Measure and Integration Solutions Quiz, 2016-17

1. Let (X, \mathcal{A}) be a measure space such that $\mathcal{A}=\sigma(\mathcal{G})$, where \mathcal{G} is a collection of subsets of X such that $\emptyset \in \mathcal{G}$. Show that for any $A \in \mathcal{A}$ there exists a countable collection $\mathcal{G}_{A} \subseteq \mathcal{G}$ such that $A \in \sigma\left(\mathcal{G}_{A}\right)$. (2.5 pts.)

Proof We apply the good set principle. Let

$$
\mathcal{B}=\left\{A \in \mathcal{A}: \exists \mathcal{G}_{A} \subseteq \mathcal{G} \text { countable with } A \in \sigma\left(\mathcal{G}_{A}\right)\right\}
$$

Clearly $\mathcal{B} \subseteq \mathcal{A}$. To prove the reverse containment, we show that \mathcal{B} is a σ-algebra containing \mathcal{G}. For A in \mathcal{G}, let $\mathcal{G}_{A}=\{A\}$, clearly $\mathcal{G}_{A} \subseteq \mathcal{G}$ is countable and $A \in$ $\sigma\left(\mathcal{G}_{A}\right)=\left\{\emptyset, X, A, A^{c}\right\}$, so $\mathcal{G} \subseteq \mathcal{B}$. Note that $\emptyset \in \mathcal{B}$, since $\emptyset \in \mathcal{G}$. Now, let $A \in \mathcal{B}$, and $\mathcal{G}_{A} \subseteq \mathcal{G}$ countable with $A \in \sigma\left(\mathcal{G}_{A}\right)$. Since $\sigma\left(\mathcal{G}_{A}\right)$ is a σ-algebra, we have $A^{c} \in \sigma\left(\mathcal{G}_{A}\right)$. Taking $\mathcal{G}_{A^{c}}=\mathcal{G}_{A}$ we see that $A^{c} \in \mathcal{B}$. Finally, let $\left(A_{n}\right)_{n}$ be a countable collection in \mathcal{B}. For each $n \geq 1$, there exists a countable collection $\mathcal{G}_{A_{n}} \subseteq \mathcal{G}$ such that $A_{n} \in \sigma\left(\mathcal{G}_{A_{n}}\right) \subseteq \sigma\left(\bigcup_{n=1}^{\infty} \mathcal{G}_{A_{n}}\right)$. Now $\bigcup_{n=1}^{\infty} \mathcal{G}_{A_{n}} \subseteq \mathcal{G}$ is countable and $\bigcup_{n=1}^{\infty} A_{n} \in \sigma\left(\bigcup_{n=1}^{\infty} \mathcal{G}_{A_{n}}\right)$, so $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{B}$, and \mathcal{B} is a σ-algebra hence $\mathcal{A}=\mathcal{B}$.
2. Let (X, \mathcal{A}, μ) be a measure space, and $\left(f_{n}\right)_{n} \subset \mathcal{M}^{+}(\mathcal{A})$ a sequence of non-negative real-valued measurable functions such that $\lim _{n \rightarrow \infty} f_{n}=f$ for some non-negative measurable function f. Assume that

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu<\infty
$$

and let $A \in \mathcal{A}$.
(i) Show that

$$
\int \mathbf{1}_{A} f d \mu \geq \limsup _{n \rightarrow \infty} \int \mathbf{1}_{A} f_{n} d \mu
$$

(Hint: apply Fatou's lemma to the sequence $g_{n}=f_{n}-\mathbf{1}_{A} f_{n}$.) (2.5 pts .)
(ii) Prove that

$$
\int \mathbf{1}_{A} f d \mu=\lim _{n \rightarrow \infty} \int \mathbf{1}_{A} f_{n} d \mu
$$

(1 pt.)
$\operatorname{Proof}(\mathbf{i})$ Let $g_{n}=f_{n}-\mathbf{1}_{A} f_{n}$, then by hypothesis

$$
f-\mathbf{1}_{A} f=\lim _{n \rightarrow \infty} g_{n}=\liminf _{n \rightarrow \infty} g_{n} .
$$

Since

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu
$$

exists, then by Fatou's Lemma, and the linearity of the integral we have

$$
\int f d \mu-\int \mathbf{1}_{A} f d \mu \leq \liminf _{n \rightarrow \infty} \int g_{n} d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu-\limsup _{n \rightarrow \infty} \int \mathbf{1}_{A} f_{n} d \mu
$$

The above gives

$$
\int f d \mu-\int \mathbf{1}_{A} f d \mu \leq \int f d \mu-\underset{n \rightarrow \infty}{\limsup } \int \mathbf{1}_{A} f_{n} d \mu
$$

Subtracting $\int f d \mu<\infty$ from both sides leads to

$$
\int \mathbf{1}_{A} f d \mu \geq \limsup _{n \rightarrow \infty} \int \mathbf{1}_{A} f_{n} d \mu
$$

Proof(ii) By Fatou's Lemma, we have

$$
\int \mathbf{1}_{A} f d \mu=\int \lim _{n \rightarrow \infty} \mathbf{1}_{A} f_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int \mathbf{1}_{A} f_{n} d \mu
$$

Combining with part (a), we have

$$
\int \mathbf{1}_{A} f d \mu=\lim _{n \rightarrow \infty} \int \mathbf{1}_{A} f_{n} d \mu
$$

3. Let (X, \mathcal{A}, μ) be a probability space (so $\mu(X)=1$), and $T: X \rightarrow X$ an $\mathcal{A} / \mathcal{A}$ measurable function satisfying the following two properties:
(a) $\mu(A)=\mu\left(T^{-1}(A)\right)$ for all $A \in \mathcal{A}$,
(b) if $A \in \mathcal{A}$ is such that $A=T^{-1}(A)$, then $\mu(A) \in\{0,1\}$.

