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1. Let (X,A) be a measure space such that A = σ(G), where G is a collection of subsets
of X such that ∅ ∈ G. Show that for any A ∈ A there exists a countable collection
GA ⊆ G such that A ∈ σ(GA). (2.5 pts.)

Proof We apply the good set principle. Let

B = {A ∈ A : ∃GA ⊆ G countable with A ∈ σ(GA)}.

Clearly B ⊆ A. To prove the reverse containment, we show that B is a σ-algebra
containing G. For A in G, let GA = {A}, clearly GA ⊆ G is countable and A ∈
σ(GA) = {∅, X,A,Ac}, so G ⊆ B. Note that ∅ ∈ B, since ∅ ∈ G. Now, let
A ∈ B, and GA ⊆ G countable with A ∈ σ(GA). Since σ(GA) is a σ-algebra, we
have Ac ∈ σ(GA). Taking GAc = GA we see that Ac ∈ B. Finally, let (An)n be
a countable collection in B. For each n ≥ 1, there exists a countable collection

GAn ⊆ G such that An ∈ σ(GAn) ⊆ σ
(⋃∞

n=1 GAn

)
. Now

⋃∞
n=1 GAn ⊆ G is countable

and
⋃∞

n=1An ∈ σ
(⋃∞

n=1 GAn

)
, so

⋃∞
n=1An ∈ B, and B is a σ-algebra hence A = B.

2. Let (X,A, µ) be a measure space, and (fn)n ⊂M+(A) a sequence of non-negative
real-valued measurable functions such that limn→∞ fn = f for some non-negative
measurable function f . Assume that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ <∞,

and let A ∈ A.

(i) Show that ∫
1Af dµ ≥ lim sup

n→∞

∫
1Afn dµ.

(Hint: apply Fatou’s lemma to the sequence gn = fn − 1Afn.) (2.5 pts.)

(ii) Prove that ∫
1Af dµ = lim

n→∞

∫
1Afn dµ.

(1 pt.)

Proof(i) Let gn = fn − 1Afn, then by hypothesis

f − 1Af = lim
n→∞

gn = lim inf
n→∞

gn.

Since

lim
n→∞

∫
fn dµ =

∫
f dµ,
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exists, then by Fatou’s Lemma, and the linearity of the integral we have∫
f dµ−

∫
1Af dµ ≤ lim inf

n→∞

∫
gn dµ = lim

n→∞

∫
fn dµ− lim sup

n→∞

∫
1Afn dµ.

The above gives∫
f dµ−

∫
1Af dµ ≤

∫
f dµ− lim sup

n→∞

∫
1Afn dµ.

Subtracting
∫
f dµ <∞ from both sides leads to∫

1Af dµ ≥ lim sup
n→∞

∫
1Afn dµ.

Proof(ii) By Fatou’s Lemma, we have∫
1Af dµ =

∫
lim
n→∞

1Afn dµ ≤ lim inf
n→∞

∫
1Afn dµ.

Combining with part (a), we have∫
1Af dµ = lim

n→∞

∫
1Afn dµ.

3. Let (X,A, µ) be a probability space (so µ(X) = 1), and T : X → X an A/A
measurable function satisfying the following two properties:

(a) µ(A) = µ(T−1(A)) for all A ∈ A,

(b) if A ∈ A is such that A = T−1(A), then µ(A) ∈ {0, 1}.
The n-fold composition of T with itself is denoted by T n = T ◦ T ◦ · · · ◦ T , and T−n

is the inverse image of the function T n.

(i) Let B ∈ A be such that µ(B∆T−1(B)) = 0. Prove that µ(B∆T−n(B)) = 0
for all n ≥ 1. (Hint: note that E∆F = (E ∩ F c) ∪ (F ∩ Ec), and that in
any measure space one has µ(E∆F ) ≤ µ(E∆G) + µ(G∆F ), justify the last
statement) (1 pt.)

(ii) Let B ∈ A be such that µ(B∆T−1(B)) = 0, and assume µ(B) > 0. Define
C =

⋂∞
m=1

⋃∞
n=m T

−n(B). Prove that C satisfies µ(C) > 0, and T−1(C) = C.
Conclude that µ(C) = 1. (1.5 pts.)

(iii) Let B and C be as in part (ii), show that

B∆C ⊆
∞⋃
n=1

(T−n(B)∆B).

Conclude that µ(B∆C) = 0, and µ(B) = 1. (1.5 pts.)
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Proof (i) We first show that for any three sets E,F,G ∈ A one has µ(E∆F ) ≤
µ(E∆G) + µ(G∆F ).

Note that

E ∩F c =
(
E ∩F c∩G

)
∪
(
E ∩F c∩Gc

)
⊆ (F c∩G)∪ (E ∩Gc) ⊆ (F∆G)∪ (E∆G).

Similarly,

F ∩Ec =
(
F ∩Ec∩G

)
∪
(
F ∩Ec∩Gc

)
⊆ (Ec∩G)∪ (F ∩Gc) ⊆ (E∆G)∪ (F∆G).

Thus,
E∆F ⊆ (E∆G) ∪ (F∆G).

By monotonicity and subadditivity of measures,

µ(E∆F ) ≤ µ(E∆G) + µ(G∆F ).

Note that inverse images respect all set operations, so by property (a) we have for
any n ≥ 1,

µ
(
T−1(B)∆T−(n+1)(B)

)
= µ

(
B∆T−n(B)

)
.

The proof is done by induction on n. By hypothesis the result is true for n = 1.

Assume it is true for n, i.e. µ
(
B∆T−n(B)

)
= 0, we show it is true for n + 1. By

part (a),

µ
(
B∆T−(n+1)(B)

)
≤ µ

(
B∆T−1(B)

)
+ µ
(
T−1(B)∆T−n(B)

)
= µ

(
B∆T−1(B)

)
+ µ
(
B∆T−n(B)

)
= 0.

The last equality follows from the induction hypothesis and our initial assumption
on B.

Proof (ii) Clearly C ∈ A. We first show that µ(C) > 0. Let Cm =
⋃∞

n=m T
−n(B),

note that Cm is a decreasing sequence, and C =
⋂∞

m=1Cm. By property (a) and
monotonicity of measures, we have for each m ≥ 1,

µ(Cm) ≥ µ
(
T−m(B)

)
= µ(B) > 0.

Thus by Theorem 4.4 (iii’),

µ(C) = lim
m→∞

µ(Cm) ≥ µ(B) > 0.

Since (Cm)m is a decreasing sequence, then

C =
∞⋂

m=1

Cm =
∞⋂

m=2

Cm = T−1(C).

By property (b), and the fact µ(C) > 0, we have that µ(C) = 1.
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Proof (iii)

B∆C =
(
B ∩

∞⋃
m=1

∞⋂
n=m

T−n(Bc)
)
∪
(
Bc ∩

∞⋂
m=1

∞⋃
n=m

T−n(B)
)

⊆
(
B ∩

∞⋃
m=1

T−m(Bc)
)
∪
(
Bc ∩

∞⋃
n=1

T−n(B)
)

=
∞⋃
n=1

(
B ∩ T−n(Bc)

)
∪
(
Bc ∩ T−n(B)

)
=

∞⋃
n=1

(
B∆T−n(B)

)
.

By monotonicity and σ-subadditivity of measures, it follows from part (i) that

µ(B∆C) ≤
∞∑
n=1

µ(B∆T−n(B)) = 0.

Thus, µ(B∆C) = 0. This imples that µ(B ∩ Cc) = µ(C ∩Bc) = 0, so

µ(B) = µ(B ∩ C) = µ(C) = 1.
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