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Measure and Integration: Solutions Practice Final Exam 2020-21

(1) Consider the measure space [1,∞),B([1,∞]), λ) where B([1,∞]) is the Borel σ-algebra and λ is
the Lebesgue measure restricted to [1,∞). Show that

lim
n→∞∫[1,∞)

n sin(x/n)

x3
dλ(x) = 1.

(Hint: lim
x→0

sin(x)/x = 1)

Proof: Let un(x) =
n sin(x/n)

x3
, then un is continuous on [1,∞) and hence is measurable. Note

that ∣ sin(y)∣ ≤ y for all y ≥ 0, hence un(x) ≤ 1/x2. Furthermore, lim
n→∞un(x) =

1

x2
. Since

the function
1

x2
is positive, measurable and the improper Riemann integral on [1,∞) exists, it

follows it is Lebesgue integrable on [1,∞). By Lebesgue Dominated Convergence Theorem we
have

lim
n→∞∫[1,∞)

n sin(x/n)

x3
dλ(x) = ∫[1,∞)

lim
n→∞

n sin(x/n)

x3
dλ(x)

= ∫[1,∞)
1

x2
dλ(x)

= (R)∫

∞

1

1

x2
dx = 1.

(2) Let (X,A, µ) be a measure space, and p, q ∈ (1,∞) and r ≥ 1 be such that 1/r = 1/p + 1/q. Show
that if f ∈ Lp(µ) and g ∈ Lq(µ), then fg ∈ Lr(µ) and ∣∣fg∣∣r ≤ ∣∣f ∣∣p ∣∣g∣∣q.

Proof: Let p′ = p/r and q′ = q/r, since 1/r = 1/p + 1/q we have 1 = 1/p′ + 1/q′. Suppose f ∈ Lp(µ)
and g ∈ Lq(µ), and set F = fr and G = gr. Then,

∫ ∣F ∣
p′ dµ = ∫ ∣f ∣p dµ <∞,

and

∫ ∣G∣
q′ dµ = ∫ ∣g∣q dµ <∞.

Hence, F ∈ Lp′(µ), and G ∈ Lq′(µ). By Hölder’s inequality we have (fg)r = FG ∈ L1(µ), which
implies fg ∈ Lr(µ), and

∫ ∣fg∣r dµ = ∫ ∣FG∣dµ

≤ (∫ ∣F ∣
p′ dµ)

1/p′
(∫ ∣G∣

q′ dµ)
1/q′

= (∫ ∣f ∣p dµ)
r/p

(∫ ∣g∣q dµ)
r/q
.

Hence,

(∫ ∣fg∣r dµ)1/r ≤ (∫ ∣f ∣p dµ)
1/p

(∫ ∣g∣q dµ)
1/q
,

equivalently, ∣∣fg∣∣r ≤ ∣∣f ∣∣p∣∣g∣∣q.
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(3) Consider the function u ∶ (1,2) × R → R given by u(t, x) = e−tx
2

cosx. Let λ denotes Lebesgue

measure on R, show that the function F ∶ (1,2) → R given by F (t) = ∫
R
e−tx

2

cosxdλ(x) is

differentiable.

Proof: We apply Theorem 12.5 (11.5 in edition 1). First for any fixed t ∈ (1,2), we have

∣e−tx
2

cosx∣ ≤ e−tx
2

≤ e−x
2/2

∈ L
1
(λ)

since ∫
∞

−∞
e−x

2/2 dx =
√

2π implying ∫
R
e−tx

2

dλ(x) ≤ ∫
R
e−x

2/2 dλ(x) =
√

2π. Now for any fixed

x ∈ R, the function t → u(t, x) = e−tx
2

cosx is differentiable with
∂u

∂t
(t, x) = −x2e−tx

2

cosx. Using

the second and third term of the Taylor series expansion of etx
2

one gets etx
2

≥ tx2 + t2x4/2, and
hemce

∣
∂u

∂t
(t, x)∣ ≤ x2e−tx

2

≤
1

t

1

1 + tx2/2
≤

2

t

1

1 + tx2
≤

2

1 + x2
.

It is easy to check that ∫
∞

−∞
2

1 + x2
dx = 2π, so ∫

∞

−∞
2

1 + x2
dλ(x) = 2π implying that the func-

tion w(x) =
2

1 + x2
∈ L

1
(λ). Thus by Theorem 12.5 (11.5 in edition 1), the function F (t) =

∫
R
e−tx

2

cosxdλ(x) is differentiable, and

dF

dt
(t) = ∫

R

∂

∂t
(e−tx

2

cosx)λ(x) = ∫
R
−x2e−tx

2

cosxdλ(x).

(4) Consider the measure space (R,B(R), λ), where B(R) is the Borel σ-algebra, and λ Lebesgue

measure. Let k, g ∈ L1(λ) and define F ∶ R2 → R, and h ∶ R→ R by

F (x, y) = k(x − y)g(y).

