Measure and Integration: Solutions Quiz 2013-14

1. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra on \mathbb{R}, and λ is Lebesgue measure.
(a) Show that any monotonically increasing or decreasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable i.e. $\mathcal{B}(\mathbb{R}) \backslash \mathcal{B}(\mathbb{R})$ measurable. (1.5 pts)
(b) Show that for any $f \in \mathcal{M}^{+}(\mathbb{R})$, and any $a \in \mathbb{R}$, one has

$$
\int_{\mathbb{R}} f(x-a) d \lambda(x)=\int_{\mathbb{R}} f(x) d \lambda(x) .
$$

(Hint: start with simple functions.) (1.5 pts)

Proof (a): Assume with no loss of generality that f is monotonically increasing. For any $a \in \mathbb{R}$, consider the set $A_{a}=\{x \in \mathbb{R}: f(x)>a\}$, and let

$$
x_{0}=\sup \{x \in \mathbb{R}: f(x) \leq a\} .
$$

Notice that

$$
A_{a}=f^{-1}((a, \infty))= \begin{cases}\left(x_{0}, \infty\right) & \text { if } f\left(x_{0}\right)=a \\ {\left[x_{0}, \infty\right)} & \text { if } f\left(x_{0}\right) \neq a\end{cases}
$$

By Lemma 8.1, f is Borel measurable.
Proof (b): We apply the standard argument. Suppose first that $f=\mathbf{1}_{A}$, where $A \in \mathcal{B}(\mathbb{R})$. By translation invariance of Lebesgue measure, we have for any $a \in \mathbb{R}$

$$
\int \mathbf{1}_{A}(x) d \lambda(x)=\lambda(A)=\lambda(A+a)=\int \mathbf{1}_{A+a}(x) d \lambda(x)=\int \mathbf{1}_{A}(x-a) d \lambda(x) .
$$

Hence the result is true for indicator functions. Suppose now that $f \in \mathcal{E}^{+}$, and let $f=\sum_{i=0}^{n} a_{i} \mathbf{1}_{A_{i}}$ be a standard representation. Then
$\int f(x) d \lambda(x)=\sum_{i=0}^{n} a_{i} \int \mathbf{1}_{A_{i}}(x) d \lambda(x)=\sum_{i=0}^{n} a_{i} \int \mathbf{1}_{A_{i}}(x-a) d \lambda(x)=\int f(x-a) d \lambda(x)$.
Now let f be any non-negative measurable function. Then, there exists an increasing sequence $\left(g_{n}\right) \in \mathcal{E}^{+}$converging (pointwise) to f. By Beppo-Levi, we have

$$
\int f(x) d \lambda(x)=\lim _{n \rightarrow \infty} \int g_{n}(x) d \lambda(x)=\lim _{n \rightarrow \infty} \int g_{n}(x-a) d \lambda(x)=\int f(x-a) d \lambda(x) .
$$

2. Let (X, \mathcal{A}, μ) be a measure space, and let $\left(X, \mathcal{A}^{*}, \bar{\mu}\right)$ be its completion (see exercise 4.13, p.29).
(a) Show that for any $f \in \mathcal{E}^{+}\left(\mathcal{A}^{*}\right)$, there exists a function $g \in \mathcal{E}^{+}(\mathcal{A})$ such that $g(x) \leq f(x)$ for all $x \in X$, and

$$
\bar{\mu}(\{x \in X: f(x) \neq g(x)\})=0
$$

(1.5 pts)
(b) Using Theorem 8.8, show that if $u \in \mathcal{M}_{\overline{\mathbb{R}}}^{+}\left(\mathcal{A}^{*}\right)$, then there exists $w \in \mathcal{M}_{\overline{\mathbb{R}}}^{+}(\mathcal{A})$ such that $w(x) \leq u(x)$ for all $x \in X$, and

$$
\begin{equation*}
\bar{\mu}(\{x \in X: w(x) \neq u(x)\})=0 . \tag{1.5pts}
\end{equation*}
$$

