Measure and Integration: Solution Final 2016-17

(1) Consider the measure space $[1, \infty), \mathcal{B}([1, \infty]), \lambda)$ where $\mathcal{B}([1, \infty])$ is the Borel σ-algebra and λ is the Lebesgue measure restricted to $[1, \infty)$. Show that

$$
\lim _{n \rightarrow \infty} \int_{[1, \infty)} \frac{n \sin (x / n)}{x^{3}} d \lambda(x)=1
$$

(Hint: $\left.\lim _{x \rightarrow 0} \sin (x) / x=1\right)(2 \mathrm{pts})$

Proof: Let $u_{n}(x)=\frac{n \sin (x / n)}{x^{3}}$, then u_{n} is continuous on $[1, \infty)$ and hence is measurable. Note that $|\sin (y)| \leq y$ for all $y \geq 0$, hence $u_{n}(x) \leq 1 / x^{2}$. Furthermore, $\lim _{n \rightarrow \infty} u_{n}(x)=\frac{1}{x^{2}}$. Since the function $\frac{1}{x^{2}}$ is positive, measurable and the improper Riemann integral on $[1, \infty)$ exists, it follows it is Lebesgue integrable on $[1, \infty)$. By Lebesgue Dominated Convergence Theorem we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{[1, \infty)} \frac{n \sin (x / n)}{x^{3}} d \lambda(x) & =\int_{[1, \infty)} \lim _{n \rightarrow \infty} \frac{n \sin (x / n)}{x^{3}} d \lambda(x) \\
& =\int_{[1, \infty)} \frac{1}{x^{2}} d \lambda(x) \\
& =(R) \int_{1}^{\infty} \frac{1}{x^{2}} d x=1
\end{aligned}
$$

(2) Let (X, \mathcal{A}, μ) be a finite measure space, and $\Phi:[0, \infty) \rightarrow[0, \infty)$ a monotonically increasing function such that $\lim _{r \rightarrow \infty} \frac{\Phi(r)}{r}=\infty$. Let $M>0$, and

$$
\mathcal{F}=\left\{f \in \mathcal{L}^{1}(\mu): \int_{X} \Phi \circ|f| d \mu \leq M\right\}
$$

(a) Prove that for each $\epsilon>0$, there exists a real number $N>0$ such that for all $f \in \mathcal{F}$ one has

$$
\int_{\{|f|>N\}}|f| d \mu \leq \frac{\epsilon}{M} \int_{\{|f|>N\}} \Phi \circ|f| d \mu .
$$

(1 pt)
(b) Let $1 \leq p<\infty$ and $\left(f_{n}\right)$ be a sequence of measurable functions such that $f_{n}^{p} \in \mathcal{F}$ for $n \geq 1$. Assume that $f_{n} \xrightarrow{\mu} f$ i.e. $\left(f_{n}\right)$ converges to f in μ measure with $f \in \mathcal{L}^{p}(\mu)$. Show that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$. (1 pt)

Proof (a): First note by Exercise 2(a) of hand-in set 3 that Φ is Borel measurable. Let $\epsilon>0$, since $\lim _{r \rightarrow \infty} \frac{\Phi(r)}{r}=\infty$ one can find $N>0$ such that $\frac{\Phi(r)}{r} \geq \frac{M}{\epsilon}$ for all $r>N$. Hence, if $f \in \mathcal{F}$, and $x \in\{x \in X:|f|(x)>N\}$ then $\frac{\Phi(|f|(x))}{|f|(x)} \geq \frac{M}{\epsilon}$, i.e. $|f|(x) \leq \frac{\epsilon}{M} \Phi(|f|(x))$. Thus,

$$
\int_{\{|f|>N\}}|f| d \mu \leq \frac{\epsilon}{M} \int_{\{|f|>N\}} \Phi \circ|f| d \mu .
$$

Proof (b): We first show that the collection \mathcal{F} is uniformly integrable. Let $\epsilon>0$, and N as in part (a). Since $\mu(X)<\infty$, then the constant function $w_{\epsilon}(x)=N$ is in $\mathcal{L}^{1}(\mu)$. Since $\Phi \circ|f| \geq 0$, by part (a) we have for any $f \in \mathcal{F}$,

$$
\int_{\{|f|>N\}}|f| d \mu \leq \frac{\epsilon}{M} \int_{\{|f|>N\}} \Phi \circ|f| d \mu \leq \frac{\epsilon}{M} \int_{X} \Phi \circ|f| d \mu \leq \epsilon
$$

