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(1) Consider the measure space [1,∞),B([1,∞]), λ) where B([1,∞]) is the Borel σ-algebra and λ is
the Lebesgue measure restricted to [1,∞). Show that

lim
n→∞

∫
[1,∞)

n sin(x/n)

x3
dλ(x) = 1.

(Hint: lim
x→0

sin(x)/x = 1) (2 pts)

Proof: Let un(x) =
n sin(x/n)

x3
, then un is continuous on [1,∞) and hence is measurable. Note

that | sin(y)| ≤ y for all y ≥ 0, hence un(x) ≤ 1/x2. Furthermore, lim
n→∞

un(x) =
1

x2
. Since the

function
1

x2
is positive, measurable and the improper Riemann integral on [1,∞) exists, it follows

it is Lebesgue integrable on [1,∞). By Lebesgue Dominated Convergence Theorem we have

lim
n→∞

∫
[1,∞)

n sin(x/n)

x3
dλ(x) =

∫
[1,∞)

lim
n→∞

n sin(x/n)

x3
dλ(x)

=

∫
[1,∞)

1

x2
dλ(x)

= (R)

∫ ∞
1

1

x2
dx = 1.

(2) Let (X,A, µ) be a finite measure space, and Φ : [0,∞) → [0,∞) a monotonically increasing

function such that lim
r→∞

Φ(r)

r
=∞. Let M > 0, and

F = {f ∈ L1(µ) :

∫
X

Φ ◦ |f | dµ ≤M}.

(a) Prove that for each ε > 0, there exists a real number N > 0 such that for all f ∈ F one has∫
{|f |>N}

|f | dµ ≤ ε

M

∫
{|f |>N}

Φ ◦ |f | dµ.

(1 pt)

(b) Let 1 ≤ p <∞ and (fn) be a sequence of measurable functions such that fpn ∈ F for n ≥ 1.

Assume that fn
µ−→ f i.e. (fn) converges to f in µ measure with f ∈ Lp(µ). Show that

lim
n→∞

||fn − f ||p = 0. (1 pt)

Proof (a): First note by Exercise 2(a) of hand-in set 3 that Φ is Borel measurable. Let ε > 0,

since lim
r→∞

Φ(r)

r
= ∞ one can find N > 0 such that

Φ(r)

r
≥ M

ε
for all r > N . Hence, if f ∈ F ,

and x ∈ {x ∈ X : |f |(x) > N} then
Φ(|f |(x))

|f |(x)
≥ M

ε
, i.e. |f |(x) ≤ ε

M
Φ(|f |(x)). Thus,∫

{|f |>N}
|f | dµ ≤ ε

M

∫
{|f |>N}

Φ ◦ |f | dµ.
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Proof (b): We first show that the collection F is uniformly integrable. Let ε > 0, and N as in
part (a). Since µ(X) <∞, then the constant function wε(x) = N is in L1(µ). Since Φ ◦ |f | ≥ 0,
by part (a) we have for any f ∈ F ,∫

{|f |>N}
|f | dµ ≤ ε

M

∫
{|f |>N}

Φ ◦ |f | dµ ≤ ε

M

∫
X

Φ ◦ |f | dµ ≤ ε.

Hence, the collection F is uniformly integrable. Since the function x → xp is continuous, by

Exercise 6.10 (iii) we see that fpn
µ−→ fp. Since fpn ∈ F , the sequence (|fn|p) is uniformly integrable,

hence by Vitali’s Theorem lim
n→∞

||fn − f ||p = 0.

(3) Consider the measure space (R,B(R), λ), where B(R) is the Borel σ-algebra, and λ is Lebesgue
measure.

(a) Prove that for f ∈ L1(λ), and n ∈ Z one has

∫
[0,1]

f(x+ n) dλ(x) =

∫
[n,n+1]

f(x) dλ(x).

(1.5 pts)

(b) Let f ∈ L1(λ), and define g(x) = 1[0,1](x)
∑
n∈Z

f(x+ n). Show that g ∈ L1(λ) and that

∫
R
g(x) dλ(x) =

∫
R
f(x) dλ(x).

