Solutions Mid-term Exam Measure and Integration 2004

1. Let $\phi:[A, B] \rightarrow[a, b]$ be a strictly increasing surjective continuous function. Suppose $\psi:[a, b] \rightarrow \mathbb{R}$ is non-decreasing, and $f:[a, b] \rightarrow \mathbb{R}$ a bounded ψ-Riemann integrable function. Define α and g on $[A, B]$ by

$$
\alpha(y)=\psi(\phi(y)) \text { and } g(y)=f(\phi(y)) .
$$

Show that g is α-Riemann integrable, and

$$
\int_{A}^{B} g d \alpha=\int_{a}^{b} f d \psi
$$

Proof: Since ϕ is strictly increasing surjective and continuous, then the inverse map ϕ^{-1} has the same properties. Hence, for any finite non-overlapping cover

$$
\mathcal{C}=\left\{\left[a=a_{0}, a_{1}\right], \cdots,\left[a_{n-1}, a_{n}=b\right]\right\}
$$

of $[a, b]$ corresponds a unique finite non-overlapping cover

$$
\mathcal{C}^{\prime}=\phi^{-1}(\mathcal{C})=\left\{\left[A_{0}, A_{1}\right], \cdots,\left[A_{n-1}, A_{n}\right]\right\}
$$

of $[A, B]$ such that $A_{0}=A, B_{0}=B$ and $A_{i}=\phi^{-1}\left(a_{i}\right)$. Conversely, with any finite non-overlapping cover

$$
\mathcal{C}^{\prime}=\left\{\left[A=A_{0}, A_{1}\right], \cdots,\left[A_{n-1}, A_{n}=B\right]\right\}
$$

of $[A, B]$ corresponds a unique finite non-overlapping cover

$$
\mathcal{C}=\phi\left(\mathcal{C}^{\prime}\right)=\left\{\left[a_{0}, a_{1}\right], \cdots,\left[a_{n-1}, a_{n}\right]\right\}
$$

of $[a, b]$ such that $a_{0}=a, b_{0}=b$ and $a_{i}=\phi\left(A_{i}\right)$. Furthermore, $\mathcal{U}\left(g \mid \alpha ; \mathcal{C}^{\prime}\right)=$ $\mathcal{U}\left(f \mid \psi ; \phi\left(\mathcal{C}^{\prime}\right)\right)$ and $\mathcal{L}\left(g \mid \alpha ; \mathcal{C}^{\prime}\right)=\mathcal{L}\left(f \mid \psi ; \phi\left(\mathcal{C}^{\prime}\right)\right)$.
Let $\epsilon>0$, since f is ψ-Riemann integrable there exists a $\delta>0$ such that if \mathcal{C} is a finite non-overlapping cover of $[a, b]$ with $\|\mathcal{C}\|<\delta$, then

$$
\mathcal{U}(f \mid \psi ; \mathcal{C})-\mathcal{L}(f \mid \psi ; \mathcal{C})<\epsilon .
$$

Thus, for any finite non-overlapping cover \mathcal{C}^{\prime} of $[A, B]$ such that $\left\|\phi\left(\mathcal{C}^{\prime}\right)\right\|<\delta$ one has

$$
\mathcal{U}\left(g \mid \alpha ; \mathcal{C}^{\prime}\right)-\mathcal{L}\left(g \mid \alpha ; \mathcal{C}^{\prime}\right)=\mathcal{U}(f \mid \psi ; \mathcal{C})-\mathcal{L}(f \mid \psi ; \mathcal{C})<\epsilon .
$$

Thus,

$$
\inf _{\mathcal{C}^{\prime}} \mathcal{U}\left(g \mid \alpha ; \mathcal{C}^{\prime}\right)-\sup _{\mathcal{C}^{\prime}} \mathcal{L}\left(g \mid \alpha ; \mathcal{C}^{\prime}\right)<\epsilon .
$$

