Measure and Integration: Solutions Practice Final Exam 2020-21

(1) Consider the measure space $[1, \infty), \mathcal{B}([1, \infty]), \lambda$ where $\mathcal{B}([1, \infty])$ is the Borel σ -algebra and λ is the Lebesgue measure restricted to $[1, \infty)$. Show that

$$\lim_{n \to \infty} \int_{[1,\infty)} \frac{n \sin(x/n)}{x^3} \, d\lambda(x) = 1.$$

(Hint: $\lim_{x \to 0} \sin(x)/x = 1$)

Proof: Let $u_n(x) = \frac{n \sin(x/n)}{x^3}$, then u_n is continuous on $[1, \infty)$ and hence is measurable. Note that $|\sin(y)| \le y$ for all $y \ge 0$, hence $u_n(x) \le 1/x^2$. Furthermore, $\lim_{n \to \infty} u_n(x) = \frac{1}{x^2}$. Since the function $\frac{1}{x^2}$ is positive, measurable and the improper Riemann integral on $[1, \infty)$ exists, it follows it is Lebesgue integrable on $[1, \infty)$. By Lebesgue Dominated Convergence Theorem we have

$$\lim_{n \to \infty} \int_{[1,\infty)} \frac{n \sin(x/n)}{x^3} d\lambda(x) = \int_{[1,\infty)} \lim_{n \to \infty} \frac{n \sin(x/n)}{x^3} d\lambda(x)$$
$$= \int_{[1,\infty)} \frac{1}{x^2} d\lambda(x)$$
$$= (R) \int_1^\infty \frac{1}{x^2} dx = 1.$$

(2) Let (X, \mathcal{A}, μ) be a measure space, and $p, q \in (1, \infty)$ and $r \ge 1$ be such that 1/r = 1/p + 1/q. Show that if $f \in \mathcal{L}^p(\mu)$ and $g \in \mathcal{L}^q(\mu)$, then $fg \in \mathcal{L}^r(\mu)$ and $||fg||_r \le ||f||_p ||g||_q$.

Proof: Let p' = p/r and q' = q/r, since 1/r = 1/p + 1/q we have 1 = 1/p' + 1/q'. Suppose $f \in \mathcal{L}^p(\mu)$ and $g \in \mathcal{L}^q(\mu)$, and set $F = f^r$ and $G = g^r$. Then,

$$\int |F|^{p'} d\mu = \int |f|^p d\mu < \infty,$$

and

$$\int |G|^{q'} d\mu = \int |g|^q d\mu < \infty.$$

Hence, $F \in \mathcal{L}^{p'}(\mu)$, and $G \in \mathcal{L}^{q'}(\mu)$. By Hölder's inequality we have $(fg)^r = FG \in \mathcal{L}^1(\mu)$, which implies $fg \in \mathcal{L}^r(\mu)$, and

$$\begin{split} \int |fg|^r d\mu &= \int |FG| d\mu \\ &\leq \left(\int |F|^{p'} d\mu \right)^{1/p'} \left(\int |G|^{q'} d\mu \right)^{1/q} \\ &= \left(\int |f|^p d\mu \right)^{r/p} \left(\int |g|^q d\mu \right)^{r/q}. \end{split}$$

Hence,

$$\left(\int |fg|^r \, d\mu\right)^{1/r} \le \left(\int |f|^p \, d\mu\right)^{1/p} \left(\int |g|^q \, d\mu\right)^{1/q},$$

equivalently, $||fg||_r \leq ||f||_p ||g||_q$.

(3) Consider the function $u: (1,2) \times \mathbb{R} \to \mathbb{R}$ given by $u(t,x) = e^{-tx^2} \cos x$. Let λ denotes Lebesgue measure on \mathbb{R} , show that the function $F: (1,2) \to \mathbb{R}$ given by $F(t) = \int_{\mathbb{R}} e^{-tx^2} \cos x \, d\lambda(x)$ is differentiable.

