Mathematisch Instituut

Measure and Integration: Retake Final 2015-16

(1) Let (X, \mathcal{A}, μ) be a finite measure space, and $f \in \mathcal{M}(\mathcal{A})$. Show that for every $\epsilon > 0$, there exists a set $A \in \mathcal{A}$ and $k \ge 1$ such that $\mu(A) < \epsilon$ and $|f(x)| \le k$ for all $x \in A^c$. (1 pt)

Proof: Let $D_n = \{x \in X : |f(x)| \le n\}$. then $D_n \nearrow X$. By Lower continuity of μ , we have

$$\infty > \mu(X) = \mu\left(\bigcup_{n=1}^{\infty} D_n\right) = \lim_{n \to \infty} \mu(D_n).$$

So given $\epsilon > 0$ there exists k sufficiently large so that

r

$$\mu(D_k) > \mu(X) - \epsilon.$$

Let $A = D_k^c$, then $\mu(A) = \mu(X) - \mu(D_k) < \epsilon$, and for all $x \in A^c = D_k$ we have $|f(x)| \le k$.

(2) Consider the measure space $[0,1], \mathcal{B}([0,1]), \lambda)$ where λ is Lebesgue measure on [0,1]. Define $u_n(x) = \frac{nx}{1+n^2x^2}$ for $x \in [0,1]$ and $n \ge 1$. Show that

$$\lim_{n \to \infty} \int_{[0,1]} \frac{nx}{1 + n^2 x^2} \, d\lambda(x) = 0.$$

(1.5 pts)

Proof: Note that u_n is continuous, hence measurable. Furtheremore $\lim_{n\to\infty} u_n(x) = 0$ for all $x \in [0,1]$. Now the inequality $(1-nx)^2 \ge 0$ implies that $1+n^2x^2 \ge 2nx$, and hence $u_n(x) \le 1/2$ for all n and $x \in [0,1]$. Since λ is a finite measure, the constant function w(x) = 1/2 is in $\mathcal{L}^1_+(\lambda)$. This implies $u_n \in \mathcal{L}^1_+(\lambda)$, and by Lebesgue Dominated Convergence Theorem,

$$\lim_{n \to \infty} \int_{[0,1]} \frac{nx}{1 + n^2 x^2} \, d\lambda(x) = \int_{[0,1]} \lim_{n \to \infty} \frac{nx}{1 + n^2 x^2} \, d\lambda(x) = 0.$$

(3) Let μ and ν be finite measures on (X, \mathcal{A}) . Show that μ and ν are mutually singular **if and only if** for every $\epsilon > 0$, there exists a set $E \in \mathcal{A}$ such that $\mu(E) < \epsilon$ and $\nu(E^c) < \epsilon$. (2 pts)

Proof: Suppose μ and ν are mutually singular, then there exists a set $A \in \mathcal{A}$ such that $\mu(A) = \nu(A^c) = 0$. Given any $\epsilon > 0$, take E = A. Trivially $\mu(E) = \nu(E^c) < \epsilon$. Conversely, assume the condition. Then for any $n \ge 1$, there exists a set $A_n \in \mathcal{A}$ such that $\mu(A_n) < 1/2^n$ and $\nu(A_n^c) < 1/2^n$. Let $A = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_n$. Since $\sum_{n=1}^{\infty} \mu(A_n) \le \sum_{n=1}^{\infty} 1/2^n = 1 < \infty$, then by Borel-Cantelli Lemma $\mu(A) = 0$. Similarly, if we define $B = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_n^c$, then $\nu(B) = 0$. Observe that $A^c \subseteq B$, hence $\nu(A^c) = 0$ and μ and ν are mutually singular.

(4) Let (X, \mathcal{A}, μ) be a measure space, and $(u_n)_n \subset \mathcal{L}^p(\mu)$ converging in $\mathcal{L}^p(\mu)$ to a function $u \in \mathcal{L}^p(\mu)$. Show that for every $\epsilon > 0$ there exists $\delta > 0$ such that if $A \in \mathcal{A}$ with $\mu(A) < \delta$, then $\int_A |u_n|^p d\mu < \epsilon$ for all $n \ge 1$. (2 pts)

Proof: Let $\epsilon > 0$. By assumption $\lim_{n \to \infty} ||u_n - u||_p = 0$, hence there exists $N \ge 1$ such that

$$||u_n - u||_p = \int |u_n - u|^p d\mu < \epsilon/2^{p+1}, \text{ for all } n \ge N.$$

Note that the measures $\nu(A) = \int_A |u|^p d\mu$ and $\nu_i(A) = \int_A |u_i|^p d\mu$, $i = 1, \dots, N-1$ are absolutely continuous with respect to μ , hence there exists a $\delta > 0$ such that if $A \in \mathcal{A}$ with $\mu(A) < \delta$ then

$$\int_A |u|^p d\mu < \epsilon/2^{p+1}, \text{ and } \int_A |u_i|^p d\mu < \epsilon, i = 1, \cdots, N-1.$$

Recall that $|u_i|^p \leq 2^p \left(|u|^p + |u_i - u|^p \right)$. For $i \geq N$, and $A \in \mathcal{A}$ with $\mu(A) < \delta$ we have,

$$\int_A |u_i|^p d\mu \le 2^p \int_A |u|^p d\mu + 2^p \int |u_i - u|^p d\mu < \epsilon/2 + \epsilon/2 = \epsilon$$

Hence the result holds for all i.