Therefore, g is α-Riemann integrable. Since,

$$
\inf _{\mathcal{C}^{\prime}} \mathcal{U}\left(g \mid \alpha ; \mathcal{C}^{\prime}\right)=\inf _{\mathcal{C}} \mathcal{U}(f \mid \psi ; \mathcal{C})
$$

it follows that

$$
\int_{A}^{B} g d \alpha=\int_{a}^{b} f d \psi
$$

2. Let $\left\{c_{n}\right\}$ be a sequence satisfying $c_{n} \geq 0$ for all $n \geq 1$, and $\sum_{n=1}^{\infty} c_{n}<\infty$. Let $\left\{s_{n}\right\}$ be a sequence of distinct points in (a, b). Define a function ψ on $[a, b]$ by $\psi(x)=\sum_{n=1}^{\infty} c_{n} 1_{\left(s_{n}, b\right]}(x)$, where $1_{\left(s_{n}, b\right]}$ is the indicator function of the interval $\left(s_{n}, b\right]$. Prove that any continuous function f on $[a, b]$ is ψ-Riemann integrable, and

$$
\int_{a}^{b} f(x) d \psi(x)=\sum_{n=1}^{\infty} c_{n} f\left(s_{n}\right)
$$

Proof: Clearly ψ is non-decreasing. Assume with no loss of generality that $s_{1}<$ $s_{2}<s_{3}<\cdots$, and let f be continuous on $[a, b]$. By Theorem 1.2.10, f is ψ-Riemann integrable. We now show that $\int_{a}^{b} f(x) d \psi(x)=\sum_{n=1}^{\infty} c_{n} f\left(s_{n}\right)$. Let $\epsilon>0$, there exists a positive integer N such that $\sum_{n=m}^{\infty} c_{n}<\epsilon$ for all $m \geq N$. Choose any $m \geq N$, let $\psi_{1}(x)=\sum_{n=1}^{m} c_{n} 1_{\left(s_{n}, b\right]}(x)$ and $\psi_{2}(x)=\sum_{n=m+1}^{\infty} c_{n} 1_{\left(s_{n}, b\right]}(x)$. Then, f is ψ_{1} and ψ_{2}-Riemann integrable, and

$$
\int_{a}^{b} f(x) d \psi(x)=\int_{a}^{b} f(x) d \psi_{1}(x)+\int_{a}^{b} f(x) d \psi_{2}(x) .
$$

Notice that ψ_{1} is constant on the intervals $\left[a, s_{1}\right],\left(s_{1}, s_{2}\right], \cdots,\left(s_{m}, b\right]$ with values $0, c_{1}, c_{1}+c_{2}, \cdots, c_{1}+c_{2}+\cdots+c_{m}$ respectively. Thus by problem 2 in Exercises 2,

$$
\int_{a}^{b} f(x) d \psi_{1}(x)=\sum_{n=1}^{m} c_{n} f\left(s_{n}\right) .
$$

Now, $\psi_{2}(b)=\sum_{n=m+1}^{\infty} c_{n}<\epsilon$ and $\psi_{2}(a)=0$, thus by Theorem 1.2.10,

$$
\left|\int_{a}^{b} f(x) d \psi_{2}(x)\right| \leq\|f\|_{u}\left(\psi_{2}(b)-\psi_{2}(a)\right) \leq\|f\|_{u} \epsilon
$$

Therefore, for each $m \geq N$,

$$
\left|\int_{a}^{b} f(x) d \psi(x)-\sum_{n=1}^{m} c_{n} f\left(s_{n}\right)\right|=\left|\int_{a}^{b} f(x) d \psi_{2}(x)\right| \leq\|f\|_{u} \epsilon .
$$

This implies that

$$
\int_{a}^{b} f(x) d \psi(x)=\sum_{n=1}^{\infty} c_{n} f\left(s_{n}\right) .
$$

3. Let $\Gamma \subseteq \mathbb{R}^{n}$. Recall that the inner Lebesque measure of Γ is defined by

$$
|\Gamma|_{i}=\sup \{|K|: K \subseteq \Gamma, K \text { is compact }\} .
$$

Prove the following.
(a) Assume $|\Gamma|_{e}<\infty$, then Γ is Lebesgue measurable if and only if $|\Gamma|_{e}=|\Gamma|_{i}$.
(b) Assume $|\Gamma|_{e}<\infty$, then Γ is Lebesgue measurable if and only if $|A|_{e}=$ $|\Gamma \cap A|_{e}+\left|\Gamma^{c} \cap A\right|_{e}$ for all $A \subseteq \mathbb{R}^{n}$.
(c) If $A \subseteq \Gamma$, and Γ is Lebesgue measurable, then $|A|_{e}+|\Gamma \backslash A|_{i}=|\Gamma|$.