Proof: We apply Theorem 12.5 (11.5 in edition 1). First for any fixed $t \in (1, 2)$, we have

$$|e^{-tx^2}\cos x| \le e^{-tx^2} \le e^{-x^2/2} \in \mathcal{L}^1(\lambda)$$

since $\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$ implying $\int_{\mathbb{R}} e^{-tx^2} d\lambda(x) \leq \int_{\mathbb{R}} e^{-x^2/2} d\lambda(x) = \sqrt{2\pi}$. Now for any fixed $x \in \mathbb{R}$, the function $t \to u(t,x) = e^{-tx^2} \cos x$ is differentiable with $\frac{\partial u}{\partial t}(t,x) = -x^2 e^{-tx^2} \cos x$. Using the second and third term of the Taylor series expansion of e^{tx^2} one gets $e^{tx^2} \geq tx^2 + t^2x^4/2$, and hence

$$\left|\frac{\partial u}{\partial t}(t,x)\right| \le x^2 e^{-tx^2} \le \frac{1}{t} \frac{1}{1+tx^2/2} \le \frac{2}{t} \frac{1}{1+tx^2} \le \frac{2}{1+x^2}$$

It is easy to check that $\int_{-\infty}^{\infty} \frac{2}{1+x^2} dx = 2\pi$, so $\int_{-\infty}^{\infty} \frac{2}{1+x^2} d\lambda(x) = 2\pi$ implying that the function $w(x) = \frac{2}{1+x^2} \in \mathcal{L}^1(\lambda)$. Thus by Theorem 12.5 (11.5 in edition 1), the function $F(t) = \int_{\mathbb{R}} e^{-tx^2} \cos x \, d\lambda(x)$ is differentiable, and

$$\frac{dF}{dt}(t) = \int_{\mathbb{R}} \frac{\partial}{\partial t} (e^{-tx^2} \cos x)\lambda(x) = \int_{\mathbb{R}} -x^2 e^{-tx^2} \cos x \, d\lambda(x)$$

(4) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ Lebesgue measure. Let $k, g \in \mathcal{L}^1(\lambda)$ and define $F : \mathbb{R}^2 \to \mathbb{R}$, and $h : \mathbb{R} \to \overline{\mathbb{R}}$ by

$$F(x,y) = k(x-y)g(y).$$

- (a) Show that F is measurable.
- (b) Show that $F \in \mathcal{L}^1(\lambda \times \lambda)$, and

$$\int_{\mathbb{R}\times\mathbb{R}} F(x,y) d(\lambda \times \lambda)(x,y) = \left(\int_{\mathbb{R}} k(x) d\lambda(x)\right) \left(\int_{\mathbb{R}} g(y) d\lambda(y)\right)$$

Proof(a): To show measurablity of F, we first extend the domain of g to \mathbb{R}^2 as follows. Define $\overline{g}: \mathbb{R}^2 \to \mathbb{R}$ by $\overline{g}(x, y) = g \circ \pi_2(x, y) = g(y)$. It is easy to see that \overline{g} is $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ measurable. Moreover, the function $d: \mathbb{R}^2 \to \mathbb{R}$ given by d(x, y) = x - y is continuous hence $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ measurable. Since

$$F(x,y) = k(x-y)g(y) = k \circ d(x,y)\overline{g}(x,y)$$

is the product of two $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ measurable functions, it follows that F is $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ measurable.

Proof(b): Since Lebesgue measure is translation invariant, we have

$$\int \int |F(x,y)| d\lambda(x) d\lambda(y) = \int \int |k(x-y)||g(y)| d\lambda(x) d\lambda(y)$$
$$= \int \int |k(x)||g(y)| d\lambda(x) d\lambda(y)$$
$$= \int |k(x)| d\lambda(x) \int |g(y)| d\lambda(y) < \infty.$$

By Fubini's Theorem, this implies that F is $\lambda \times \lambda$ integrable, and

$$\int F(x,y) d(\lambda \times \lambda)(x,y) = \int \int k(x-y)g(y) d\lambda(x) d\lambda(y)$$
$$= \int \int k(x)g(y) d\lambda(x) d\lambda)(y)$$
$$= \int k(x) d\lambda(x) \int g(y) d\lambda)(y).$$

(5) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$) is the Borel σ -algebra and λ is Lebesgue measure. Let $f \in \mathcal{L}^1(\lambda)$ and define for h > 0, the function $f_h(x) = \frac{1}{h} \int_{[x,x+h]} f(t) d\lambda(t)$.

