dµ =

∫
up dµ.


