
Universiteit Utrecht Mathematisch Instituut 3584 CD Utrecht

Measure and Integration: Solutions Quiz 2013-14

1. Consider the measure space (R,B(R), λ), where B(R) is the Borel σ-algebra on R,
and λ is Lebesgue measure.

(a) Show that any monotonically increasing or decreasing function f : R → R is
Borel measurable i.e. B(R) \ B(R) measurable. (1.5 pts)

(b) Show that for any f ∈M+(R), and any a ∈ R, one has∫
R
f(x− a) dλ(x) =

∫
R
f(x) dλ(x).

(Hint: start with simple functions.) (1.5 pts)

Proof (a): Assume with no loss of generality that f is monotonically increasing.
For any a ∈ R, consider the set Aa = {x ∈ R : f(x) > a}, and let

x0 = sup{x ∈ R : f(x) ≤ a}.

Notice that

Aa = f−1((a,∞)) =


(x0,∞) if f(x0) = a

[x0,∞) if f(x0) 6= a.

By Lemma 8.1, f is Borel measurable.

Proof (b): We apply the standard argument. Suppose first that f = 1A, where
A ∈ B(R). By translation invariance of Lebesgue measure, we have for any a ∈ R∫

1A(x) dλ(x) = λ(A) = λ(A+ a) =

∫
1A+a(x) dλ(x) =

∫
1A(x− a) dλ(x).

Hence the result is true for indicator functions. Suppose now that f ∈ E+, and let
f =

∑n
i=0 ai1Ai

be a standard representation. Then∫
f(x) dλ(x) =

n∑
i=0

ai

∫
1Ai

(x) dλ(x) =
n∑

i=0

ai

∫
1Ai

(x−a) dλ(x) =

∫
f(x−a) dλ(x).

Now let f be any non-negative measurable function. Then, there exists an increasing
sequence (gn) ∈ E+ converging (pointwise) to f . By Beppo-Levi, we have∫

f(x) dλ(x) = lim
n→∞

∫
gn(x) dλ(x) = lim

n→∞

∫
gn(x− a) dλ(x) =

∫
f(x− a) dλ(x).
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2. Let (X,A, µ) be a measure space, and let (X,A∗, µ) be its completion (see exercise
4.13, p.29).

(a) Show that for any f ∈ E+(A∗), there exists a function g ∈ E+(A) such that
g(x) ≤ f(x) for all x ∈ X, and

µ({x ∈ X : f(x) 6= g(x)}) = 0.

(1.5 pts)

(b) Using Theorem 8.8, show that if u ∈ M+

R(A∗), then there exists w ∈ M+

R(A)
such that w(x) ≤ u(x) for all x ∈ X, and

µ({x ∈ X : w(x) 6= u(x)}) = 0.

(1.5 pts)

Proof (a): Let f =
∑n

i=1 ai1A∗
i

be a standard representation of f , with ai ≥ 0 and
A∗i ∈ A∗ pairwise disjoint and

⋃n
i=1A

∗
i = X. By Exercise 4.13 (i), for each i there

exist Ai,Mi ∈ A and Ni ⊆ Mi such that µ(Mi) = 0 and A∗i = Ai ∪ Ni. Define
g =

∑n
i=1 ai1Ai

, then g ∈ E+(A), and g(x) ≤ f(x) for all x ∈ X. Furthermore,

µ({x ∈ X : f(x) 6= g(x)}) ≤
n∑

i=1

µ(Mi) = 0.

Proof (b): Let u ∈ M+

R(A∗). By Theorem 8.8, there exists a sequence (un)n ∈
E+(A∗) such that un ↗ u. By part (a), for each n, there exists wn ∈ E+(A) with
wn ≤ un and µ({x ∈ X : wn(x) 6= un(x)}) = 0. Let w = supnwn, then w ≤ u, and
by Corollary 8.9 we have w ∈M+

R(A). Finally, since

{x ∈ X : w(x) 6= u(x)} ⊆
∞⋃
n=1

{x ∈ X : wn(x) 6= un(x)},

we get

µ({x ∈ X : w(x) 6= u(x)}) ≤
∞∑
n=1

µ({x ∈ X : wn(x) 6= un(x)}) = 0.

