Measure and Integration: Solution Final 2016-17

(1) Consider the measure space $[1, \infty), \mathcal{B}([1, \infty]), \lambda$ where $\mathcal{B}([1, \infty])$ is the Borel σ -algebra and λ is the Lebesgue measure restricted to $[1, \infty)$. Show that

$$\lim_{n \to \infty} \int_{[1,\infty)} \frac{n \sin(x/n)}{x^3} \, d\lambda(x) = 1.$$

(Hint: $\lim_{x \to 0} \sin(x)/x = 1$) (2 pts)

Proof: Let $u_n(x) = \frac{n \sin(x/n)}{x^3}$, then u_n is continuous on $[1, \infty)$ and hence is measurable. Note that $|\sin(y)| \le y$ for all $y \ge 0$, hence $u_n(x) \le 1/x^2$. Furthermore, $\lim_{n \to \infty} u_n(x) = \frac{1}{x^2}$. Since the function $\frac{1}{x^2}$ is positive, measurable and the improper Riemann integral on $[1, \infty)$ exists, it follows it is Lebesgue integrable on $[1, \infty)$. By Lebesgue Dominated Convergence Theorem we have

$$\lim_{n \to \infty} \int_{[1,\infty)} \frac{n \sin(x/n)}{x^3} d\lambda(x) = \int_{[1,\infty)} \lim_{n \to \infty} \frac{n \sin(x/n)}{x^3} d\lambda(x)$$
$$= \int_{[1,\infty)} \frac{1}{x^2} d\lambda(x)$$
$$= (R) \int_1^\infty \frac{1}{x^2} dx = 1.$$

(2) Let (X, \mathcal{A}, μ) be a finite measure space, and $\Phi : [0, \infty) \to [0, \infty)$ a monotonically increasing function such that $\lim_{r \to \infty} \frac{\Phi(r)}{r} = \infty$. Let M > 0, and

$$\mathcal{F} = \{ f \in \mathcal{L}^1(\mu) : \int_X \Phi \circ |f| \, d\mu \le M \}$$

(a) Prove that for each $\epsilon > 0$, there exists a real number N > 0 such that for all $f \in \mathcal{F}$ one has

$$\int_{\{|f|>N\}} |f| \, d\mu \leq \frac{\epsilon}{M} \int_{\{|f|>N\}} \Phi \circ |f| \, d\mu.$$

(1 pt)

(b) Let $1 \le p < \infty$ and (f_n) be a sequence of measurable functions such that $f_n^p \in \mathcal{F}$ for $n \ge 1$. Assume that $f_n \xrightarrow{\mu} f$ i.e. (f_n) converges to f in μ measure with $f \in \mathcal{L}^p(\mu)$. Show that $\lim_{n \to \infty} ||f_n - f||_p = 0$. (1 pt)

Proof (a): First note by Exercise 2(a) of hand-in set 3 that Φ is Borel measurable. Let $\epsilon > 0$, since $\lim_{r \to \infty} \frac{\Phi(r)}{r} = \infty$ one can find N > 0 such that $\frac{\Phi(r)}{r} \ge \frac{M}{\epsilon}$ for all r > N. Hence, if $f \in \mathcal{F}$, and $x \in \{x \in X : |f|(x) > N\}$ then $\frac{\Phi(|f|(x))}{|f|(x)} \ge \frac{M}{\epsilon}$, i.e. $|f|(x) \le \frac{\epsilon}{M} \Phi(|f|(x))$. Thus, $\int_{\{|f| > N\}} |f| \, d\mu \le \frac{\epsilon}{M} \int_{\{|f| > N\}} \Phi \circ |f| \, d\mu$. **Proof (b)**: We first show that the collection \mathcal{F} is uniformly integrable. Let $\epsilon > 0$, and N as in part (a). Since $\mu(X) < \infty$, then the constant function $w_{\epsilon}(x) = N$ is in $\mathcal{L}^{1}(\mu)$. Since $\Phi \circ |f| \ge 0$, by part (a) we have for any $f \in \mathcal{F}$,

$$\int_{\{|f|>N\}} |f| \, d\mu \le \frac{\epsilon}{M} \int_{\{|f|>N\}} \Phi \circ |f| \, d\mu \le \frac{\epsilon}{M} \int_X \Phi \circ |f| \, d\mu \le \epsilon.$$

