Measure and Integration: Solutions Quiz 2014-15

1. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra over \mathbb{R}, and λ is Lebesgue measure. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)=\sum_{k=0}^{2^{n}-1} \frac{3 k+2^{n}}{2^{n}} \cdot \mathbf{1}_{\left[k / 2^{n},(k+1) / 2^{n}\right)}(x), n \geq 1
$$

(a) Show that f_{n} is measurable, and $f_{n}(x) \leq f_{n+1}(x)$ for all $x \in \mathbb{R}$. (1 pt)
(b) Show that $\int \sup _{n \geq 1} f_{n} d \lambda=\frac{5}{2} \cdot(2 \mathrm{pts})$

Solution(a): Since $\left[k / 2^{n},(k+1) / 2^{n}\right) \in \mathcal{B}(\mathbb{R})$, then $1_{\left[k / 2^{n},(k+1) / 2^{n}\right)}$ is a measurable function. Thus f_{n} is a linear combination of measurable functions (in fact f_{n} is a simple function) and hence measurable. For $x \notin[0,1)$, we have $f_{n}(x)=f_{n+1}(x)=0$. Suppose $x \in[0,1)$, then there exists a $0 \leq k \leq 2^{n}-1$ such that $x \in\left[k / 2^{n},(k+1) / 2^{n}\right)$. Since

$$
\left[k / 2^{n},(k+1) / 2^{n}\right)=\left[2 k / 2^{n+1},(2 k+1) / 2^{n+1}\right) \cup\left[(2 k+1) / 2^{n+1},(2 k+2) / 2^{n+1}\right)
$$

we see that $f_{n}(x)=\frac{3 k}{2^{n}}+1$ while $f_{n+1}(x) \in\left\{\frac{3(2 k)}{2^{n+1}}+1, \frac{3(2 k+1)}{2^{n+1}}+1\right\}$ so that $f_{n}(x) \leq$ $f_{n+1}(x)$.

Solution(b): We apply Beppo-Levi,

$$
\begin{aligned}
\int \sup _{n \geq 1} f_{n} d \lambda & =\sup _{n \geq 1} \int f_{n} d \lambda \\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{2^{n}-1}\left(\frac{3 k}{2^{n}}+1\right) \lambda\left(\left[k / 2^{n},(k+1) / 2^{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{2^{n}-1}\left(\frac{3 k}{2^{n}}+1\right) \frac{1}{2^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{3}{4^{n}} \sum_{k=0}^{2^{n}-1} k+1 \\
& =\lim _{n \rightarrow \infty} \frac{3}{2} \frac{\left(2^{n}-1\right) 2^{n}}{4^{n}}+1=\frac{5}{2} .
\end{aligned}
$$

2. Let X be a set, and $\mathcal{C} \subseteq \mathcal{P}(X)$. Consider $\sigma(\mathcal{C})$, the smallest σ-algebra over X containing \mathcal{C}, and let \mathcal{D} be the collection of sets $A \in \sigma(\mathcal{C})$ with the property that there exists a countable collection $\mathcal{C}_{0} \subseteq \mathcal{C}$ (depending on A) such that $A \in \sigma\left(\mathcal{C}_{0}\right)$.
(a) Show that \mathcal{D} is a σ-algebra over X.
(b) Show that $\mathcal{D}=\sigma(\mathcal{C})$.

Proof (a): Clearly $\emptyset \in \mathcal{D}$ since \emptyset belongs to every σ-algebra. Let $A \in \mathcal{D}$, then there is a countable collection $\mathcal{C}_{0} \subseteq \mathcal{C}$ such that $A \in \sigma\left(\mathcal{C}_{0}\right)$. But then $A^{c} \in \sigma\left(\mathcal{C}_{0}\right)$, hence $A^{c} \in \mathcal{D}$. Finally, let $\left\{A_{n}\right\}$ be in \mathcal{D}, then for each n there exists a countable collection $\mathcal{C}_{n} \subseteq \mathcal{C}$ such that $A_{n} \in \sigma\left(\mathcal{C}_{n}\right)$. Let $\mathcal{C}_{0}=\bigcup_{n} \mathcal{C}_{n}$, then $\mathcal{C}_{0} \subseteq \mathcal{C}$, and \mathcal{C}_{0} is countable. Furthermore, $\sigma\left(\mathcal{C}_{n}\right) \subseteq \sigma\left(\mathcal{C}_{0}\right)$, and hence $A_{n} \in \sigma\left(\mathcal{C}_{0}\right)$ for each n which implies that $\bigcup_{n} A_{n} \in \sigma\left(\mathcal{C}_{0}\right)$. Therefore, $\bigcup_{n} A_{n} \in \mathcal{D}$ and \mathcal{D} is a σ-algebra.