Hence, the collection \mathcal{F} is uniformly integrable. Since the function $x \rightarrow x^{p}$ is continuous, by Exercise 6.10 (iii) we see that $f_{n}^{p} \xrightarrow{\mu} f^{p}$. Since $f_{n}^{p} \in \mathcal{F}$, the sequence $\left(\left|f_{n}\right|^{p}\right)$ is uniformly integrable, hence by Vitali's Theorem $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$.
(3) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra, and λ is Lebesgue measure.
(a) Prove that for $f \in \mathcal{L}^{1}(\lambda)$, and $n \in \mathbb{Z}$ one has $\int_{[0,1]} f(x+n) d \lambda(x)=\int_{[n, n+1]} f(x) d \lambda(x)$. (1.5 pts)
(b) Let $f \in \mathcal{L}^{1}(\lambda)$, and define $g(x)=\mathbf{1}_{[0,1]}(x) \sum_{n \in \mathbb{Z}} f(x+n)$. Show that $g \in \mathcal{L}^{1}(\lambda)$ and that

$$
\begin{equation*}
\int_{\mathbb{R}} g(x) d \lambda(x)=\int_{\mathbb{R}} f(x) d \lambda(x) \tag{1pt}
\end{equation*}
$$

Proof (a): We use the standard argument. First assume $f=\mathbf{1}_{A}$ where $A \in \mathcal{B}(\mathbb{R})$. Note that for any $x \in R$ and $n \in Z$, we have $\mathbf{1}_{A}(x+n)=\mathbf{1}_{A-n}(x)$. Since λ is translation invariant, then $\lambda([0,1] \cap(A-n))=\lambda([n, n+1] \cap A)$. Now,

$$
\int_{[0,1]} \mathbf{1}_{A}(x+n) d \lambda(x)=\int_{\mathbb{R}} \mathbf{1}_{[0,1] \cap(A-n)}(d) d \lambda(x)=\lambda([0,1] \cap(A-n))
$$

and

$$
\int_{[n, n+1]} \mathbf{1}_{A}(x) d \lambda(x)=\int_{\mathbb{R}} \mathbf{1}_{[n, n+1] \cap A} d \lambda(x)=\lambda([n, n+1] \cap A)
$$

Thus, $\int_{[0,1]} \mathbf{1}_{A}(x+n) d \lambda(x)=\int_{[n, n+1]} \mathbf{1}_{A}(x) d \lambda(x)$. Assume now that $f=\sum_{i=0}^{n} a_{i} \mathbf{1}_{A_{i}}$ be a nonnegative measurable simple function (so $A_{i} \in \mathcal{B}(\mathbb{R})$), using the linearity of the integral, we have

$$
\begin{aligned}
\int_{[0,1]} f(x+n) d \lambda(x) & =\int_{[0,1]} \sum_{i=0}^{n} a_{i} \mathbf{1}_{A_{i}}(x+n) d \lambda(x) \\
& =\sum_{i=0}^{n} a_{i} \int_{[0,1]} \mathbf{1}_{A_{i}}(x+n) d \lambda(x) \\
& =\sum_{i=0}^{n} a_{i} \int_{[n, n+1]} \mathbf{1}_{A_{i}}(x) d \lambda(x) \\
& =\int_{[n, n+1]} \sum_{i=0}^{n} a_{i} \mathbf{1}_{A_{i}}(x) d \lambda(x) \\
& =\int_{[n, n+1]} f(x) d \lambda(x) .
\end{aligned}
$$

Now, assume f is a non-negative integrable function. Then there exists an increasing sequence $\left(f_{m}\right)$ of non-negative simple functions with $f_{m} \nearrow f$ (pointwise). Thus, for eaxh $x \in \mathbb{R}$ and $n \in Z$ we have $f_{m}(x+n) \nearrow f(x+n), \mathbf{1}_{[0,1]}(x) f_{m}(x+n) \nearrow \mathbf{1}_{[0,1]}(x) f(x+n)$, and $\mathbf{1}_{[n, n+1]}(x) f_{m}(x) \nearrow$
$\mathbf{1}_{[n, n+1]}(x) f(x)$. By Beppo-Lévy we have

$$
\begin{aligned}
\int_{[0,1]} f(x+n) d \lambda(x) & =\sup _{m} \int_{[0,1]} f_{m}(x+n) d \lambda(x) \\
& =\sup _{m} \int_{[n, n+1]} f_{m}(x) d \lambda(x) \\
& =\int_{[n, n+1]} f(x) d \lambda(x) .
\end{aligned}
$$