- (a) Show that f_h is Borel measurable for all h > 0.
- (b) Show that $f_h \in \mathcal{L}^1(\lambda)$ and $||f_h||_1 \leq ||f||_1$.

Proof (a): For h > 0, define $u_h(t, x) = \frac{1}{h} \mathbf{1}_{[x,x+h]}(t) f(t)$, then u_h is $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ measurable. Applying Tonelli's Theorem (Theorem 13.8(ii)) to the positive and negative parts of the function u_h , we have that the functions

$$x \to \int u^+(t,x) d\lambda(t) = f_h^+(x), \text{ and } x \to \int u^-(t,x) d\lambda(t) = f_h^-(x)$$

are $\mathcal{B}(\mathbb{R})$ measurable. Hence, f_h is Borel measurable for all h > 0.

Proof(b): Note that

$$\int \int \frac{1}{h} \mathbb{I}_{[x,x+h]}(t) |f(t)| d\lambda(x) d\lambda(t) = \int \int \frac{1}{h} \mathbb{I}_{[t-h,t]}(x) |f(t)| d\lambda(x) d\lambda(t) = \int |f(t)| d\lambda(t) < \infty.$$

Hence, by Fubini's Theorem $f_h \in \mathcal{L}^1(\lambda)$ and

$$\int |f_h(x)| d\lambda(x) = \int \int \frac{1}{h} \mathbb{I}_{[x,x+h]}(t) |f(t)| d\lambda(x) d\lambda(t) = \int |f(x)| d\lambda(x) = ||f||_1$$

(6) Let (X, \mathcal{A}, μ) be a measure space, and $p \in [1, \infty)$. Let $f, f_n \in \mathcal{L}^p(\mu)$ satisfy $\lim_{n \to \infty} ||f_n - f||_p = 0$, and $g, g_n \in \mathcal{M}(\mathcal{A})$ satisfy $\lim_{n \to \infty} g_n = g \ \mu$ a.e. Assume that $|g_n| \leq M$, where M > 0 is a real number. Show that $\lim_{n \to \infty} ||f_n g_n - fg||_p = 0$.

Proof: We have

$$|f_ng_n - fg| = |f_ng_n - g_nf + g_nf - fg| \le |g_n| |f_n - f| + |f| |g_n - g|$$

Hence,

$$|f_n g_n - fg|^p \leq 2^p \Big(|g_n|^p |f_n - f|^p + |f|^p |g_n - g|^p \Big) \\ \leq 2^p \Big(|M^p |f_n - f|^p + |f|^p |g_n - g|^p \Big).$$

This gives

$$\int |f_n g_n - fg|^p \, d\mu \le 2^p M^p \int |f_n - f|^p \, d\mu + 2^p \int |f|^p ||g_n - g|^p \, d\mu.$$

Since, $\lim_{n \to \infty} ||f_n - f||_p = 0$ we have $\lim_{n \to \infty} 2^p M^p \int |f_n - f|^p d\mu = 0$. For the second term, we observe that $\lim_{n \to \infty} |f|^p |g_n - g|^p = 0$ μ a.e. and $|f|^p |g_n - g|^p \leq |f|^p (2M)^p \in \mathcal{L}^1(\mu)$. Hence, by Lebesgue Dominated Convergence Theorem,

$$\lim_{n \to \infty} 2^p \int |f|^p |g_n - g|^p \, d\mu = 2^p \int \lim_{n \to \infty} |f|^p |g_n - g|^p \, d\mu = 0$$

The above imply that $\lim_{n \to \infty} ||f_n g_n - fg||_p = 0.$