Measure and Integration: Solutions Final 2014-15

(1) Consider a measure space (X, \mathcal{A}, μ), and let $\left(f_{n}\right)_{n}$ be a sequence in $\mathcal{L}^{2}(\mu)$ which is bounded in the \mathcal{L}^{2} norm, i.e. there exists a constant $C>0$ such that $\left\|f_{n}\right\|_{2}<C$ for all $n \geq 1$.
(a) Prove that $\sum_{n=1}^{\infty}\left(\frac{f_{n}}{n}\right)^{2} \in \mathcal{L}_{\mathbb{R}}^{1}(\mu)$. (1 pt.)
(b) Prove that $\lim _{n \rightarrow \infty} \frac{f_{n}}{n}=0 \mu$ a.e. (1 pt.)

Proof (a): First observe that

$$
\sum_{n=1}^{\infty}\left\|\frac{f_{n}}{n}\right\|_{2}^{2}=\sum_{n=1}^{\infty} \frac{\left\|f_{n}\right\|_{2}^{2}}{n^{2}} \leq \sum_{n=1}^{\infty} \frac{C^{2}}{n^{2}}<\infty
$$

Now, by Beppo-Levi and the above, we have

$$
\int \sum_{n=1}^{\infty}\left(\frac{f_{n}}{n}\right)^{2} d \mu=\sum_{n=1}^{\infty} \int\left(\frac{f_{n}}{n}\right)^{2} d \mu=\sum_{n=1}^{\infty}\left\|\frac{f_{n}}{n}\right\|_{2}^{2}<\infty
$$

Hence, $\sum_{n=1}^{\infty}\left(\frac{f_{n}}{n}\right)^{2} \in \mathcal{L}_{\mathbb{R}}^{1}(\mu)$.
Proof (b): Since $\sum_{n=1}^{\infty}\left(\frac{f_{n}}{n}\right)^{2} \in \mathcal{L}_{\stackrel{\mathbb{R}}{ }}^{1}(\mu)$, then $\sum_{n=1}^{\infty}\left(\frac{f_{n}}{n}\right)^{2}<\infty \mu$ a.e. and as a result $\lim _{n \rightarrow \infty}\left(\frac{f_{n}}{n}\right)=0$ μ a.e.
(2) Let (X, \mathcal{A}, μ) be a finite measure space. Suppose that the real valued functions $f_{n}, g_{n}, f, g \in \mathcal{M}(\mathcal{A})$ ($n \geq 1$) satisfy the following:
(i) $f_{n} \xrightarrow{\mu} f$,
(ii) $g_{n} \xrightarrow{\mu} g$,
(iii) $\left|f_{n}\right| \leq C$ for all n, where $C>0$.

Prove that $f_{n} g_{n} \xrightarrow{\mu} f g$. (2 pts)
Proof: Let $\epsilon>0$ and $\delta>0$, since μ is a finite measure, it is enough to show that there exists $N \geq 1$ such that

$$
\mu\left(\left\{x \in X:\left|f_{n} g_{n}-f g\right|>\epsilon\right\}\right)<\delta, \text { for all } n \geq N
$$

First note that

$$
\left|f_{n} g_{n}-f g\right| \leq\left|f_{n}\right|\left|g_{n}-g\right|+|g|\left|f_{n}-f\right|
$$

thus,
$\mu\left(\left\{x \in X:\left|f_{n} g_{n}-f g\right|>\epsilon\right\}\right) \leq \mu\left(\left\{x \in X:\left|f_{n}\right|\left|g_{n}-g\right|>\epsilon / 2\right\}\right)+\mu\left(\left\{x \in X:\left|g_{n}\right|\left|f_{n}-f\right|>\epsilon / 2\right\}\right)$.
Let $E_{n}=\{x \in X:|g|>n\}$, then $E_{1} \supseteq E_{2} \supseteq \cdots$, and since g is real valued we have $\bigcap_{n=1}^{\infty} E_{n}=\emptyset$. By finiteness of μ, we have

$$
\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)=0
$$

Choose m large enough so that $\mu\left(E_{m}\right)<\delta / 3$. By properties (i) and (ii), there exists $N \geq 1$ so that for $n \geq N$,

$$
\mu\left(\left\{x \in X:\left|f_{n}-f\right|>\epsilon / 2 m\right\}\right)<\delta / 3, \text { and } \mu\left(\left\{x \in X:\left|g_{n}-g\right|>\epsilon / 2 C\right\}\right)<\delta / 3
$$