Hence, the collection \mathcal{F} is uniformly integrable. Since the function $x \to x^p$ is continuous, by Exercise 6.10 (iii) we see that $f_n^p \xrightarrow{\mu} f^p$. Since $f_n^p \in \mathcal{F}$, the sequence $(|f_n|^p)$ is uniformly integrable, hence by Vitali's Theorem $\lim_{n\to\infty} ||f_n - f||_p = 0$.

- (3) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ is Lebesgue measure.
 - (a) Prove that for $f \in \mathcal{L}^1(\lambda)$, and $n \in \mathbb{Z}$ one has $\int_{[0,1]} f(x+n) d\lambda(x) = \int_{[n,n+1]} f(x) d\lambda(x)$. (1.5 pts)

(b) Let $f \in \mathcal{L}^1(\lambda)$, and define $g(x) = \mathbf{1}_{[0,1]}(x) \sum_{n \in \mathbb{Z}} f(x+n)$. Show that $g \in \mathcal{L}^1(\lambda)$ and that

$$\int_{\mathbb{R}} g(x) \, d\lambda(x) = \int_{\mathbb{R}} f(x) \, d\lambda(x).$$

(1 pt)

Proof (a): We use the standard argument. First assume $f = \mathbf{1}_A$ where $A \in \mathcal{B}(\mathbb{R})$. Note that for any $x \in R$ and $n \in Z$, we have $\mathbf{1}_A(x+n) = \mathbf{1}_{A-n}(x)$. Since λ is translation invariant, then $\lambda([0,1] \cap (A-n)) = \lambda([n,n+1] \cap A)$. Now,

$$\int_{[0,1]} \mathbf{1}_A(x+n) \, d\lambda(x) = \int_{\mathbb{R}} \mathbf{1}_{[0,1]\cap(A-n)}(d) \, d\lambda(x) = \lambda\Big([0,1]\cap(A-n)\Big),$$

and

$$\int_{[n,n+1]} \mathbf{1}_A(x) \, d\lambda(x) = \int_{\mathbb{R}} \mathbf{1}_{[n,n+1]\cap A} \, d\lambda(x) = \lambda\Big([n,n+1]\cap A\Big).$$

Thus, $\int_{[0,1]} \mathbf{1}_A(x+n) d\lambda(x) = \int_{[n,n+1]} \mathbf{1}_A(x) d\lambda(x)$. Assume now that $f = \sum_{i=0}^n a_i \mathbf{1}_{A_i}$ be a non-negative measurable simple function (so $A_i \in \mathcal{B}(\mathbb{R})$), using the linearity of the integral, we have

$$\begin{split} \int_{[0,1]} f(x+n) \, d\lambda(x) &= \int_{[0,1]} \sum_{i=0}^n a_i \mathbf{1}_{A_i}(x+n) \, d\lambda(x) \\ &= \sum_{i=0}^n a_i \int_{[0,1]} \mathbf{1}_{A_i}(x+n) \, d\lambda(x) \\ &= \sum_{i=0}^n a_i \int_{[n,n+1]} \mathbf{1}_{A_i}(x) \, d\lambda(x) \\ &= \int_{[n,n+1]} \sum_{i=0}^n a_i \mathbf{1}_{A_i}(x) \, d\lambda(x) \\ &= \int_{[n,n+1]} f(x) \, d\lambda(x). \end{split}$$

Now, assume f is a non-negative integrable function. Then there exists an increasing sequence (f_m) of non-negative simple functions with $f_m \nearrow f$ (pointwise). Thus, for each $x \in \mathbb{R}$ and $n \in \mathbb{Z}$ we have $f_m(x+n) \nearrow f(x+n)$, $\mathbf{1}_{[0,1]}(x)f_m(x+n) \nearrow \mathbf{1}_{[0,1]}(x)f(x+n)$, and $\mathbf{1}_{[n,n+1]}(x)f_m(x) \nearrow$