(1 pt)

Proof (a): We use the standard argument. First assume f = 1A where A ∈ B(R). Note that
for any x ∈ R and n ∈ Z, we have 1A(x + n) = 1A−n(x). Since λ is translation invariant, then

λ
(

[0, 1] ∩ (A− n)
)

= λ
(

[n, n+ 1] ∩A
)

. Now,∫
[0,1]

1A(x+ n) dλ(x) =

∫
R
1[0,1]∩(A−n)(d) dλ(x) = λ

(
[0, 1] ∩ (A− n)

)
,

and ∫
[n,n+1]

1A(x) dλ(x) =

∫
R
1[n,n+1]∩A dλ(x) = λ

(
[n, n+ 1] ∩A

)
.

Thus,

∫
[0,1]

1A(x + n) dλ(x) =

∫
[n,n+1]

1A(x) dλ(x). Assume now that f =

n∑
i=0

ai1Ai be a non-

negative measurable simple function (so Ai ∈ B(R)), using the linearity of the integral, we have∫
[0,1]

f(x+ n) dλ(x) =

∫
[0,1]

n∑
i=0

ai1Ai
(x+ n) dλ(x)

=

n∑
i=0

ai

∫
[0,1]

1Ai
(x+ n) dλ(x)

=

n∑
i=0

ai

∫
[n,n+1]

1Ai
(x) dλ(x)

=

∫
[n,n+1]

n∑
i=0

ai1Ai(x) dλ(x)

=

∫
[n,n+1]

f(x) dλ(x).

Now, assume f is a non-negative integrable function. Then there exists an increasing sequence
(fm) of non-negative simple functions with fm ↗ f (pointwise). Thus, for eaxh x ∈ R and n ∈ Z
we have fm(x+ n)↗ f(x+ n), 1[0,1](x)fm(x+ n)↗ 1[0,1](x)f(x+ n), and 1[n,n+1](x)fm(x)↗
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1[n,n+1](x)f(x). By Beppo-Lévy we have∫
[0,1]

f(x+ n) dλ(x) = sup
m

∫
[0,1]

fm(x+ n) dλ(x)

= sup
m

∫
[n,n+1]

fm(x) dλ(x)

=

∫
[n,n+1]

f(x) dλ(x).

Finally, assume f ∈ L1(λ), then f+, f− are non-negative integrable functions,hence∫
[0,1]

f(x+ n) dλ(x) =

∫
[0,1]

f+(x+ n) dλ(x)−
∫
[0,1]

f−(x+ n) dλ(x)

=

∫
[n,n+1]

f+(x) dλ(x)−
∫
[n,n+1]

f−(x) dλ(x)

=

∫
[n,n+1]

f(x) dλ(x).

Proof (b): Using Corollary 9.9 and part (a), we have∫
R
|g(x)| dλ(x) =

∫
[0,1]

∣∣∣∑
n∈Z

f(x+ n)
∣∣∣ dλ

≤
∫
[0,1]

∑
n∈Z
|f(x+ n)| dλ

=
∑
n∈Z

∫
[0,1]

|f(x+ n)| dλ

=
∑
n∈Z

∫
[n,n+1]

|f(x)| dλ

=

∫
R
|f(x)| dλ <∞.

Hence g ∈ L1(λ). Note that the above shows that the series g(x) = 1[0,1](x)
∑
n∈Z

f(x + n) is

absolutely convergent λ a.e. and that
∑
n∈Z

∫
[0,1]

|f(x + n)| dλ =

∫
R
|f(x)| dλ < ∞. Hence by

Exercise 11.4 (i.e. applying Lebesgue Dominated Convergence Theorem) we have∫
R
g(x) dλ(x) =

∫
[0,1]

g(x) dλ(x)

=
∑
n∈Z

∫
[0,1]

f(x+ n) dλ(x)

=
∑
n∈Z

∫
[n,n+1]

f(x) dλ(x)

=

∫
R
f(x) dλ(x).

