Hertentamen Maat en Integratie 2012-13

(1) Let (X, \mathcal{B}, ν) be a measure space, and suppose $X=\bigcup_{n=1}^{\infty} E_{n}$, where $\left\{E_{n}\right\}$ is a collection of pairwise disjoint measurable sets such that $\nu\left(E_{n}\right)<\infty$ for all $n \geq 1$. Define μ on \mathcal{B} by $\mu(B)=\sum_{n=1}^{\infty} 2^{-n} \nu(B \cap$ $\left.E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right)$.
(a) Prove that μ is a finite measure on (X, \mathcal{B}). (10 pt.)
(b) Let $B \in \mathcal{B}$. Prove that $\mu(B)=0$ if and only if $\nu(B)=0$. (10 pt.)

Proof (a): Clearly $\mu(\emptyset)=0$, and

$$
\mu(X)=\sum_{n=1}^{\infty} 2^{-n} \nu\left(E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right) \leq \sum_{n=1}^{\infty} 2^{-n}=1<\infty
$$

Now, let $\left(C_{n}\right)$ be a disjoint sequence in \mathcal{B}. Then,

$$
\begin{aligned}
\mu\left(\bigcup_{m=1}^{\infty} C_{m}\right) & =\sum_{n=1}^{\infty} 2^{-n} \nu\left(\left(\bigcup_{m=1}^{\infty} C_{m}\right) \cap E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right) \\
& =\sum_{n=1}^{\infty} 2^{-n} \sum_{m=1}^{\infty} \nu\left(C_{m} \cap E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right) \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} 2^{-n} \nu\left(C_{m} \cap E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right) \\
& =\sum_{m=1}^{\infty} \mu\left(C_{m}\right) .
\end{aligned}
$$

Thus, μ is a finite measure.
Proof (b): Suppose that $\nu(B)=0$, then $\nu\left(B \cap E_{n}\right)=0$ for all n, hence $\mu(B)=0$. Conversely, suppose $\mu(B)=0$, then $\nu\left(B \cap E_{n}\right)=0$ for all n. Since $X=\bigcup_{n=1}^{\infty} E_{n}$ (disjoint union), then

$$
\nu(B)=\nu\left(B \cap \bigcup_{n=1}^{\infty} E_{n}\right)=\nu\left(\bigcup_{n=1}^{\infty}\left(B \cap E_{n}\right)\right)=\sum_{n=1}^{\infty} \nu\left(B \cap E_{n}\right)=0
$$

(2) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra, and λ Lebesgue measure. Determine the value of $\lim _{n \rightarrow \infty} \int_{(0, n)} x^{2}\left(1-\frac{x}{n}\right)^{n} d \lambda(x)$. (20 pt.)
Proof: Let $u_{n}(x)=\mathbf{1}_{(0, n)} x^{2}\left(1-\frac{x}{n}\right)^{n}$, then $\lim _{n \rightarrow \infty} u_{n}(x)=\mathbf{1}_{(0, \infty)} x^{2} e^{-x}$. Using the fact that $\left(1-\frac{x}{n}\right)^{n} \nearrow e^{-x}$, we see that $u_{n}(x) \leq \mathbf{1}_{(0, \infty)} x^{2} e^{-x}$. Since the function $x^{2} e^{-x}$ is measurable, non-negative and the improper Riemann integrable on $[0, \infty)$ exists, it follows that it is Lebesgue integrable on $[0, \infty)$ (and hence also on $(0, \infty)$) and its value equals the improper Riemann integral. By Lebesgue Dominated Convergence Theorem, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{(0, n)} x^{2}\left(1-\frac{x}{n}\right)^{n} d \lambda(x) & =\lim _{n \rightarrow \infty} \int u_{n}(x) d \lambda(x) \\
& =\int \mathbf{1}_{(0, \infty)} x^{2} e^{-x} d \lambda(x)=\int_{0}^{\infty} x^{2} e^{-x} d x=2
\end{aligned}
$$

(3) Let X be a set, and $\mathcal{C} \subseteq \mathcal{P}(X)$. Consider $\sigma(\mathcal{C})$, the smallest σ-algebra over X containing \mathcal{C}, and let \mathcal{D} be the collection of sets $A \in \sigma(\mathcal{C})$ with the property that there exists a countable collection $\mathcal{C}_{0} \subseteq \mathcal{C}$ (depending on A) such that $A \in \sigma\left(\mathcal{C}_{0}\right)$.
(a) Show that \mathcal{D} is a σ-algebra over X. (12 pt.)
(b) Show that $\mathcal{D}=\sigma(\mathcal{C})$. (8 pt .)