Proof (a): Suppose Γ is Lebesgue measurable, in this part we don't need the finiteness of $\left.\Gamma\right|_{e}$. By problem 3 in Exercises 4 we have $|\Gamma|_{i} \leq|\Gamma|_{e}=|\Gamma|$. We will show that $|\Gamma| \leq|\Gamma|_{i}$. Let $\epsilon>0$, since Γ^{c} is measurable, there exists an open set G such that $\Gamma^{c} \subseteq G$ and $\left|G \backslash \Gamma^{c}\right|<\epsilon$. Let $F=G^{c}$, then F is closed, $F \subseteq \Gamma$ and $|\Gamma \backslash F|=\left|G \backslash \Gamma^{c}\right|<\epsilon$. Let $K_{n}=F \cap \overline{B(0, n)}$ for $n \geq 1$. Then, $\left\{K_{n}\right\}$ is an increasing sequence of compact sets such that $F=\bigcup_{n=1}^{\infty} K_{n}$. Hence, $|F|=\lim _{n \rightarrow \infty}\left|K_{n}\right|$. If $|F|=\infty$, then $|\Gamma|=|\Gamma|_{i}=\infty$. Assume $|F|<\infty$. Then, there exists a positive integer N such that $|F| \leq\left|K_{n}\right|+\epsilon$ for all $n \geq N$. Let $n \geq N$, then

$$
|\Gamma| \leq|F|+|\Gamma \backslash F|<|F|+\epsilon \leq\left|K_{n}\right|+2 \epsilon \leq|\Gamma|_{i}+2 \epsilon .
$$

Since $\epsilon>0$ is arbitrary, it follows that $|\Gamma| \leq|\Gamma|_{i}$. Therefore, $|\Gamma|_{e}=|\Gamma|_{i}$.
Conversely, suppose $|\Gamma|_{e}=|\Gamma|_{i}<\infty$. Let $\epsilon>0$, then there exist a compact set K and an open set G such $K \subseteq \Gamma \subseteq G,|K| \geq|\Gamma|_{e}-\epsilon$ and $|G| \leq|\Gamma|_{e}+\epsilon$. Since K is compact, then $|K|<\infty$. Hence, $|G \backslash \Gamma|_{e} \leq|G \backslash K|=|G|-|K| \leq 2 \epsilon$. Therefore, Γ is Lebesgue measurable.

Proof (b): Suppose Γ is Lebesgue measurable (we do not need finiteness of $|\Gamma|_{e}$), and let A be any subset of \mathbb{R}^{n}. By subadditivity of the outer Lebesgue measure, we have $|A|_{e} \leq|\Gamma \cap A|_{e}+\left|\Gamma^{c} \cap A\right|_{e}$. We prove the reverse inequality. Since Γ is Lebesgue measurable, for any open set G containing A, one has

$$
|G|=|G \cap \Gamma|+\left|G \cap \Gamma^{c}\right| \geq|A \cap \Gamma|_{e}+\left|A \cap \Gamma^{c}\right|_{e} .
$$

Thus,

$$
|A|_{e}=\inf \{|G|: A \subseteq G, G \text { open }\} \geq|A \cap \Gamma|_{e}+\left|A \cap \Gamma^{c}\right|_{e}
$$

Conversely, assume $|\Gamma|_{e}<\infty$, and suppose $|A|_{e}=|\Gamma \cap A|_{e}+\left|\Gamma^{c} \cap A\right|_{e}$ for all $A \subseteq \mathbb{R}^{n}$. By the hypothesis, for any open set G containing Γ, one has $|G|=|G \cap \Gamma|_{e}+\mid G \cap$ $\left.\Gamma^{c}\right|_{e}=|\Gamma|_{e}+|G \backslash \Gamma|_{e}$. Since $|\Gamma|_{e}<\infty$, then $|G \backslash \Gamma|_{e}=|G|-|\Gamma|_{e}$. Let $\epsilon>0$, there exists an open set G containing Γ such that $|G|<|\Gamma|_{e}+\epsilon$, then $|G \backslash \Gamma|_{e}<\epsilon$. Thus, Γ is measurable.