Then for all $n \geq N$,

$$
\mu\left(\left\{x \in X:\left|f_{n}\right|\left|g_{n}-g\right|>\epsilon / 2\right\}\right) \leq \mu\left(\left\{x \in X:\left|g_{n}-g\right|>\epsilon / 2 C\right\}\right)<\delta / 3
$$

and

$$
\mu\left(\left\{x \in X:|g|\left|f_{n}-f\right|>\epsilon / 2\right\}\right) \leq \mu\left(E_{m}\right)+\mu\left(\left\{x \in E_{m}^{c}:\left|f_{n}-f\right|>\epsilon / 2 m\right\}\right)<2 \delta / 3
$$

Therefore, $\mu\left(\left\{x \in X:\left|f_{n} g_{n}-f g\right|>\epsilon\right\}\right)<\delta$ for all $n \geq N$, and hence $f_{n} g_{n} \xrightarrow{\mu} f g$.
(3) Let (X, \mathcal{A}) be a measurable space and let μ, ν be finite measures on \mathcal{A}.
(a) Show that there exists a function $f \in \mathcal{L}_{+}^{1}(\mu) \cap \mathcal{L}_{+}^{1}(\nu)$ such that for every $A \in \mathcal{A}$, we have

$$
\int_{A}(1-f) d \mu=\int_{A} f d \nu
$$

(1 pt)
(b) Show that the function f of part (a) satisfies $0 \leq f \leq 1 \mu$ a.e. (1 pt)

Proof(a): First note that $\mu+\nu$ is a measure (Exercise 4.6(ii)), and that $\mu \ll \mu+\nu$. By using a standard argument (first checking indictor functions, then simple functions, then positive functions, then general integrable functions) one sees that for any $g \in \mathcal{L}^{1}(\mu+\nu)$ one has $g \in$ $\mathcal{L}^{1}(\mu) \cap \mathcal{L}^{1}(\nu)$, and

$$
\int g d(\mu+\nu)=\int g d \mu+\int g d \nu
$$

Now the condition $\int_{A}(1-f) d \mu=\int_{A} f d \nu$ is equivalent to $\mu(A)=\int_{A} f d(\mu+\nu)$. Since $\mu \ll \mu+\nu$, then by Radon-Nikodym Theorem there exists $f \in \mathcal{L}_{+}^{1}(\mu+\nu)$ such that $\mu(A)=\int_{A} f d(\mu+\nu)$. Thus, $f \in \mathcal{L}_{+}^{1}(\mu) \cap \mathcal{L}_{+}^{1}(\nu)$ and $\int_{A}(1-f) d \mu=\int_{A} f d \nu$ for all $A \in \mathcal{A}$.

Proof(b): Define ρ on \mathcal{A} by $\rho(A)=\int_{A} f d \mu(A \in \mathcal{A})$. Since $f \in \mathcal{L}_{+}^{1}(\nu)$, then ρ is a finite measure and $\rho \ll \nu$. By part (a), we have $\rho(A)=\int_{A}(1-f) d \mu, A \in \mathcal{A}$ and $(1-f) \in \mathcal{L}^{1}(\mu)$. By Theorem 10.9(ii), we see that if $\mu(A)=0$, then $\rho(A)=0$, hence $\rho \ll \mu$. By the Theorem of Radon Nikodym, there exists a unique μ a.e. function $g \in \mathcal{L}_{+}^{1}(\mu)$ such that $\rho(A)=\int_{A} g d \mu$ for all $A \in \mathcal{A}$. This gives that

$$
\int_{A} g d \mu=\int_{A}(1-f) d \mu, \text { for all } A \in \mathcal{A}
$$

By Corollary 10.14(i), we have $g=1-f \mu$ a.e. Since $g, f \geq 0$, we get $0 \leq f \leq 1 \mu$ a.e.
(4) Let $0<a<b$. Prove with the help of Tonelli's theorem (applied to the function $f(x, t)=e^{-x t}$) that $\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)=\log (b / a)$, where λ denotes Lebesgue measure. $(2 \mathrm{pts})$