Proof (b): By definition $\mathcal{D} \subseteq \sigma(\mathcal{C})$. Also, $\mathcal{C} \subseteq \mathcal{D}$ since $C \in \sigma(\{C\})$ for every $C \in \mathcal{C}$. Since $\sigma(\mathcal{C})$ is the smallest σ-algebra over X containg \mathcal{C}, then by part (a) $\sigma(\mathcal{C}) \subseteq \mathcal{D}$. Thus, $\mathcal{D}=\sigma(\mathcal{C})$.
3. Let (X, \mathcal{A}, μ) be a finite measure space with $0<\mu(X)<\infty)$, and $T: X \rightarrow X$ an $\mathcal{A} / \mathcal{A}$-measurable function satisfying $\mu(A)=\mu\left(T^{-1}(A)\right)$ for all $A \in \mathcal{A}$. For $n \geq 1$, denote by $T^{n}=T \circ T \circ \cdots \circ T$ the n-fold composition of T with itself.
(a) For $B \in \mathcal{A}$, let $D(B)=\left\{x \in B: T^{n}(x) \notin B\right.$ for all $\left.n \geq 1\right\}$. Show that $D(B) \in \mathcal{A}$.
(b) For $n \geq 1$, let $D(B)_{n}=T^{-n}(D(B))$. Show that $\mu\left(D(B)_{n}\right)=\mu(D(B))$, for $n \geq 1$, and that $D(B)_{n} \cap D(B)_{m}=\emptyset$ if $n \neq m$.
(c) Show that $\mu(D(B))=0$.
(d) Suppose $A \in \mathcal{A}$ satisfies the property that if $B \in \mathcal{A}$ with $\mu(B)>0$, then there exists $n \geq 1$ such that $\mu\left(A \cap T^{-n} B\right)>0$. Show that $\mu(A)>0$, and if additionally $T^{-1}(A)=A$, then $\mu(A)=\mu(X)$.

Proof (a):Since the composition of measurable functions is measurable, we see that $T^{-n}\left(B^{c}\right) \in \mathcal{A}$ for all $n \geq 1$. Thus, $D(B)=B \cap \bigcup_{n=1}^{\infty} T^{-n}\left(B^{c}\right) \in \mathcal{A}$.

Proof (b): The first statement is easily proved by induction. The result is true for $n=1$, and assume it is true for n, i.e $\mu\left(D(B)_{n}\right)=\mu(D(B))$. Now $D(B)_{n+1}=$ $T^{-1}\left(D_{n}\right)$, so

$$
\mu\left(D(B)_{n+1}\right)=\mu\left(T^{-1}\left(D(B)_{n}\right)\right)=\mu\left(D(B)_{n}\right)=\mu(D(B)) .
$$

Assume $m<n$. If $x \in D(B)_{m} \cap D(B)_{n}$, then from $x \in D(B)_{m}$ one gets $T^{m}(x) \in$ $D(B)$, so $T^{m}(x) \in B$ and $T^{n}(x)=T^{n-m}\left(T^{m} x\right) \notin B$, contradicting the fact that $x \in D(B)_{m}$. So $D(B)_{n} \cap D(B)_{m}=\emptyset$

Proof (c): Assume $\mu(D(B))>0$, then $\mu\left(D(B)_{n}\right)=\mu(D(B))>0$. Since the sets $\left(D(B)_{n}\right)$ are mutually disjoint, we have

$$
\infty>\mu(X) \geq \mu\left(\bigcup_{n=1}^{\infty} D(B)_{n}\right)=\sum_{n=1}^{\infty} \mu\left(D(B)_{n}\right)=\sum_{n=1}^{\infty} \mu(D(B))=\infty,
$$

leading to a contradiction. Hence, $\mu(D(B))=0$.

Proof (d): Since $\mu(X)>0$, then there exists $n \geq 1$ such that $\mu\left(A \cap T^{-n}(X)\right)>$ 0 . Since $T^{-n}(X)=X$, we have $\mu(A)=\mu\left(A \cap T^{-n} X\right)>0$. Suppose now that $A=T^{-1}(A)$ and assume for the sake of getting a contradiction that $0<\mu(A)<$ $\mu(X)$, then $0<\mu\left(A^{c}\right)<\mu(X)$ and also $T^{-1}\left(A^{c}\right)=A^{c}$. By hypothesis there exists $n \geq 1$ such that $\mu\left(A \cap A^{c}\right)=\mu\left(A \cap T^{-n}\left(A^{c}\right)\right)>0$, leading to a contradiction since $\mu\left(A \cap A^{c}\right)=0$. Thus, $\mu(A)=\mu(X)$.

