Measure and Integration Solutions Quiz Extra, 2016-17

1. Let X be a set and \mathcal{F} a collection of real valued functions on X satisfying the following properties:
(i) \mathcal{F} contains the constant functions,
(ii) if $f, g \in \mathcal{F}$ and $c \in \mathbb{R}$, then $f+g, f g, c f \in \mathcal{F}$,
(ii) if $f_{n} \in \mathcal{F}$, and $f=\lim _{n \rightarrow \infty} f_{n}$, then $f \in \mathcal{F}$.

For $A \subseteq X$, denote by $\mathbf{1}_{A}$ the indicator function of A, i.e.

$$
\mathbf{1}_{A}(x)= \begin{cases}1 & x \in A \\ 0, & x \notin A\end{cases}
$$

Show that the collection $\mathcal{A}=\left\{A \subseteq X: \mathbf{1}_{A} \in \mathcal{F}\right\}$ is a σ-algebra. (2.5 pts.)
Proof Since $\mathbf{1}_{X}(x)=1$ for all $x \in X$, then $\mathbf{1}_{X}$ is the constant function 1 so by property (i), $\mathbf{1}_{X} \in \mathcal{F}$ and hence $X \in \mathcal{A}$. Now, let $A \in \mathcal{A}$, then $\mathbf{1}_{A} \in \mathcal{F}$. Since $\mathbf{1}_{A^{c}}=1-\mathbf{1}_{A}$, then by property (ii) we have $\mathbf{1}_{A^{c}} \in \mathcal{F}$ so $A^{c} \in \mathcal{A}$. Finally, consider a sequence $\left(A_{n}\right)$ with $A_{n} \in \mathcal{A}$, then $\mathbf{1}_{A_{n}} \in \mathcal{F}$ for all n, and by the above $\mathbf{1}_{A_{n}^{c}} \in \mathcal{F}$ for all n. By property (ii), we have $\mathbf{1}_{A_{1}^{c}} \mathbf{1}_{A_{2}^{c}} \cdots \mathbf{1}_{A_{n}^{c}} \in \mathcal{F}$, hence $\mathbf{1}_{\cup_{m=1}^{n} A_{m}}=1-\mathbf{1}_{\cap_{m=1}^{n} A_{m}^{c}}=$ $1-\mathbf{1}_{A_{1}^{c}} \mathbf{1}_{A_{2}^{c}} \cdots \mathbf{1}_{A_{n}^{c}} \in \mathcal{F}$ for all n. Since $\mathbf{1}_{\cup_{n=1}^{\infty} A_{n}}=\lim _{n \rightarrow \infty} \mathbf{1}_{\cup_{m=1}^{m} A_{m}}$, then by property (iii) $\mathbb{1}_{\cup_{n=1}^{\infty} A_{n}} \in \mathcal{F}$, so $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{A}$. Thus \mathcal{A} is a σ-algebra.
2. Let (X, \mathcal{D}, μ) be a measure space, and let $\overline{\mathcal{D}}^{\mu}$ be the completion of the σ-algebra \mathcal{D} with respect to the measure μ (see exercise 4.13, p.29). We denote by $\bar{\mu}$ the extension of the measure μ to the σ-algebra $\overline{\mathcal{D}}^{\mu}$. Suppose $f: X \rightarrow X$ is a function such that $f^{-1}(B) \in \mathcal{D}$ and $\mu\left(f^{-1}(B)\right)=\mu(B)$ for each $B \in \mathcal{D}$. Show that $f^{-1}(\bar{B}) \in \overline{\mathcal{D}}^{\mu}$ and $\bar{\mu}\left(f^{-1}(\bar{B})\right)=\bar{\mu}(\bar{B})$ for all $\bar{B} \in \overline{\mathcal{D}}^{\mu} .(2.5$ pts.)

Proof: Let $\bar{B} \in \overline{\mathcal{D}}^{\mu}$, then there exist $A, B \in \mathcal{D}$ such that $A \subseteq \bar{B} \subseteq B, \mu(B \backslash A)=0$ and $\bar{\mu}(\bar{B})=\mu(A)$. Then, $f^{-1}(A), f^{-1}(B) \in \mathcal{D}$ satisfy $f^{-1}(A) \subseteq f^{-1}(\bar{B}) \subseteq f^{-1}(B)$ and $\mu\left(f^{-1}(B) \backslash f^{-1}(A)\right)=\mu\left(f^{-1}(B \backslash A)\right)=\mu(B \backslash A)=0$. Thus, $f^{-1}(\bar{B}) \in \overline{\mathcal{D}}^{\mu}$ and $\bar{\mu}\left(f^{-1}(\bar{B})\right)=\mu\left(f^{-1}(A)=\mu(A)=\bar{\mu}(\bar{B})\right.$.
3. Consider the measure space $([0,1] \mathcal{B}([0,1]), \lambda)$, where $\mathcal{B}([0,1])$ is the restriction of the Borel σ-algebra to $[0,1]$, and λ is the restriction of Lebesgue measure to $[0,1]$. Let E_{1}, \cdots, E_{m} be a collection of Borel measurable subsets of $[0,1]$ such that every element $x \in[0,1]$ belongs to at least n sets in the collection $\left\{E_{j}\right\}_{j=1}^{m}$, where $n \leq m$. Show that there exists a $j \in\{1, \cdots, m\}$ such that $\lambda\left(E_{j}\right) \geq \frac{n}{m}$. (2.5 pts.)

Proof: By hypothesis, for any $x \in[0,1]$ we have $\sum_{j=}^{m} \mathbf{1}_{E_{j}}(x) \geq n$. Assume for the sake of getting a contradiction that $\lambda\left(E_{j}\right)<\frac{n}{m}$ for all $1 \leq j \leq m$. Then,

$$
n=\int_{[0,1]} n d \lambda \leq \int \sum_{j=}^{m} \mathbf{1}_{E_{j}}(x) d \lambda=\sum_{j=1}^{m} \lambda\left(E_{j}\right)<\sum_{j=}^{m} \frac{n}{m}=n,
$$

a contradiction. Hence, there exists $j \in\{1, \cdots, m\}$ such that $\lambda\left(E_{j}\right) \geq \frac{n}{m}$.
4. Let μ and ν be two measures on the measure space (E, \mathcal{B}) such that $\mu(A) \leq \nu(A)$ for all $A \in \mathcal{B}$. Show that if f is any non-negative measurable function on (E, \mathcal{B}), then $\int_{E} f d \mu \leq \int_{E} f d \nu$. (2.5 pts.)

Proof Suppose first that $f=1_{A}$ is the indicator function of some set $A \in \mathcal{B}$. Then

$$
\int_{E} f d \mu=\mu(A) \leq \nu(A)=\int_{E} f d \nu
$$

Suppose now that $f=\sum_{k=1}^{n} \alpha_{k} 1_{A_{k}}$ is a non-negative measurable simple function. Then,

$$
\int_{E} f d \mu=\sum_{k=1}^{n} \alpha_{k} \mu\left(A_{k}\right) \leq \sum_{k=1}^{n} \alpha_{k} \nu\left(A_{k}\right)=\int_{E} f d \nu
$$

Finally, let f be a non-negative measurable function, then there exists a sequence of non-negative measurable simple functions f_{n} such that $f_{n} \uparrow f$. By Beppo-Levi,

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \leq \lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu=\int_{E} f d \nu
$$