Finally, assume $f \in \mathcal{L}^{1}(\lambda)$, then f^{+}, f^{-}are non-negative integrable functions, hence

$$
\begin{aligned}
\int_{[0,1]} f(x+n) d \lambda(x) & =\int_{[0,1]} f^{+}(x+n) d \lambda(x)-\int_{[0,1]} f^{-}(x+n) d \lambda(x) \\
& =\int_{[n, n+1]} f^{+}(x) d \lambda(x)-\int_{[n, n+1]} f^{-}(x) d \lambda(x) \\
& =\int_{[n, n+1]} f(x) d \lambda(x)
\end{aligned}
$$

Proof (b): Using Corollary 9.9 and part (a), we have

$$
\begin{aligned}
\int_{\mathbb{R}}|g(x)| d \lambda(x) & =\int_{[0,1]}\left|\sum_{n \in Z} f(x+n)\right| d \lambda \\
& \leq \int_{[0,1]} \sum_{n \in Z}|f(x+n)| d \lambda \\
& =\sum_{n \in Z} \int_{[0,1]}|f(x+n)| d \lambda \\
& =\sum_{n \in Z} \int_{[n, n+1]}|f(x)| d \lambda \\
& =\int_{\mathbb{R}}|f(x)| d \lambda<\infty
\end{aligned}
$$

Hence $g \in \mathcal{L}^{1}(\lambda)$. Note that the above shows that the series $g(x)=\mathbf{1}_{[0,1]}(x) \sum_{n \in \mathbb{Z}} f(x+n)$ is absolutely convergent λ a.e. and that $\sum_{n \in Z} \int_{[0,1]}|f(x+n)| d \lambda=\int_{\mathbb{R}}|f(x)| d \lambda<\infty$. Hence by Exercise 11.4 (i.e. applying Lebesgue Dominated Convergence Theorem) we have

$$
\begin{aligned}
\int_{\mathbb{R}} g(x) d \lambda(x) & =\int_{[0,1]} g(x) d \lambda(x) \\
& =\sum_{n \in Z} \int_{[0,1]} f(x+n) d \lambda(x) \\
& =\sum_{n \in Z} \int_{[n, n+1]} f(x) d \lambda(x) \\
& =\int_{\mathbb{R}} f(x) d \lambda(x)
\end{aligned}
$$

(4) Let (X, \mathcal{A}, μ) be a measure space, and $p, q \in(1, \infty)$ and $r \geq 1$ be such that $1 / r=1 / p+1 / q$. Show that if $f \in \mathcal{L}^{p}(\mu)$ and $g \in \mathcal{L}^{q}(\mu)$, then $f g \in \mathcal{L}^{r}(\mu)$ and $\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q}$. (1.5 pts)

Proof: Let $p^{\prime}=p / r$ and $q^{\prime}=q / r$, since $1 / r=1 / p+1 / q$ we have $1=1 / p^{\prime}+1 / q^{\prime}$. Suppose $f \in \mathcal{L}^{p}(\mu)$ and $g \in \mathcal{L}^{q}(\mu)$, and set $F=f^{r}$ and $G=g^{r}$. Then,

$$
\int|F|^{p^{\prime}} d \mu=\int|f|^{p} d \mu<\infty
$$

and

$$
\int|G|^{q^{\prime}} d \mu=\int|g|^{q} d \mu<\infty
$$

Hence, $F \in \mathcal{L}^{p^{\prime}}(\mu)$, and $G \in \mathcal{L}^{q^{\prime}}(\mu)$. By Hölder's inequality we have $(f g)^{r}=F G \in \mathcal{L}^{1}(\mu)$, which implies $f g \in \mathcal{L}^{r}(\mu)$, and

$$
\begin{aligned}
\int|f g|^{r} d \mu & =\int|F G| d \mu \\
& \leq\left(\int|F|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}}\left(\int|G|^{q^{\prime}} d \mu\right)^{1 / q^{\prime}} \\
& =\left(\int|f|^{p} d \mu\right)^{r / p}\left(\int|g|^{q} d \mu\right)^{r / q}
\end{aligned}
$$