Proof (c): For any open set G containing A,

$$
|G|_{e}+|\Gamma \backslash A|_{i} \geq|G \cap \Gamma|_{e}+|\Gamma \backslash G|_{i}=|G \cap \Gamma|+|\Gamma \backslash G|=|\Gamma| .
$$

Taking the infimum over open sets G containing A, we get $|A|_{e}+|\Gamma \backslash A|_{i} \geq|\Gamma|$.
Now, for any compact set $K \subseteq \Gamma \backslash A$,

$$
|A|_{e}+|K| \leq|\Gamma \backslash K|_{e}+|K|=|\Gamma \backslash K|+|K|=|\Gamma| .
$$

Taking the supremum over compact subsets K of $\Gamma \backslash A$, we get $|A|_{e}+|\Gamma \backslash A|_{i} \leq|\Gamma|$. Thus, $|A|_{e}+|\Gamma \backslash A|_{i}=|\Gamma|$.
4. Let E be a set, and \mathcal{A} an algebra over E. Let $\mu: \mathcal{A} \rightarrow[0,1]$ be a function satisfying
(I) $\mu(E)=1=1-\mu(\emptyset)$,
(II) if $A_{1}, A_{2}, \cdots, \in \mathcal{A}$ are pairwise disjoint and $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{A}$, then

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right) .
$$

(a) Show that if $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are increasing sequences in \mathcal{A} such that $\bigcup_{n=1}^{\infty} A_{n} \subseteq$ $\bigcup_{n=1}^{\infty} B_{n}$, then $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq \lim _{n \rightarrow \infty} \mu\left(B_{n}\right)$.
(b) Let \mathcal{G} be the collection of all subsets G of E such that there exists an increasing sequence $\left\{A_{n}\right\}$ in \mathcal{A} with $G=\bigcup_{n=1}^{\infty} A_{n}$. Define $\bar{\mu}$ on \mathcal{G} by

$$
\bar{\mu}(G)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

where $\left\{A_{n}\right\}$ is an increasing sequence in \mathcal{A} such that $G=\bigcup_{n=1}^{\infty} A_{n}$. Show the following.
(i) $\bar{\mu}$ is well defined.
(ii) If $G_{1}, G_{2} \in \mathcal{G}$, then $G_{1} \cup G_{2}, G_{1} \cap G_{2} \in \mathcal{G}$ and

$$
\bar{\mu}\left(G_{1} \cup G_{2}\right)+\bar{\mu}\left(G_{1} \cap G_{2}\right)=\bar{\mu}\left(G_{1}\right)+\bar{\mu}\left(G_{2}\right)
$$

(iii) If $G_{n} \in \mathcal{G}$ and $G_{1} \subseteq G_{2} \subseteq \cdots$, then $\bigcup_{n=1}^{\infty} G_{n} \in \mathcal{G}$ and

$$
\bar{\mu}\left(\bigcup_{n=1}^{\infty} G_{n}\right)=\lim _{n \rightarrow \infty} \bar{\mu}\left(G_{n}\right)
$$

(c) Define μ^{*} on $\mathcal{P}(E)$ (the power set of E) by

$$
\mu^{*}(A)=\inf \{\bar{\mu}(G): A \subseteq G, G \in \mathcal{G}\}
$$

(i) Show that $\mu^{*}(G)=\bar{\mu}(G)$ for all $G \in \mathcal{G}$, and

$$
\mu^{*}(A \cup B)+\mu^{*}(A \cap B) \leq \mu^{*}(A)+\mu^{*}(B)
$$

for all subsets A, B of E. Conclude that $\mu^{*}(A)+\mu^{*}\left(A^{c}\right) \geq 1$ for all $A \subseteq E$.
(ii) Show that if $C_{1} \subseteq C_{2} \subseteq \cdots$ are subsets of E and $C=\bigcup_{n=1}^{\infty} C_{n}$, then $\mu^{*}(C)=\lim _{n \rightarrow \infty} \mu^{*}\left(C_{n}\right)$.
(iii) Let $\mathcal{H}=\left\{B \subseteq E: \mu^{*}(B)+\mu^{*}\left(B^{c}\right)=1\right\}$. Show that \mathcal{H} is a σ-algebra over E, and μ^{*} is a measure on \mathcal{H}.
(iv) Show that $\sigma(E ; \mathcal{A}) \subseteq \mathcal{H}$. Conclude that the restriction of μ^{*} to $\sigma(E ; \mathcal{A})$ is a measure extending μ, i.e. $\mu^{*}(A)=\mu(A)$ for all $A \in \mathcal{A}$.