(4) Let (X,A, µ) be a measure space, and p, q ∈ (1,∞) and r ≥ 1 be such that 1/r = 1/p + 1/q.
Show that if f ∈ Lp(µ) and g ∈ Lq(µ), then fg ∈ Lr(µ) and ||fg||r ≤ ||f ||p ||g||q. (1.5 pts)

Proof: Let p′ = p/r and q′ = q/r, since 1/r = 1/p + 1/q we have 1 = 1/p′ + 1/q′. Suppose
f ∈ Lp(µ) and g ∈ Lq(µ), and set F = fr and G = gr. Then,∫

|F |p
′
dµ =

∫
|f |p dµ <∞,
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and ∫
|G|q

′
dµ =

∫
|g|q dµ <∞.

Hence, F ∈ Lp′(µ), and G ∈ Lq′(µ). By Hölder’s inequality we have (fg)r = FG ∈ L1(µ), which
implies fg ∈ Lr(µ), and∫

|fg|r dµ =

∫
|FG| dµ

≤
(∫
|F |p

′
dµ
)1/p′(∫

|G|q
′
dµ
)1/q′

=
(∫
|f |p dµ

)r/p(∫
|g|q dµ

)r/q
.

Hence, (∫
|fg|r dµ)1/r ≤

(∫
|f |p dµ

)1/p(∫
|g|q dµ

)1/q
,

equivalently, ||fg||r ≤ ||f ||p||g||q.

(5) Let E = {(x, y) : 0 < x < 1, 0 < y <∞}. We consider on E the restriction of the product Borel
σ-algebra, and the restriction of the product Lebesgue measure λ × λ. Let f : E → R be given
by f(x, y) = e−y sin(2xy).
(a) Show that f is λ× λ integrable on E. (0.5 pts)
(b) Applying Fubini’s Theorem to the function f , show that∫ ∞

0

e−y
sin2(y)

y
dλ(y) =

log 5

4
.

(Hint: use integration by parts twice to calculate (R)

∫ ∞
0

e−y sin(2xy) dy) (1.5 pts)

Proof(a) Notice that f is continuous, and hence measurable. Furthermore, |f(x, y)| ≤ e−y.
The function g(y) = e−y is non-negative measurable, and the improper Riemann integral exists
and is finite. Hence,

∫
(0,∞)

e−y dλ(y) = (R)
∫∞
0
e−y dy = 1. By Tonelli’s Theorem∫

E

|f(x, y)|d(λ× λ)(x, y) ≤
∫
E

e−yd(λ× λ)(x, y)

=

∫ 1

0

∫ ∞
0

e−y dλ(y) dλ(x)

=

∫ 1

0

1 dλ(x)

= 1 <∞.

This shows that f is λ× λ integrable on E.

Proof(b) By Fubini’s Theorem,∫
E

f(x, y) d(λ× λ) =

∫
(0,1)

∫
(0,∞)

e−y sin(2xy) dλ(y) dλ(x) =

∫
(0,∞)

∫
(0,1)

e−y sin(2xy) dλ(x) dλ(y).

An easy calculation shows that the Riemann integral

(R)

∫ 1

0

e−y sin(2xy) dx = e−y
1− cos(2y)

2y
= e−y

sin2(y)

y
.

We now show that (R)

∫ ∞
0

e−y sin(2xy) dy exists and is finite. This is done by first integrating

twice by parts to get

(R)

∫ ∞
0

e−y sin(2xy) dy = 2x− 4x2(R)

∫ ∞
0

e−y sin(2xy) dy,
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and hence (R)

∫ ∞
0

e−y sin(2xy) dy =
2x

1 + 4x2
. This shows that∫

(0,∞)

e−y sin(2xy) dλ(y) = (R)

∫ ∞
0

e−y sin(2xy) dy =
2x

1 + 4x2
.

Since the function
2x

1 + 4x2
is continuous on [0, 1], the Rimann integral equals the Lebesgue

integral, hence∫
(0,1)

2x

1 + 4x2
dλ(x) =

∫
[0,1]

2x

1 + 4x2
dλ(x) = (R)

∫ 1

0

2x

1 + 4x2
dx =

log 5

4
.

From the above we have∫ ∞
0

e−y
sin2(y)

y
dλ(y) =

∫
E

f(x, y) d(λ× λ) =
log 5

4
.