 $\mathbf{1}_{[n,n+1]}(x)f(x)$. By Beppo-Lévy we have

$$\int_{[0,1]} f(x+n) d\lambda(x) = \sup_{m} \int_{[0,1]} f_m(x+n) d\lambda(x)$$
$$= \sup_{m} \int_{[n,n+1]} f_m(x) d\lambda(x)$$
$$= \int_{[n,n+1]} f(x) d\lambda(x).$$

Finally, assume $f \in \mathcal{L}^1(\lambda)$, then f^+, f^- are non-negative integrable functions, hence

$$\begin{aligned} \int_{[0,1]} f(x+n) \, d\lambda(x) &= \int_{[0,1]} f^+(x+n) \, d\lambda(x) - \int_{[0,1]} f^-(x+n) \, d\lambda(x) \\ &= \int_{[n,n+1]} f^+(x) \, d\lambda(x) - \int_{[n,n+1]} f^-(x) \, d\lambda(x) \\ &= \int_{[n,n+1]} f(x) \, d\lambda(x). \end{aligned}$$

Proof (b): Using Corollary 9.9 and part (a), we have

$$\begin{split} \int_{\mathbb{R}} |g(x)| \, d\lambda(x) &= \int_{[0,1]} \left| \sum_{n \in Z} f(x+n) \right| d\lambda \\ &\leq \int_{[0,1]} \sum_{n \in Z} |f(x+n)| \, d\lambda \\ &= \sum_{n \in Z} \int_{[0,1]} |f(x+n)| \, d\lambda \\ &= \sum_{n \in Z} \int_{[n,n+1]} |f(x)| \, d\lambda \\ &= \int_{\mathbb{R}} |f(x)| \, d\lambda < \infty. \end{split}$$

Hence $g \in \mathcal{L}^1(\lambda)$. Note that the above shows that the series $g(x) = \mathbf{1}_{[0,1]}(x) \sum_{n \in \mathbb{Z}} f(x+n)$ is absolutely convergent λ a.e. and that $\sum_{n \in \mathbb{Z}} \int_{[0,1]} |f(x+n)| d\lambda = \int_{\mathbb{R}} |f(x)| d\lambda < \infty$. Hence by Exercise 11.4 (i.e. applying Lebesgue Dominated Convergence Theorem) we have

$$\begin{split} \int_{\mathbb{R}} g(x) \, d\lambda(x) &= \int_{[0,1]} g(x) \, d\lambda(x) \\ &= \sum_{n \in Z} \int_{[0,1]} f(x+n) \, d\lambda(x) \\ &= \sum_{n \in Z} \int_{[n,n+1]} f(x) \, d\lambda(x) \\ &= \int_{\mathbb{R}} f(x) \, d\lambda(x). \end{split}$$

(4) Let (X, \mathcal{A}, μ) be a measure space, and $p, q \in (1, \infty)$ and $r \ge 1$ be such that 1/r = 1/p + 1/q. Show that if $f \in \mathcal{L}^p(\mu)$ and $g \in \mathcal{L}^q(\mu)$, then $fg \in \mathcal{L}^r(\mu)$ and $||fg||_r \le ||f||_p ||g||_q$. (1.5 pts)

Proof: Let p' = p/r and q' = q/r, since 1/r = 1/p + 1/q we have 1 = 1/p' + 1/q'. Suppose $f \in \mathcal{L}^p(\mu)$ and $g \in \mathcal{L}^q(\mu)$, and set $F = f^r$ and $G = g^r$. Then,

$$\int |F|^{p'} d\mu = \int |f|^p d\mu < \infty,$$

$$\int |G|^{q'} \, d\mu = \int |g|^q \, d\mu < \infty$$

Hence, $F \in \mathcal{L}^{p'}(\mu)$, and $G \in \mathcal{L}^{q'}(\mu)$. By Hölder's inequality we have $(fg)^r = FG \in \mathcal{L}^1(\mu)$, which implies $fg \in \mathcal{L}^r(\mu)$, and

$$\begin{split} \int |fg|^r d\mu &= \int |FG| d\mu \\ &\leq \left(\int |F|^{p'} d\mu \right)^{1/p'} \left(\int |G|^{q'} d\mu \right)^{1/q'} \\ &= \left(\int |f|^p d\mu \right)^{r/p} \left(\int |g|^q d\mu \right)^{r/q}. \end{split}$$

Hence,

$$\left(\int |fg|^r \, d\mu\right)^{1/r} \le \left(\int |f|^p \, d\mu\right)^{1/p} \left(\int |g|^q \, d\mu\right)^{1/q},$$

equivalently, $||fg||_r \leq ||f||_p ||g||_q$.