- (5) Consider the measure space $([0,\infty), \mathcal{B}([0,\infty)), \lambda)$, where $\mathcal{B}([0,\infty))$ is the Borel σ -algebra, and λ is Lebesgue measure on $[0,\infty)$. Let $f(x,y) = ye^{-(1+x^2)y^2}$ for $0 \le x, y < \infty$.
 - (a) Show that $f \in \mathcal{L}^1(\lambda \times \lambda)$, and determine the value of $\int_{[0,\infty)\times[0,\infty)} f d(\lambda \times \lambda)$. (1 pt)
 - (b) Prove that $\int_{[0,\infty)\times[0,\infty)} f d(\lambda \times \lambda) = \left(\int_{[0,\infty)} e^{-x^2} d\lambda(x)\right)^2$. Use part (a) to deduce the value of $\int_{[0,\infty)} e^{-x^2} d\lambda(x)$. (1 pt)

Proof(a): The function f is non-negative and continuous, and hence measurable. For each fixed $x \ge 0$, the improper Riemann-integral of the function $y \to ye^{-(1+x^2)y^2}$ exists, hence

$$\int_{[0,\infty)} y e^{-(1+x^2)y^2} d\lambda(y) = (R) \int_0^\infty y e^{-(1+x^2)y^2} dy = \frac{1}{2(1+x^2)}$$

Similarly the improper Riemann-integral of the function $x \to \frac{1}{2(1+x^2)}$ exists and hence

$$\int_{[0,\infty)} \frac{1}{2(1+x^2)} \, d\lambda(x) = (R) \int_0^\infty \frac{1}{2(1+x^2)} \, dx = \frac{\pi}{4}$$

By Tonelli's Theorem

$$\int_{[0,\infty)\times[0,\infty)} f\,d(\lambda\times\lambda) = \int_{[0,\infty)} \int_{[0,\infty)} y e^{-(1+x^2)y^2}\,d\lambda(y)\,d\lambda(x) = \frac{\pi}{4}$$

This implies that $f \in \mathcal{L}^1(\lambda \times \lambda)$, and the integral has value $\frac{\pi}{4}$.

Proof(b): First note that with a simple substitution u = xy, one has by Theorem 7.10 that

$$\int_{[0,\infty)} y e^{-(1+x^2)y^2} d\lambda(x) = \int_{[0,\infty)} e^{-y^2} e^{-u^2} d\lambda(u).$$

Hence,

$$\int_{[0,\infty)} \int_{[0,\infty)} y e^{-(1+x^2)y^2} d\lambda(x) d\lambda(y) = \left(\int_{[0,\infty)} e^{-y^2} d\lambda(y) \right)^2.$$

By Tonelli's Theorem we have

$$\int_{[0,\infty)\times[0,\infty)} f\,d(\lambda\times\lambda) = \int_{[0,\infty)} \int_{[0,\infty)} y e^{-(1+x^2)y^2} \,d\lambda(x) \,d\lambda(y) = \left(\int_{[0,\infty)} e^{-y^2} \,d\lambda(y)\right)^2.$$

From part (a), we have

$$\left(\int_{[0,\infty)} e^{-y^2} d\lambda(y)\right)^2 = \frac{\pi}{4},$$

hence

$$\int_{[0,\infty)} e^{-y^2} d\lambda(y) = \sqrt{\frac{\pi}{4}}.$$

(6) Let (X, \mathcal{A}, μ) be a σ -finite measure space, and Let $(u_j)_j \subseteq \mathcal{L}^p(\mu), p \ge 1$. Suppose $(u_j)_j$ converges to $u \ \mu$ a.e., and that the sequence $((u_j^p)^-)$ is uniformly integrable. Prove that $\liminf_{n \to \infty} \int u_n^p d\mu \ge 1$

$$\int u^p \, d\mu. \ (1.5 \text{ pts})$$

Proof Since (u_j) converges to $u \ \mu$ a.e., then (u_j^p) converges to $u^p \ \mu$ a.e and $((u_j^p)^-)_j$ converges μ a.e. and hence in μ measure to $(u^p)^-$. By Vitali's Theorem applied to the sequence $(u_j^-)_j$, we have that $(u_j^-)_j$ converges to u^- in $\mathcal{L}^p(\mu)$, and hence $\lim_{j\to\infty} \int (u_j^p)^- d\mu = \int (u^p)^- d\mu$, and $u \in \mathcal{L}^p(\mu)$. From the above we have

$$\begin{split} \liminf_{j \to \infty} \int u_j^p \, d\mu &= \liminf_{j \to \infty} \int (u_j^p)^+ \, d\mu - \lim_{j \to \infty} \int (u_j^p)^- \, d\mu = \liminf_{j \to \infty} \int (u^p)_j^+ \, d\mu - \int (u^p)^- \, d\mu. \\ \text{Since } ((u_j^p)^+) \text{ converges to } (u^p)^+ \, \mu \text{ a.e., by Fatous Lemma} \end{split}$$

$$\liminf_{j \to \infty} \int (u_j^p)^+ \, d\mu \ge \int \liminf_{j \to \infty} (u_j^p)^+.$$

From the above we have

$$\liminf_{j \to \infty} \int u_j^p \, d\mu \ge \int (u_j^p)^+ \, d\mu - \int (u_j^p)^- \, d\mu = \int u^p \, d\mu$$