Proof (a): Clearly $\emptyset \in \mathcal{D}$ since \emptyset belongs to every σ-algebra. Let $A \in \mathcal{D}$, then there is a countable collection $\mathcal{C}_{0} \subseteq \mathcal{C}$ such that $A \in \sigma\left(\mathcal{C}_{0}\right)$. But then $A^{c} \in \sigma\left(\mathcal{C}_{0}\right)$, hence $A^{c} \in \mathcal{D}$. Finally, let $\left\{A_{n}\right\}$ be in \mathcal{D}, then for each n there exists a countable collection $\mathcal{C}_{n} \subseteq \mathcal{C}$ such that $A_{n} \in \sigma\left(\mathcal{C}_{n}\right)$. Let $\mathcal{C}_{0}=\bigcup_{n} \mathcal{C}_{n}$, then $\mathcal{C}_{0} \subseteq \mathcal{C}$, and \mathcal{C}_{0} is countable. Furthermore, $\sigma\left(\mathcal{C}_{n}\right) \subseteq \sigma\left(\mathcal{C}_{0}\right)$, and hence $A_{n} \in \sigma\left(\mathcal{C}_{0}\right)$ for each n which implies that $\bigcup_{n} A_{n} \in \sigma\left(\mathcal{C}_{0}\right)$. Therefore, $\bigcup_{n} A_{n} \in \mathcal{D}$ and \mathcal{D} is a σ-algebra.
Proof (b): By definition $\mathcal{D} \subseteq \sigma(\mathcal{C})$. Also, $\mathcal{C} \subseteq \mathcal{D}$ since $C \in \sigma(\{C\})$ for every $C \in \mathcal{C}$. Since $\sigma(\mathcal{C})$ is the smallest σ-algebra over X containg \mathcal{C}, then by part (a) $\sigma(\mathcal{C}) \subseteq \mathcal{D}$. Thus, $\mathcal{D}=\sigma(\mathcal{C})$.
(4) Let $\left(X, \mathcal{A}, \mu_{1}\right)$ and $\left(Y, \mathcal{B}, \nu_{1}\right)$ be σ-finite measure spaces. Suppose $f \in \mathcal{L}^{1}\left(\mu_{1}\right)$ and $g \in \mathcal{L}^{1}\left(\nu_{1}\right)$ are non-negative. Define measures μ_{2} on \mathcal{A} and ν_{2} on \mathcal{B} by

$$
\mu_{2}(A)=\int_{A} f d \mu_{1} \text { and } \nu_{2}(B)=\int_{B} g d \nu_{1},
$$

for $A \in \mathcal{A}$ and $B \in \mathcal{B}$.
(a) For $D \in \mathcal{A} \otimes \mathcal{B}$ and $y \in Y$, let $D_{y}=\{x \in X:(x, y) \in D\}$. Show that if $\mu_{1}\left(D_{y}\right)=0 \nu_{1}$ a.e., then $\mu_{2}\left(D_{y}\right)=0 \nu_{2}$ a.e. (7 pt.)
(b) Show that if $D \in \mathcal{A} \otimes \mathcal{B}$ is such that $\left(\mu_{1} \times \nu_{1}\right)(D)=0$ then $\left(\mu_{2} \times \nu_{2}\right)(D)=0$. (6 pt.)
(c) Show that for every $D \in \mathcal{A} \otimes \mathcal{B}$ one has

$$
\left(\mu_{2} \times \nu_{2}\right)(D)=\int_{D} f(x) g(y) d\left(\mu_{1} \times \nu_{1}\right)(x, y)
$$

(7 pt.)
$\operatorname{Proof}(\mathbf{a})$ Suppose $\mu_{1}\left(D_{y}\right)=0 \nu_{1}$ a.e. Let $B=\left\{y \in Y: \mu_{1}\left(D_{y}\right)>0\right\}$, and $C=\{y \in Y$: $\left.\mu_{2}\left(D_{y}\right)>0\right\}$. By our assumption, $\nu_{1}(B)=0$. By Theorem 10.9(ii), for any $y \in Y \backslash B$ one has $\mu_{2}\left(D_{y}\right)=0$. Thus, $C \subset B$, so that $\nu_{1}(C)=0$. Applying Theorem 10.9(ii) again, we see that $\nu_{2}(C)=0$. Thus, $\mu_{2}\left(D_{y}\right)=0 \nu_{2}$ a.e.
$\operatorname{Proof}(\mathbf{b})$ Suppose that $D \in \mathcal{A} \otimes \mathcal{B}$ is such that $\left(\mu_{1} \times \nu_{1}\right)(D)=0$. Then,

$$
\int \mu_{1}\left(D_{y}\right) d \nu_{1}(y)=\left(\mu_{1} \times \nu_{1}\right)(D)=0
$$