- (5) Let $E = \{(x, y) : 0 < x < 1, 0 < y < \infty\}$. We consider on E the restriction of the product Borel σ -algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f : E \to \mathbb{R}$ be given by $f(x, y) = e^{-y} \sin(2xy)$.
 - (a) Show that f is $\lambda \times \lambda$ integrable on E. (0.5 pts)
 - (b) Applying Fubini's Theorem to the function f, show that

$$\int_0^\infty e^{-y} \frac{\sin^2(y)}{y} \, d\lambda(y) = \frac{\log 5}{4}.$$

(Hint: use integration by parts twice to calculate $(R) \int_0^\infty e^{-y} \sin(2xy) \, dy$) (1.5 pts)

Proof(a) Notice that f is continuous, and hence measurable. Furthermore, $|f(x,y)| \leq e^{-y}$. The function $g(y) = e^{-y}$ is non-negative measurable, and the improper Riemann integral exists and is finite. Hence, $\int_{(0,\infty)} e^{-y} d\lambda(y) = (R) \int_0^\infty e^{-y} dy = 1$. By Tonelli's Theorem

$$\int_{E} |f(x,y)| d(\lambda \times \lambda)(x,y) \leq \int_{E} e^{-y} d(\lambda \times \lambda)(x,y)$$
$$= \int_{0}^{1} \int_{0}^{\infty} e^{-y} d\lambda(y) d\lambda(x)$$
$$= \int_{0}^{1} 1 d\lambda(x)$$
$$= 1 < \infty.$$

This shows that f is $\lambda \times \lambda$ integrable on E.

Proof(b) By Fubini's Theorem,

$$\int_E f(x,y) \, d(\lambda \times \lambda) = \int_{(0,1)} \int_{(0,\infty)} e^{-y} \sin(2xy) \, d\lambda(y) \, d\lambda(x) = \int_{(0,\infty)} \int_{(0,1)} e^{-y} \sin(2xy) \, d\lambda(x) \, d\lambda(y).$$

An easy calculation shows that the Riemann integral

$$(R)\int_0^1 e^{-y}\sin(2xy)\,dx = e^{-y}\frac{1-\cos(2y)}{2y} = e^{-y}\frac{\sin^2(y)}{y}$$

We now show that $(R) \int_0^\infty e^{-y} \sin(2xy) \, dy$ exists and is finite. This is done by first integrating twice by parts to get

$$(R)\int_0^\infty e^{-y}\sin(2xy)\,dy = 2x - 4x^2(R)\int_0^\infty e^{-y}\sin(2xy)\,dy,$$

and

4

and hence
$$(R) \int_0^\infty e^{-y} \sin(2xy) \, dy = \frac{2x}{1+4x^2}$$
. This shows that
$$\int_{(0,\infty)} e^{-y} \sin(2xy) \, d\lambda(y) = (R) \int_0^\infty e^{-y} \sin(2xy) \, dy = \frac{2x}{1+4x^2}.$$

Since the function $\frac{2x}{1+4x^2}$ is continuous on [0,1], the Rimann integral equals the Lebesgue integral, hence

$$\int_{(0,1)} \frac{2x}{1+4x^2} \, d\lambda(x) = \int_{[0,1]} \frac{2x}{1+4x^2} \, d\lambda(x) = (R) \int_0^1 \frac{2x}{1+4x^2} \, dx = \frac{\log 5}{4}.$$

From the above we have

$$\int_0^\infty e^{-y} \frac{\sin^2(y)}{y} \, d\lambda(y) = \int_E f(x,y) \, d(\lambda \times \lambda) = \frac{\log 5}{4}.$$