3. Let (X,B, µ) be a finite measure space and A be a collection of subsets generating
B, i.e. B = σ(A), and satisfying the following conditions: (i) X ∈ A, (ii) if A ∈ A,
then Ac ∈ A, and (iii) if A,B ∈ A, then A ∪B ∈ A. Let

D = {A ∈ B : ∀ε > 0,∃C ∈ A such that µ(A∆C) < ε}.

(a) Show that if (An)n ⊂ D and ε > 0, then there exists a sequence (Cn)n ⊂ A
such that

µ

(
∞⋃
n=1

An∆
∞⋃
n=1

Cn

)
< ε/2.

(1 pt)
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(b) Use Theorem 4.4 (iii)′ to show that there exists an integer m ≥ 1 such that

µ

(
∞⋃
n=1

An∆
m⋃

n=1

Cn

)
< ε.

(1 pt)

(c) Show that D is a σ-algebra. (1 pt)

(d) Show that B = D. (1 pt)

Proofs (a), (b) and (c): First note that since X ∈ A, then X ∈ D. Now let
A ∈ D and ε > 0. There exists C ∈ A such that µ(A∆C) < ε. Since Cc ∈ A
and A∆C = Ac∆Cc, we have µ(Ac∆Cc) < ε and hence Ac ∈ D. Finally, suppose
(An)n ⊂ D and ε > 0. For each n, there exists Cn ∈ A such that µ(An∆Cn) <
ε/2n+1. It is easy to check that

∞⋃
n=1

An∆
∞⋃
n=1

Cn ⊆
∞⋃
n=1

(An∆Cn),

so that

µ

(
∞⋃
n=1

An∆
∞⋃
n=1

Cn

)
≤

∞∑
n=1

µ(An∆Cn) < ε/2.

Since A is closed under finite unions we do not know at this point if
⋃∞

n=1Cn is
an element of A. To solve this problem, we proceed as follows. First note that⋂m

n=1C
c
n ↘

⋂∞
n=1C

c
n, hence by Theorem 4.4 (iii)′

µ

(
∞⋃
n=1

An ∩
∞⋂
n=1

Cc
n

)
= lim

m→∞
µ

(
∞⋃
n=1

An ∩
m⋂

n=1

Cc
n

)
,

and therefore,

µ

(
∞⋃
n=1

An∆
∞⋃
n=1

Cn

)
= lim

m→∞
µ

(
(
∞⋃
n=1

An ∩
m⋂

n=1

Cc
n) ∪ (

∞⋂
n=1

Ac
n ∩

∞⋃
n=1

Cn)

)
.

Hence there exists m sufficiently large so that

µ

(
(
∞⋃
n=1

An ∩
m⋂

n=1

Cc
n) ∪ (

∞⋂
n=1

Ac
n ∩

∞⋃
n=1

Cn)

)
< µ

(
∞⋃
n=1

An∆
∞⋃
n=1

Cn

)
+ ε/2.

Since
⋂∞

n=1A
c
n ∩
⋃m

n=1Cn ⊆
⋂∞

n=1A
c
n ∩
⋃∞

n=1Cn, we get

µ

(
(
∞⋃
n=1

An ∩
m⋂

n=1

Cc
n) ∪ (

∞⋂
n=1

Ac
n ∩

m⋃
n=1

Cn)

)
< µ

(
∞⋃
n=1

An∆
∞⋃
n=1

Cn

)
+ ε/2.

Thus,

µ

(
(
∞⋃
n=1

An∆
m⋃

n=1

Cn)

)
< ε,

and
⋃m

n=1Cn ∈ A since A is closed under finite unions. This shows that
⋃∞

n=1An ∈
D. Thus, D is a σ-algebra.

Proof (d): By definition of D we have D ⊆ B. Since A ⊆ D, and B is the smallest
σ-algebra containing A we have B ⊆ D. Therefore, B = D.
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