Proof (a): Using the same proof as in Theorem 3.1.6 (i), one can easily show that if $\left\{D_{n}\right\}$ is an increasing sequence in \mathcal{A} such that $\bigcup_{n} D_{n} \in \mathcal{A}$, then $\mu\left(\bigcup_{n} D_{n}\right)=$ $\lim _{n \rightarrow \infty} \mu\left(D_{n}\right)$. Suppose that $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are increasing sequences in \mathcal{A} such that $\bigcup_{n=1}^{\infty} A_{n} \subseteq \bigcup_{n=1}^{\infty} B_{n}$. For each $m \geq 1,\left\{A_{m} \cap B_{n}: n \geq 1\right\}$ is an increasing
sequence in \mathcal{A} and $A_{m}=A_{m} \cap \bigcup_{n=1}^{\infty} B_{n}=\bigcup_{n=1}^{\infty}\left(A_{m} \cap B_{n}\right) \in \mathcal{A}$. Thus, for each $m \geq 1$,

$$
\mu\left(A_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{m} \cap B_{n}\right) \leq \lim _{n \rightarrow \infty} \mu\left(B_{n}\right) .
$$

Taking the limit as $m \rightarrow \infty$, we get $\lim _{m \rightarrow \infty} \mu\left(A_{m}\right) \leq \lim _{n \rightarrow \infty} \mu\left(B_{n}\right)$.
Proof (b)(i): Let $G \in \mathcal{G}$. If $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are two increasing sequences in \mathcal{A} such that $G=\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty} B_{n}$. Then, by part (a) $\lim _{m \rightarrow \infty} \mu\left(A_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)$. This shows that $\bar{\mu}$ is well defined on \mathcal{G}.

Proof (b)(ii): Let $G_{1}, G_{2} \in \mathcal{G}$, there exist increasing sequences $\left\{A_{n}\right\},\left\{B_{n}\right\}$ in \mathcal{A} such that $G_{1}=\bigcup_{n=1}^{\infty} A_{n}$ and $G_{1}=\bigcup_{n=1}^{\infty} B_{n}$. Then, $\left\{A_{n} \cup B_{n}\right\},\left\{A_{n} \cap B_{n}\right\}$ are increasing sequences in \mathcal{G} such that $G_{1} \cup G_{2}=\bigcup_{n=1}^{\infty}\left(A_{n} \cup B_{n}\right)$ and $G_{1} \cap G_{2}=$ $\bigcup_{n=1}^{\infty}\left(A_{n} \cap B_{n}\right)$. Thus, $G_{1} \cup G_{2}, G_{1} \cap G_{2} \in \mathcal{G}$. By definition of $\bar{\mu}$,

$$
\begin{aligned}
\bar{\mu}\left(G_{1} \cup G_{2}\right) & =\lim _{n \rightarrow \infty} \mu\left(A_{n} \cup B_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\mu\left(A_{n}\right)+\mu\left(B_{n}\right)-\mu\left(A_{n} \cap B_{n}\right)\right) \\
& =\bar{\mu}\left(G_{1}\right)+\bar{\mu}\left(G_{2}\right)-\bar{\mu}\left(G_{1} \cap G_{2}\right) .
\end{aligned}
$$

Proof (b)(iii): For each $n \geq 1$ there exists an increasing sequence $\left\{A_{n m}: m \geq 1\right\}$ in \mathcal{A} such that $G_{n}=\bigcup_{m=1}^{\infty} A_{n m}$. Let $D_{m}=\bigcup_{n=1}^{m} A_{n m}$ for $m \geq 1$, then $\left\{D_{m}\right\}$ is an increasing sequence in \mathcal{A}. For each $n \leq m, A_{n m} \subseteq D_{m} \subseteq G_{m}$. and hence $\mu\left(A_{n m}\right) \leq \mu\left(D_{m}\right) \leq \bar{\mu}\left(G_{m}\right)$. We will show that $\bigcup_{n=1}^{\infty} G_{n}=\bigcup_{n=1}^{\infty} D_{n}$.
For any $n \geq 1$,

$$
G_{n}=\bigcup_{m=1}^{\infty} A_{n m}=\bigcup_{m=n}^{\infty} A_{n m} \subseteq \bigcup_{m=1}^{\infty} D_{m} \subseteq \bigcup_{m=1}^{\infty} G_{m} .
$$

Thus,

$$
\bigcup_{n=1}^{\infty} G_{n} \subseteq \bigcup_{m=1}^{\infty} D_{m} \subseteq \bigcup_{m=1}^{\infty} G_{m}
$$