By Theorem 10.9(i), we have that $\mu_{1}\left(D_{y}\right)=0 \nu_{1}$ a.e. By part (a) above this implies that $\mu_{2}\left(D_{y}\right)=0 \nu_{2}$ a.e. Thus, by Theorem 10.9(i)

$$
\left(\mu_{2} \times \nu_{2}\right)(D)=\int \mu_{2}\left(D_{y}\right) d \nu_{2}(y)=0
$$

Proof(c) By Tonelli's Theorem, we have

$$
\begin{aligned}
\left(\mu_{2} \times \nu_{2}\right)(D) & =\int_{Y} \int_{X} \mathbf{1}_{D_{y}}(x) d \mu_{2}(x) d \nu_{2}(y) \\
& =\int_{Y}\left(\int_{X} \mathbf{1}_{D_{y}}(x) f(x) d \mu_{1}(x)\right) d \nu_{2}(y) \\
& =\int_{Y}\left(\int_{X} \mathbf{1}_{D_{y}}(x) f(x) d \mu_{1}(x)\right) g(y) d \nu_{1}(y) \\
& =\int_{Y} \int_{X} \mathbf{1}_{D}(x, y) f(x) g(y) d \mu_{1}(x) d \nu_{1}(y) \\
& =\int_{X \times Y} \mathbf{1}_{D}(x, y) f(x) g(y) d\left(\mu_{1} \times \nu_{1}\right)(x, y) \\
& =\int_{D} f(x) g(y) d\left(\mu_{1} \times \nu_{1}\right)(x, y) .
\end{aligned}
$$

(5) Let (X, \mathcal{A}, μ) be a probability space and let $f \in \mathcal{M}(\mathcal{A})$. Suppose $\left(f_{n}\right) \subset \mathcal{M}(\mathcal{A})$ converges in measure to f, i.e. $f_{n} \xrightarrow{\mu} f$.
(a) Show that there exists a sequence $n_{1}<n_{2}<\cdots$ such that

$$
\mu\left(\left\{x \in X:\left|f_{n_{k}}(x)-f(x)\right|>1 / k\right\}\right) \leq 2^{-k}
$$

for all $k \geq 1$. (8 pt .)
(b) Let $A_{k}=\left\{x \in X:\left|f_{n_{k}}(x)-f(x)\right|>1 / k\right\}$ and $A=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$. Show that $\mu(A)=0$, and $\lim _{n \rightarrow \infty} f_{n_{k}}(x)=f(x)$ for all $x \notin A$. Conclude that $f_{n_{k}}^{n=1} \rightarrow f \mu$ a.e. (12 pt.)
$\operatorname{Proof}(\mathbf{a})$ Using convergence in measure, the sequence n_{k} is defined inductively as follows. Starting with $\epsilon_{1}=1$, we find n_{1} such that $\mu\left(\left\{x \in X:\left|f_{n_{k}}(x)-f(x)\right|>1\right\}\right) \leq 2^{-1}$. Now choose $\epsilon_{2}=1 / 2$, we find $n_{2}>n_{1}$ such that $\mu\left(\left\{x \in X:\left|f_{n_{2}}(x)-f(x)\right|>1 / 2\right\}\right) \leq 2^{-2}$. Continuing in this manner, we find at the k th stage an $n_{k}>n_{k-1}$ such that $\mu\left(\left\{x \in X:\left|f_{n_{k}}(x)-f(x)\right|>\right.\right.$ $1 / k\}) \leq 2^{-k}$.
$\operatorname{Proof}(\mathbf{b})$ Let $A_{k}=\left\{x \in X:\left|f_{n_{k}}(x)-f(x)\right|>1 / k\right\}$ and $A=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$. By part (a) $\mu\left(A_{k}\right) \leq 2^{-k}$ and hence $\sum_{k=1}^{\infty} \mu\left(A_{k}\right)<\infty$. By Borel-Cantelli Lemma (Exercise 6.9), we have $\mu(A)=0$. For $x \notin A$, there exists $n \geq 1$ such that $x \notin \bigcup_{k=n}^{\infty} A_{k}$. This implies that $x \notin A_{k}$ for all $k \geq n$ and therefore $\left|f_{n_{k}}(x)-f(x)\right| \leq 1 / k$ for all $k \geq n$. Thus, $\lim _{k \rightarrow \infty} f_{n_{k}}(x)=f(x)$ for all $x \in X \backslash A$. Since $\mu(X \backslash A)=1$ we have that $f_{n_{k}} \rightarrow f \mu$ a.e