Proof Let $f:[a, b] \times[0, \infty)$ be given by $f(x, t)=e^{-x t}$. Then f is continuous (hence measurable) and $f>0$. By Toneli's theorem

$$
\int_{[0, \infty)} \int_{[a, b]} e^{-x t} d \lambda(x) d \lambda(t)=\int_{[a, b]} \int_{[0, \infty)} e^{-x t} d \lambda(t) d \lambda(x)
$$

For each fixed $x \in[a, b]$, the function $t \rightarrow e^{-x t}$ is positive measurable and the improper Riemann integrable on $[0, \infty)$ exists, so that

$$
\int_{[0, \infty)} e^{-x t} d \lambda(t)=\int_{0}^{\infty} e^{-x t} d t=\frac{1}{x}
$$

Furthermore, the function $x \rightarrow \frac{1}{x}$ is measurable and Riemann integrable on $[a, b]$, thus

$$
\int_{[a, b]} \int_{[0, \infty)} e^{-x t} d \lambda(t) d \lambda(x)=\int_{[a, b]} \frac{1}{x} d \lambda(x)=\int_{a}^{b} \frac{1}{x} d x=\log (b / a) .
$$

On the other hand,

$$
\int_{[0, \infty)} \int_{[a, b]} e^{-x t} d \lambda(x) d \lambda(t)=\int_{[0, \infty)} \int_{a}^{b} e^{-x t} d x d \lambda(t)=\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)
$$

Therefore, $\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)=\log (b / a)$.
(5) Let (X, \mathcal{A}, μ) be a finite measure space, and $f \in \mathcal{M}(\mathcal{A})$ satisfies $f^{n} \in \mathcal{L}^{1}(\mu)$ for all $n \geq 1$.
(a) Show that if $\lim _{n \rightarrow \infty} \int f^{n} d \mu$ exists and is finite, then $|f(x)| \leq 1 \mu$ a.e. (1 pt)
(b) Show that $\int f^{n} d \mu=c$ is a constant for all $n \geq 1$ if and only if $f=\mathbf{1}_{A} \mu$ a.e. for some measurable set $A \in \mathcal{A}$. ($1 \mathrm{pt)}$

Proof (a) Let $E=\{x \in X:|f(x)|>1\}$ and assume for the sake of getting a contradiction that
$\mu(E)>0$. For $k \geq 1$, let $E_{k}=\{x \in X: \mid f(x)>1+1 / k\}$. Then E_{k} is an increasing sequence of measurable set with $E=\bigcup_{k=1}^{\infty} E_{k}$. Since $\mu(E)>0$, then there exists $k \geq 1$ sufficiently large such that $\mu\left(E_{k}\right)>0$. Note that for any $n \geq 1$,

$$
f^{2 n}=f^{2 n} \mathbf{1}_{E_{k}}+f^{2 n} \mathbf{1}_{E_{k}^{c}} \geq f^{2 n} \mathbf{1}_{E_{k}} \geq(1+1 / k)^{2 n} \mathbf{1}_{E_{k}} .
$$

