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(1) Let (X,B, ν) be a measure space, and suppose X =
∞⋃

n=1

En, where {En} is a collection of pairwise

disjoint measurable sets such that ν(En) < ∞ for all n ≥ 1. Define µ on B by µ(B) =
∞∑

n=1

2−nν(B∩

En)/(ν(En) + 1).
(a) Prove that µ is a finite measure on (X,B). (10 pt.)
(b) Let B ∈ B. Prove that µ(B) = 0 if and only if ν(B) = 0. (10 pt.)

Proof (a): Clearly µ(∅) = 0, and

µ(X) =
∞∑

n=1

2−nν(En)/(ν(En) + 1) ≤
∞∑

n=1

2−n = 1 < ∞.

Now, let (Cn) be a disjoint sequence in B. Then,

µ(
⋃∞

m=1 Cm) =
∞∑

n=1

2−nν((
∞⋃

m=1

Cm) ∩ En)/(ν(En) + 1)

=
∞∑

n=1

2−n
∞∑

m=1

ν(Cm ∩ En)/(ν(En) + 1)

=
∞∑

m=1

∞∑
n=1

2−nν(Cm ∩ En)/(ν(En) + 1)

=
∞∑

m=1

µ(Cm).

Thus, µ is a finite measure.

Proof (b): Suppose that ν(B) = 0, then ν(B ∩ En) = 0 for all n, hence µ(B) = 0. Conversely,

suppose µ(B) = 0, then ν(B ∩ En) = 0 for all n. Since X =
∞⋃

n=1

En (disjoint union), then

ν(B) = ν(B ∩
∞⋃

n=1

En) = ν(
∞⋃

n=1

(B ∩ En)) =
∞∑

n=1

ν(B ∩ En) = 0.

(2) Consider the measure space (R,B(R), λ), where B(R) is the Borel σ-algebra, and λ Lebesgue

measure. Determine the value of lim
n→∞

∫
(0,n)

x2
(
1− x

n

)n

dλ(x). (20 pt.)

Proof: Let un(x) = 1(0,n)x
2
(
1− x

n

)n, then limn→∞ un(x) = 1(0,∞)x
2e−x. Using the fact that(

1− x
n

)n ↗ e−x, we see that un(x) ≤ 1(0,∞)x
2e−x. Since the function x2e−x is measurable,

non-negative and the improper Riemann integrable on [0,∞) exists, it follows that it is Lebesgue
integrable on [0,∞) (and hence also on (0,∞)) and its value equals the improper Riemann
integral. By Lebesgue Dominated Convergence Theorem, we have

lim
n→∞

∫
(0,n)

x2
(
1− x

n

)n

dλ(x) = lim
n→∞

∫
un(x)dλ(x)

=
∫

1(0,∞)x
2e−xdλ(x) =

∫ ∞

0

x2e−x dx = 2.
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(3) Let X be a set, and C ⊆ P(X). Consider σ(C), the smallest σ-algebra over X containing C, and
let D be the collection of sets A ∈ σ(C) with the property that there exists a countable collection
C0 ⊆ C (depending on A) such that A ∈ σ(C0).
(a) Show that D is a σ-algebra over X. (12 pt.)
(b) Show that D = σ(C). (8 pt.)

Proof (a): Clearly ∅ ∈ D since ∅ belongs to every σ-algebra. Let A ∈ D, then there is a
countable collection C0 ⊆ C such that A ∈ σ(C0). But then Ac ∈ σ(C0), hence Ac ∈ D. Finally, let
{An} be in D, then for each n there exists a countable collection Cn ⊆ C such that An ∈ σ(Cn).
Let C0 =

⋃
n Cn, then C0 ⊆ C, and C0 is countable. Furthermore, σ(Cn) ⊆ σ(C0), and hence

An ∈ σ(C0) for each n which implies that
⋃

n An ∈ σ(C0). Therefore,
⋃

n An ∈ D and D is a
σ-algebra.

Proof (b): By definition D ⊆ σ(C). Also, C ⊆ D since C ∈ σ({C}) for every C ∈ C. Since σ(C)
is the smallest σ-algebra over X containg C, then by part (a) σ(C) ⊆ D. Thus, D = σ(C).