Proof (a): Let $f=\sum_{i=1}^{n} a_{i} \mathbf{1}_{A_{i}^{*}}$ be a standard representation of f, with $a_{i} \geq 0$ and $A_{i}^{*} \in \mathcal{A}^{*}$ pairwise disjoint and $\bigcup_{i=1}^{n} A_{i}^{*}=X$. By Exercise 4.13 (i), for each i there exist $A_{i}, M_{i} \in \mathcal{A}$ and $N_{i} \subseteq M_{i}$ such that $\mu\left(M_{i}\right)=0$ and $A_{i}^{*}=A_{i} \cup N_{i}$. Define $g=\sum_{i=1}^{n} a_{i} \mathbf{1}_{A_{i}}$, then $g \in \mathcal{E}^{+}(\mathcal{A})$, and $g(x) \leq f(x)$ for all $x \in X$. Furthermore,

$$
\bar{\mu}(\{x \in X: f(x) \neq g(x)\}) \leq \sum_{i=1}^{n} \mu\left(M_{i}\right)=0 .
$$

Proof (b): Let $u \in \mathcal{M}_{\mathbb{R}}^{+}\left(\mathcal{A}^{*}\right)$. By Theorem 8.8, there exists a sequence $\left(u_{n}\right)_{n} \in$ $\mathcal{E}^{+}\left(\mathcal{A}^{*}\right)$ such that $u_{n} \nearrow u$. By part (a), for each n, there exists $w_{n} \in \mathcal{E}^{+}(\mathcal{A})$ with $w_{n} \leq u_{n}$ and $\bar{\mu}\left(\left\{x \in X: w_{n}(x) \neq u_{n}(x)\right\}\right)=0$. Let $w=\sup _{n} w_{n}$, then $w \leq u$, and by Corollary 8.9 we have $w \in \mathcal{M}_{\mathbb{R}}^{+}(\mathcal{A})$. Finally, since

$$
\{x \in X: w(x) \neq u(x)\} \subseteq \bigcup_{n=1}^{\infty}\left\{x \in X: w_{n}(x) \neq u_{n}(x)\right\}
$$

we get

$$
\bar{\mu}(\{x \in X: w(x) \neq u(x)\}) \leq \sum_{n=1}^{\infty} \bar{\mu}\left(\left\{x \in X: w_{n}(x) \neq u_{n}(x)\right\}\right)=0 .
$$

3. Let (X, \mathcal{B}, μ) be a finite measure space and \mathcal{A} be a collection of subsets generating \mathcal{B}, i.e. $\mathcal{B}=\sigma(\mathcal{A})$, and satisfying the following conditions: (i) $X \in \mathcal{A}$, (ii) if $A \in \mathcal{A}$, then $A^{c} \in \mathcal{A}$, and (iii) if $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{A}$. Let

$$
\mathcal{D}=\{A \in \mathcal{B}: \forall \varepsilon>0, \exists C \in \mathcal{A} \text { such that } \mu(A \Delta C)<\varepsilon\} .
$$

(a) Show that if $\left(A_{n}\right)_{n} \subset \mathcal{D}$ and $\varepsilon>0$, then there exists a sequence $\left(C_{n}\right)_{n} \subset \mathcal{A}$ such that

$$
\begin{equation*}
\mu\left(\bigcup_{n=1}^{\infty} A_{n} \Delta \bigcup_{n=1}^{\infty} C_{n}\right)<\varepsilon / 2 \tag{1pt}
\end{equation*}
$$

(b) Use Theorem 4.4 (iii) to show that there exists an integer $m \geq 1$ such that

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n} \Delta \bigcup_{n=1}^{m} C_{n}\right)<\varepsilon .
$$

(1 pt)
(c) Show that \mathcal{D} is a σ-algebra. (1 pt)
(d) Show that $\mathcal{B}=\mathcal{D}$. $(1 \mathrm{pt})$