Hence,

$$
\left(\int|f g|^{r} d \mu\right)^{1 / r} \leq\left(\int|f|^{p} d \mu\right)^{1 / p}\left(\int|g|^{q} d \mu\right)^{1 / q}
$$

equivalently, $\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q}$.
(5) Let $E=\{(x, y): 0<x<1,0<y<\infty\}$. We consider on E the restriction of the product Borel σ-algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f: E \rightarrow \mathbb{R}$ be given by $f(x, y)=e^{-y} \sin (2 x y)$.
(a) Show that f is $\lambda \times \lambda$ integrable on E. (0.5 pts)
(b) Applying Fubini's Theorem to the function f, show that

$$
\int_{0}^{\infty} e^{-y} \frac{\sin ^{2}(y)}{y} d \lambda(y)=\frac{\log 5}{4}
$$

(Hint: use integration by parts twice to calculate $\left.(R) \int_{0}^{\infty} e^{-y} \sin (2 x y) d y\right)(1.5 \mathrm{pts})$
$\operatorname{Proof}(\mathbf{a})$ Notice that f is continuous, and hence measurable. Furthermore, $|f(x, y)| \leq e^{-y}$. The function $g(y)=e^{-y}$ is non-negative measurable, and the improper Riemann integral exists and is finite. Hence, $\int_{(0, \infty)} e^{-y} d \lambda(y)=(R) \int_{0}^{\infty} e^{-y} d y=1$. By Tonelli's Theorem

$$
\begin{aligned}
\int_{E}|f(x, y)| d(\lambda \times \lambda)(x, y) & \leq \int_{E} e^{-y} d(\lambda \times \lambda)(x, y) \\
& =\int_{0}^{1} \int_{0}^{\infty} e^{-y} d \lambda(y) d \lambda(x) \\
& =\int_{0}^{1} 1 d \lambda(x) \\
& =1<\infty
\end{aligned}
$$

This shows that f is $\lambda \times \lambda$ integrable on E.
Proof(b) By Fubini's Theorem,
$\int_{E} f(x, y) d(\lambda \times \lambda)=\int_{(0,1)} \int_{(0, \infty)} e^{-y} \sin (2 x y) d \lambda(y) d \lambda(x)=\int_{(0, \infty)} \int_{(0,1)} e^{-y} \sin (2 x y) d \lambda(x) d \lambda(y)$.
An easy calculation shows that the Riemann integral

$$
(R) \int_{0}^{1} e^{-y} \sin (2 x y) d x=e^{-y} \frac{1-\cos (2 y)}{2 y}=e^{-y} \frac{\sin ^{2}(y)}{y} .
$$

We now show that $(R) \int_{0}^{\infty} e^{-y} \sin (2 x y) d y$ exists and is finite. This is done by first integrating twice by parts to get

$$
(R) \int_{0}^{\infty} e^{-y} \sin (2 x y) d y=2 x-4 x^{2}(R) \int_{0}^{\infty} e^{-y} \sin (2 x y) d y
$$

and hence $(R) \int_{0}^{\infty} e^{-y} \sin (2 x y) d y=\frac{2 x}{1+4 x^{2}}$. This shows that

$$
\int_{(0, \infty)} e^{-y} \sin (2 x y) d \lambda(y)=(R) \int_{0}^{\infty} e^{-y} \sin (2 x y) d y=\frac{2 x}{1+4 x^{2}}
$$

Since the function $\frac{2 x}{1+4 x^{2}}$ is continuous on $[0,1]$, the Rimann integral equals the Lebesgue integral, hence

$$
\int_{(0,1)} \frac{2 x}{1+4 x^{2}} d \lambda(x)=\int_{[0,1]} \frac{2 x}{1+4 x^{2}} d \lambda(x)=(R) \int_{0}^{1} \frac{2 x}{1+4 x^{2}} d x=\frac{\log 5}{4}
$$

From the above we have

$$
\int_{0}^{\infty} e^{-y} \frac{\sin ^{2}(y)}{y} d \lambda(y)=\int_{E} f(x, y) d(\lambda \times \lambda)=\frac{\log 5}{4}
$$