Thus, for all $n \geq 1$

$$
\int f^{2 n} d \mu \geq(1+1 / k)^{2 n} \mu\left(E_{k}\right)
$$

This implies that

$$
\lim _{n \rightarrow \infty} \int f^{2 n} d \mu \geq \lim _{n \rightarrow \infty}(1+1 / k)^{2 n} \mu\left(E_{k}\right)=\infty
$$

contradicting the fact that $\lim _{n \rightarrow \infty} \int f^{n} d \mu<\infty$. Thus $\mu(E)=0$ and $|f(x)| \leq 1 \mu$ a.e.
Proof (b) If $f=\mathbf{1}_{A}$ for some measurable set $A \in \mathcal{A}$, then $f^{n}=\mathbf{1}_{A}$ for all $n \geq 1$ and hence
$\int f^{n} d \mu=\mu(A)$ for all $n \geq 1$.
Conversely, assume $\int f^{n} d \mu=c$ for all $n \geq 1$. Since $\lim _{n \rightarrow \infty} \int f^{n} d \mu=c$ exists and is finite, then by part (a), we have that $|f(x)| \leq 1 \mu$ a.e. Let $A=\{x \in X: f(x)=1\}, B=\{x \in$ $X: f(x)=-1\}$, and $C=\{x \in X:|f(x)|<1\}$. Since $f \in \mathcal{M}(\mathcal{A})$, then $A, B, C \in \mathcal{A}$, and $f=\mathbf{1}_{A} f+\mathbf{1}_{B} f+\mathbf{1}_{C} f$ and for any $n \geq 1$,

$$
c=\int f^{n} d \mu=\mu(A)+(-1)^{n} \mu(B)+\int_{C} f^{n} d \mu,
$$

as well as

$$
c=\lim _{n \rightarrow \infty} \int f^{n} d \mu=\lim _{n \rightarrow \infty}\left(\mu(A)+(-1)^{n} \mu(B)+\int_{C} f^{n} d \mu\right) .
$$

Note that $\lim _{n \rightarrow \infty} \mathbf{1}_{C} f^{n}(x)=0$ for all $x \in X$, and $\left|\mathbf{1}_{C} f^{n}(x)\right| \leq 1$. Since $\mu(X)<\infty$, then $1 \in \mathcal{L}^{1}(\mu)$, then by Lebesgue Dominated Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int_{C} f^{n} d \mu=\lim _{n \rightarrow \infty} \int \mathbf{1}_{C} f^{n}(x) d \mu=\int \lim _{n \rightarrow \infty} \mathbf{1}_{C} f^{n}(x) d \mu=0
$$

As a result we have

$$
c=\lim _{n \rightarrow \infty}\left(\mu(A)+(-1)^{n} \mu(B)\right)
$$

If we take the limit along even n, we get $c=\mu(A)+\mu(B)$, and if we take the limit along odd n, we get $c=\mu(A)-\mu(B)$. This implies that $\mu(B)=0$, and hence $1_{B} f=0 \mu$ a.e. Therefore, $c=\mu(A)=\mu(A)+\int_{C} f^{n} d \mu=0$ for all $n \geq 1$, and hence $\int_{C} f^{n} d \mu=0$ for all $n \geq 1$. In particular, $\int_{C} f^{2} d \mu=\int \mathbf{1}_{C} f^{2} d \mu=0$. Since $\mathbf{1}_{C} f^{2} \geq 0$, this implies that $\mathbf{1}_{C} f^{2}=0 \mu$ a.e. and hence $\mathbf{1}_{C} f=0$ μ a.e. Thus, $f=\mathbf{1}_{A} f+\mathbf{1}_{B} f+\mathbf{1}_{C} f=\mathbf{1}_{A} f=\mathbf{1}_{A} \mu$ a.e.

We give also a second short proof: Note that

$$
\int f^{2}(1-f)^{2} d \mu=\int f^{2} d \mu-2 \int f^{3} d \mu+\int f^{4} d \mu=c-2 c+c=0
$$

Since $f^{2}(1-f)^{2} \geq 0$, this implies that $f^{2}(1-f)^{2}=0 \mu$ a.e. implying that f is 0 or 1μ a.e. equivalently f is μ a.e.equals the indicator function $\mathbf{1}_{A}$ with $A=\{x \in X: f(x)=1\}$.