Proofs (a), (b) and (c): First note that since $X \in \mathcal{A}$, then $X \in \mathcal{D}$. Now let $A \in \mathcal{D}$ and $\varepsilon>0$. There exists $C \in \mathcal{A}$ such that $\mu(A \Delta C)<\varepsilon$. Since $C^{c} \in \mathcal{A}$ and $A \Delta C=A^{c} \Delta C^{c}$, we have $\mu\left(A^{c} \Delta C^{c}\right)<\varepsilon$ and hence $A^{c} \in \mathcal{D}$. Finally, suppose $\left(A_{n}\right)_{n} \subset \mathcal{D}$ and $\varepsilon>0$. For each n, there exists $C_{n} \in \mathcal{A}$ such that $\mu\left(A_{n} \Delta C_{n}\right)<$ $\varepsilon / 2^{n+1}$. It is easy to check that

$$
\bigcup_{n=1}^{\infty} A_{n} \Delta \bigcup_{n=1}^{\infty} C_{n} \subseteq \bigcup_{n=1}^{\infty}\left(A_{n} \Delta C_{n}\right)
$$

so that

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n} \Delta \bigcup_{n=1}^{\infty} C_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n} \Delta C_{n}\right)<\varepsilon / 2 .
$$

Since \mathcal{A} is closed under finite unions we do not know at this point if $\bigcup_{n=1}^{\infty} C_{n}$ is an element of \mathcal{A}. To solve this problem, we proceed as follows. First note that $\bigcap_{n=1}^{m} C_{n}^{c} \searrow \bigcap_{n=1}^{\infty} C_{n}^{c}$, hence by Theorem 4.4 (iii)

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n} \cap \bigcap_{n=1}^{\infty} C_{n}^{c}\right)=\lim _{m \rightarrow \infty} \mu\left(\bigcup_{n=1}^{\infty} A_{n} \cap \bigcap_{n=1}^{m} C_{n}^{c}\right)
$$

and therefore,

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n} \Delta \bigcup_{n=1}^{\infty} C_{n}\right)=\lim _{m \rightarrow \infty} \mu\left(\left(\bigcup_{n=1}^{\infty} A_{n} \cap \bigcap_{n=1}^{m} C_{n}^{c}\right) \cup\left(\bigcap_{n=1}^{\infty} A_{n}^{c} \cap \bigcup_{n=1}^{\infty} C_{n}\right)\right)
$$

Hence there exists m sufficiently large so that

$$
\mu\left(\left(\bigcup_{n=1}^{\infty} A_{n} \cap \bigcap_{n=1}^{m} C_{n}^{c}\right) \cup\left(\bigcap_{n=1}^{\infty} A_{n}^{c} \cap \bigcup_{n=1}^{\infty} C_{n}\right)\right)<\mu\left(\bigcup_{n=1}^{\infty} A_{n} \Delta \bigcup_{n=1}^{\infty} C_{n}\right)+\varepsilon / 2
$$

Since $\bigcap_{n=1}^{\infty} A_{n}^{c} \cap \bigcup_{n=1}^{m} C_{n} \subseteq \bigcap_{n=1}^{\infty} A_{n}^{c} \cap \bigcup_{n=1}^{\infty} C_{n}$, we get

$$
\mu\left(\left(\bigcup_{n=1}^{\infty} A_{n} \cap \bigcap_{n=1}^{m} C_{n}^{c}\right) \cup\left(\bigcap_{n=1}^{\infty} A_{n}^{c} \cap \bigcup_{n=1}^{m} C_{n}\right)\right)<\mu\left(\bigcup_{n=1}^{\infty} A_{n} \Delta \bigcup_{n=1}^{\infty} C_{n}\right)+\varepsilon / 2
$$

Thus,

$$
\mu\left(\left(\bigcup_{n=1}^{\infty} A_{n} \Delta \bigcup_{n=1}^{m} C_{n}\right)\right)<\varepsilon
$$

and $\bigcup_{n=1}^{m} C_{n} \in \mathcal{A}$ since \mathcal{A} is closed under finite unions. This shows that $\bigcup_{n=1}^{\infty} A_{n} \in$ \mathcal{D}. Thus, \mathcal{D} is a σ-algebra.

Proof (d): By definition of \mathcal{D} we have $\mathcal{D} \subseteq \mathcal{B}$. Since $\mathcal{A} \subseteq \mathcal{D}$, and \mathcal{B} is the smallest σ-algebra containing \mathcal{A} we have $\mathcal{B} \subseteq \mathcal{D}$. Therefore, $\mathcal{B}=\mathcal{D}$.