(a) Show that F is measurable.
(b) Show that F ∈ L1(λ × λ), and

∫
R×R

F (x, y)d(λ × λ)(x, y) = (∫
R
k(x)dλ(x))(∫

R
g(y)dλ(y)) .

Proof(a): To show measurablity of F , we first extend the domain of g to R2 as follows. Define
g ∶ R2 → R by g(x, y) = g ○ π2(x, y) = g(y). It is easy to see that g is B(R2)/B(R) measurable.
Moreover, the function d ∶ R2 → R given by d(x, y) = x − y is continuous hence B(R2)/B(R)

measurable. Since
F (x, y) = k(x − y)g(y) = k ○ d(x, y)g(x, y)

is the product of two B(R2)/B(R) measurable functions, it follows that F is B(R2)/B(R) mea-
surable.

Proof(b): Since Lebesgue measure is translation invariant, we have

∫ ∫ ∣F (x, y)∣dλ(x)dλ)(y) = ∫ ∫ ∣k(x − y)∣∣g(y)∣dλ(x)dλ(y)

= ∫ ∫ ∣k(x)∣∣g(y)∣dλ(x)dλ)(y)

= ∫ ∣k(x)∣dλ(x)∫ ∣g(y)∣dλ)(y) <∞.

By Fubini’s Theorem, this implies that F is λ × λ integrable, and

∫ F (x, y)d(λ × λ)(x, y) = ∫ ∫ k(x − y)g(y)dλ(x)dλ(y)

= ∫ ∫ k(x)g(y)dλ(x)dλ)(y)

= ∫ k(x)dλ(x)∫ g(y)dλ)(y).

(5) Consider the measure space (R,B(R), λ), where B(R)) is the Borel σ-algebra and λ is Lebesgue

measure. Let f ∈ L1(λ) and define for h > 0, the function fh(x) =
1

h
∫[x,x+h]

f(t)dλ(t).
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(a) Show that fh is Borel measurable for all h > 0.
(b) Show that fh ∈ L

1(λ) and ∣∣fh∣∣1 ≤ ∣∣f ∣∣1.

Proof (a): For h > 0, define uh(t, x) = 1
h
1[x,x+h](t)f(t), then uh is B(R) ⊗ B(R) measurable.

Applying Tonelli’s Theorem (Theorem 13.8(ii) ) to the positive and negative parts of the function
uh, we have that the functions

x→ ∫ u+(t, x)dλ(t) = f+h (x), and x→ ∫ u−(t, x)dλ(t) = f−h (x)

are B(R) measurable. Hence, fh is Borel measurable for all h > 0.

Proof(b): Note that

∫ ∫
1

h
I[x,x+h](t)∣f(t)∣dλ(x)dλ(t) = ∫ ∫

1

h
I[t−h,t](x)∣f(t)∣dλ(x)dλ(t) = ∫ ∣f(t)∣dλ(t) <∞.

Hence, by Fubini’s Theorem fh ∈ L
1(λ) and

∫ ∣fh(x)∣dλ(x) = ∫ ∫
1

h
I[x,x+h](t)∣f(t)∣dλ(x)dλ(t) = ∫ ∣f(x)∣dλ(x) = ∣∣f ∣∣1.

(6) Let (X,A, µ) be a measure space, and p ∈ [1,∞). Let f, fn ∈ Lp(µ) satisfy lim
n→∞ ∣∣fn − f ∣∣p = 0,

and g, gn ∈M(A) satisfy lim
n→∞ gn = g µ a.e. Assume that ∣gn∣ ≤M , where M > 0 is a real number.

Show that lim
n→∞ ∣∣fngn − fg∣∣p = 0.

Proof: We have

∣fngn − fg∣ = ∣fngn − gnf + gnf − fg∣ ≤ ∣gn∣ ∣fn − f ∣ + ∣f ∣ ∣gn − g∣.

Hence,

∣fngn − fg∣
p

≤ 2p(∣gn∣
p
∣fn − f ∣

p
+ ∣f ∣p ∣gn − g∣

p
)

≤ 2p(∣Mp
∣fn − f ∣

p
+ ∣f ∣p ∣gn − g∣

p
).

This gives

∫ ∣fngn − fg∣
p dµ ≤ 2pMp

∫ ∣fn − f ∣
p dµ + 2p ∫ ∣f ∣p∣∣gn − g∣

p dµ.

Since, lim
n→∞ ∣∣fn − f ∣∣p = 0 we have lim

n→∞2pMp
∫ ∣fn − f ∣

p dµ = 0. For the second term, we observe

that lim
n→∞ ∣f ∣p∣gn − g∣

p
= 0 µ a.e. and ∣f ∣p∣gn − g∣

p ≤ ∣f ∣p(2M)p ∈ L1(µ). Hence, by Lebesgue

Dominated Convergence Theorem,

lim
n→∞2p ∫ ∣f ∣p∣gn − g∣

p dµ = 2p ∫ lim
n→∞ ∣f ∣p∣gn − g∣

p dµ = 0.

The above imply that lim
n→∞ ∣∣fngn − fg∣∣p = 0.