The n-fold composition of T with itself is denoted by $T^{n}=T \circ T \circ \cdots \circ T$, and T^{-n} is the inverse image of the function T^{n}.
(i) Let $B \in \mathcal{A}$ be such that $\mu\left(B \Delta T^{-1}(B)\right)=0$. Prove that $\mu\left(B \Delta T^{-n}(B)\right)=0$ for all $n \geq 1$. (Hint: note that $E \Delta F=\left(E \cap F^{c}\right) \cup\left(F \cap E^{c}\right)$, and that in any measure space one has $\mu(E \Delta F) \leq \mu(E \Delta G)+\mu(G \Delta F)$, justify the last statement) (1 pt.)
(ii) Let $B \in \mathcal{A}$ be such that $\mu\left(B \Delta T^{-1}(B)\right)=0$, and assume $\mu(B)>0$. Define $C=\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} T^{-n}(B)$. Prove that C satisfies $\mu(C)>0$, and $T^{-1}(C)=C$. Conclude that $\mu(C)=1$. (1.5 pts.)
(iii) Let B and C be as in part (ii), show that

$$
B \Delta C \subseteq \bigcup_{n=1}^{\infty}\left(T^{-n}(B) \Delta B\right)
$$

Conclude that $\mu(B \Delta C)=0$, and $\mu(B)=1$. (1.5 pts.)

Proof (i) We first show that for any three sets $E, F, G \in \mathcal{A}$ one has $\mu(E \Delta F) \leq$ $\mu(E \Delta G)+\mu(G \Delta F)$.
Note that
$E \cap F^{c}=\left(E \cap F^{c} \cap G\right) \cup\left(E \cap F^{c} \cap G^{c}\right) \subseteq\left(F^{c} \cap G\right) \cup\left(E \cap G^{c}\right) \subseteq(F \Delta G) \cup(E \Delta G)$.
Similarly,
$F \cap E^{c}=\left(F \cap E^{c} \cap G\right) \cup\left(F \cap E^{c} \cap G^{c}\right) \subseteq\left(E^{c} \cap G\right) \cup\left(F \cap G^{c}\right) \subseteq(E \Delta G) \cup(F \Delta G)$.
Thus,

$$
E \Delta F \subseteq(E \Delta G) \cup(F \Delta G)
$$

By monotonicity and subadditivity of measures,

$$
\mu(E \Delta F) \leq \mu(E \Delta G)+\mu(G \Delta F)
$$

Note that inverse images respect all set operations, so by property (a) we have for any $n \geq 1$,

$$
\mu\left(T^{-1}(B) \Delta T^{-(n+1)}(B)\right)=\mu\left(B \Delta T^{-n}(B)\right) .
$$

The proof is done by induction on n. By hypothesis the result is true for $n=1$. Assume it is true for n, i.e. $\mu\left(B \Delta T^{-n}(B)\right)=0$, we show it is true for $n+1$. By part (a),

$$
\begin{aligned}
\mu\left(B \Delta T^{-(n+1)}(B)\right) & \leq \mu\left(B \Delta T^{-1}(B)\right)+\mu\left(T^{-1}(B) \Delta T^{-n}(B)\right) \\
& =\mu\left(B \Delta T^{-1}(B)\right)+\mu\left(B \Delta T^{-n}(B)\right)=0
\end{aligned}
$$

The last equality follows from the induction hypothesis and our initial assumption on B.

Proof (ii) Clearly $C \in \mathcal{A}$. We first show that $\mu(C)>0$. Let $C_{m}=\bigcup_{n=m}^{\infty} T^{-n}(B)$, note that C_{m} is a decreasing sequence, and $C=\bigcap_{m=1}^{\infty} C_{m}$. By property (a) and monotonicity of measures, we have for each $m \geq 1$,

$$
\mu\left(C_{m}\right) \geq \mu\left(T^{-m}(B)\right)=\mu(B)>0 .
$$

Thus by Theorem 4.4 (iii'),

$$
\mu(C)=\lim _{m \rightarrow \infty} \mu\left(C_{m}\right) \geq \mu(B)>0
$$

Since $\left(C_{m}\right)_{m}$ is a decreasing sequence, then

$$
C=\bigcap_{m=1}^{\infty} C_{m}=\bigcap_{m=2}^{\infty} C_{m}=T^{-1}(C) .
$$

By property (b), and the fact $\mu(C)>0$, we have that $\mu(C)=1$.

Proof (iii)

$$
\begin{aligned}
B \Delta C & =\left(B \cap \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} T^{-n}\left(B^{c}\right)\right) \cup\left(B^{c} \cap \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} T^{-n}(B)\right) \\
& \subseteq\left(B \cap \bigcup_{m=1}^{\infty} T^{-m}\left(B^{c}\right)\right) \cup\left(B^{c} \cap \bigcup_{n=1}^{\infty} T^{-n}(B)\right) \\
& =\bigcup_{n=1}^{\infty}\left(B \cap T^{-n}\left(B^{c}\right)\right) \cup\left(B^{c} \cap T^{-n}(B)\right) \\
& =\bigcup_{n=1}^{\infty}\left(B \Delta T^{-n}(B)\right) .
\end{aligned}
$$

By monotonicity and σ-subadditivity of measures, it follows from part (i) that

$$
\mu(B \Delta C) \leq \sum_{n=1}^{\infty} \mu\left(B \Delta T^{-n}(B)\right)=0 .
$$

Thus, $\mu(B \Delta C)=0$. This imples that $\mu\left(B \cap C^{c}\right)=\mu\left(C \cap B^{c}\right)=0$, so

$$
\mu(B)=\mu(B \cap C)=\mu(C)=1
$$