(4) Let (X,A, µ1) and (Y,B, ν1) be σ-finite measure spaces. Suppose f ∈ L1(µ1) and g ∈ L1(ν1) are
non-negative. Define measures µ2 on A and ν2 on B by

µ2(A) =
∫

A

f dµ1 and ν2(B) =
∫

B

g dν1,

for A ∈ A and B ∈ B.
(a) For D ∈ A⊗ B and y ∈ Y , let Dy = {x ∈ X : (x, y) ∈ D}. Show that if µ1(Dy) = 0 ν1 a.e.,

then µ2(Dy) = 0 ν2 a.e. (7 pt.)
(b) Show that if D ∈ A⊗ B is such that (µ1 × ν1)(D) = 0 then (µ2 × ν2)(D) = 0. (6 pt.)
(c) Show that for every D ∈ A⊗ B one has

(µ2 × ν2)(D) =
∫

D

f(x)g(y) d(µ1 × ν1)(x, y).

(7 pt.)

Proof(a) Suppose µ1(Dy) = 0 ν1 a.e. Let B = {y ∈ Y : µ1(Dy) > 0}, and C = {y ∈ Y :
µ2(Dy) > 0}. By our assumption, ν1(B) = 0. By Theorem 10.9(ii), for any y ∈ Y \ B one has
µ2(Dy) = 0. Thus, C ⊂ B, so that ν1(C) = 0. Applying Theorem 10.9(ii) again, we see that
ν2(C) = 0. Thus, µ2(Dy) = 0 ν2 a.e.

Proof(b) Suppose that D ∈ A⊗ B is such that (µ1 × ν1)(D) = 0. Then,∫
µ1(Dy) dν1(y) = (µ1 × ν1)(D) = 0.

By Theorem 10.9(i), we have that µ1(Dy) = 0 ν1 a.e. By part (a) above this implies that
µ2(Dy) = 0 ν2 a.e. Thus, by Theorem 10.9(i)

(µ2 × ν2)(D) =
∫

µ2(Dy) dν2(y) = 0.

Proof(c) By Tonelli’s Theorem, we have

(µ2 × ν2)(D) =
∫

Y

∫
X

1Dy (x) dµ2(x) dν2(y)

=
∫

Y

(∫
X

1Dy (x)f(x) dµ1(x)
)

dν2(y)

=
∫

Y

(∫
X

1Dy (x)f(x) dµ1(x)
)

g(y) dν1(y)

=
∫

Y

∫
X

1D(x, y)f(x)g(y) dµ1(x) dν1(y)

=
∫

X×Y

1D(x, y)f(x)g(y) d(µ1 × ν1)(x, y)

=
∫

D

f(x)g(y) d(µ1 × ν1)(x, y).
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(5) Let (X,A, µ) be a probability space and let f ∈ M(A). Suppose (fn) ⊂ M(A) converges in
measure to f , i.e. fn

µ−→ f .
(a) Show that there exists a sequence n1 < n2 < · · · such that

µ({x ∈ X : |fnk
(x)− f(x)| > 1/k}) ≤ 2−k,

for all k ≥ 1. (8 pt.)

(b) Let Ak = {x ∈ X : |fnk
(x) − f(x)| > 1/k} and A =

∞⋂
n=1

∞⋃
k=n

Ak. Show that µ(A) = 0, and

limn→∞ fnk
(x) = f(x) for all x /∈ A. Conclude that fnk

→ f µ a.e. (12 pt.)

Proof(a) Using convergence in measure, the sequence nk is defined inductively as follows.
Starting with ε1 = 1, we find n1 such that µ({x ∈ X : |fnk

(x)− f(x)| > 1}) ≤ 2−1. Now choose
ε2 = 1/2, we find n2 > n1 such that µ({x ∈ X : |fn2(x) − f(x)| > 1/2}) ≤ 2−2. Continuing
in this manner, we find at the kth stage an nk > nk−1 such that µ({x ∈ X : |fnk

(x) − f(x)| >
1/k}) ≤ 2−k.

Proof(b) Let Ak = {x ∈ X : |fnk
(x) − f(x)| > 1/k} and A =

∞⋂
n=1

∞⋃
k=n

Ak. By part (a)

µ(Ak) ≤ 2−k and hence
∞∑

k=1

µ(Ak) < ∞. By Borel-Cantelli Lemma (Exercise 6.9), we have

µ(A) = 0. For x /∈ A, there exists n ≥ 1 such that x /∈
∞⋃

k=n

Ak. This implies that x /∈ Ak for

all k ≥ n and therefore |fnk
(x) − f(x)| ≤ 1/k for all k ≥ n. Thus, lim

k→∞
fnk

(x) = f(x) for all

x ∈ X \A. Since µ(X \A) = 1 we have that fnk
→ f µ a.e


