Measure and Integration: Final 2016-17

(1) Consider the measure space $[1, \infty), \mathcal{B}([1, \infty]), \lambda$ where $\mathcal{B}([1, \infty])$ is the Borel σ -algebra and λ is the Lebesgue measure restricted to $[1, \infty)$. Show that

$$\lim_{n \to \infty} \int_{[1,\infty)} \frac{n \sin(x/n)}{x^3} \, d\lambda(x) = 1.$$

(Hint: $\lim_{x\to 0} \sin(x)/x = 1$) (2 pts)

(2) Let (X, \mathcal{A}, μ) be a finite measure space, and $\Phi : [0, \infty) \to [0, \infty)$ a monotonically increasing function such that $\lim_{r \to \infty} \frac{\Phi(r)}{r} = \infty$. Let M > 0, and

$$\mathcal{F} = \{ f \in \mathcal{L}^1(\mu) : \int_X \Phi \circ |f| \, d\mu \le M \}.$$

(a) Prove that for each $\epsilon > 0$, there exists a real number N > 0 such that for all $f \in \mathcal{F}$ one has

$$\int_{\{|f|>N\}} |f| \, d\mu \le \frac{\epsilon}{M} \int_{\{|f|>N\}} \Phi \circ |f| \, d\mu$$

(1 pt)

- (b) Let $1 \le p < \infty$ and (f_n) be a sequence of measurable functions such that $f_n^p \in \mathcal{F}$ for $n \ge 1$. Assume that $f_n \xrightarrow{\mu} f$ i.e. (f_n) converges to f in μ measure with $f \in \mathcal{L}^p(\mu)$. Show that $\lim_{n \to \infty} ||f_n - f||_p = 0$. (1 pt)
- (3) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ is Lebesgue measure.
 - (a) Prove that for $f \in \mathcal{L}^1(\lambda)$, and $n \in \mathbb{Z}$ one has $\int_{[0,1]} f(x+n) d\lambda(x) = \int_{[n,n+1]} f(x) d\lambda(x)$. (1.5 pts)
 - (b) Let $f \in \mathcal{L}^{1}(\lambda)$, and define $g(x) = \mathbf{1}_{[0,1]}(x) \sum_{n \in \mathbb{Z}} f(x+n)$. Show that $g \in \mathcal{L}^{1}(\lambda)$ and that $\int_{\mathbb{R}} g(x) d\lambda(x) = \int_{\mathbb{R}} f(x) d\lambda(x).$ (1 pt)
- (4) Let (X, \mathcal{A}, μ) be a measure space, and $p, q \in (1, \infty)$ and $r \ge 1$ be such that 1/r = 1/p + 1/q. Show that if $f \in \mathcal{L}^p(\mu)$ and $g \in \mathcal{L}^q(\mu)$, then $fg \in \mathcal{L}^r(\mu)$ and $||fg||_r \le ||f||_p ||g||_q$. (1.5 pts)
- (5) Let $E = \{(x, y) : 0 < x < 1, 0 < y < \infty\}$. We consider on E the restriction of the product Borel σ -algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f : E \to \mathbb{R}$ be given by $f(x, y) = e^{-y} \sin(2xy)$.
 - (a) Show that f is $\lambda \times \lambda$ integrable on E. (0.5 pts)
 - (b) Applying Fubini's Theorem to the function f, show that

$$\int_0^\infty e^{-y} \frac{\sin^2(y)}{y} \, d\lambda(y) = \frac{\log 5}{4}.$$

(Hint: use integration by parts twice to calculate $(R) \int_0^\infty e^{-y} \sin(2xy) \, dy$) (1.5 pts)