Hence, $\bigcup_{n=1}^{\infty} G_{n}=\bigcup_{n=1}^{\infty} D_{n}$, and $\bigcup_{n=1}^{\infty} G_{n} \in \mathcal{G}$. From $\mu\left(A_{n m}\right) \leq \mu\left(D_{m}\right) \leq \bar{\mu}\left(G_{m}\right)$, $n \leq m$ one gets for each $n \geq 1$,

$$
\bar{\mu}\left(G_{n}\right)=\lim _{m \rightarrow \infty} \mu\left(A_{n m}\right) \leq \lim _{m \rightarrow \infty} \mu\left(D_{m}\right)=\bar{\mu}\left(\bigcup_{n=1}^{\infty} G_{n}\right) \leq \lim _{m \rightarrow \infty} \bar{\mu}\left(G_{m}\right)
$$

Taking the limit as $n \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty} \bar{\mu}\left(G_{n}\right)=\bar{\mu}\left(\bigcup_{n=1}^{\infty} G_{n}\right) .
$$

Proof (c)(i): Let $G \in \mathcal{G}$, by definition of $\mu^{*}, \mu^{*}(G) \leq \bar{\mu}(G)$. Notice that part(a) implies that $\bar{\mu}$ is monotone. Hence, for any $G^{\prime} \in \mathcal{G}$ containing G we have $\bar{\mu}(G) \leq$ $\bar{\mu}\left(G^{\prime}\right)$. Taking the infimum over all sets $G^{\prime} \in \mathcal{G}$ containing G we get $\bar{\mu}(G) \leq \mu^{*}(G)$.

Now, let A, B be any two subsets of E and let $\epsilon>0$. There exist sets $G_{1}, G_{2} \in \mathcal{G}$ such that $\bar{\mu}\left(G_{1}\right) \leq \mu^{*}(A)+\epsilon$, and $\bar{\mu}\left(G_{2}\right) \leq \mu^{*}(B)+\epsilon$. By part (b)(ii), $A \cap B \subseteq G_{1} \cap G_{2} \in \mathcal{G}$ and $A \cup B \subseteq G_{1} \cup G_{2} \in \mathcal{G}$, hence
$\mu^{*}(A \cup B)+\mu^{*}(A \cap B) \leq \bar{\mu}\left(G_{1} \cup G_{2}\right)+\bar{\mu}\left(G_{1} \cap G_{2}\right)=\bar{\mu}\left(G_{1}\right)+\bar{\mu}\left(G_{2}\right) \leq \mu^{*}(A)+\mu^{*}(B)+2 \epsilon$.
Since $\epsilon>0$ is arbitrary, it follows that $\mu^{*}(A \cup B)+\mu^{*}(A \cap B) \leq \mu^{*}(A)+\mu^{*}(B)$. Finally, taking $B=A^{c}$ and noticing that $\mu^{*}(E)=1=1-\mu^{*}(\emptyset)$, we get $1 \leq \mu^{*}(A)+\mu^{*}\left(A^{c}\right)$ for all $A \subseteq E$.

Proof (c)(ii): Let $\left\{C_{n}\right\}$ be an increasing sequence of subsets of E and let $C=$ $\bigcup_{n=1}^{\infty} C_{n}$. Since μ^{*} is clearly monotone, it follows that $\mu^{*}\left(C_{n}\right) \leq \mu^{*}(C)$ for all $n \geq 1$. Hence, $\lim _{n \rightarrow \infty} \mu^{*}\left(C_{n}\right) \leq \mu^{*}(C)$. We now prove the reverse inequality. Let $\epsilon>0$, for each n choose $G_{n} \in \mathcal{G}$ such that $\bar{\mu}\left(G_{n}\right) \leq \mu^{*}\left(C_{n}\right)+\frac{\epsilon}{2^{n}}$. Let $G=\bigcup_{n=1}^{\infty} G_{n}$ and $F_{n}=$ $\bigcup_{m=1}^{n} G_{n}$. Then, $C \subseteq G,\left\{F_{n}\right\}$ is an increasing sequence in \mathcal{G} and $G=\bigcup_{n=1}^{\infty} F_{n}$. By part (b)(iii), $G \in \mathcal{G}$ and $\mu^{*}(C) \leq \mu^{*}(G)=\lim _{n \rightarrow \infty} \mu^{*}\left(F_{n}\right)$. Finally, using induction, one can easily show that $\mu^{*}\left(F_{n}\right)=\bar{\mu}\left(F_{n}\right) \leq \mu^{*}\left(C_{n}\right)+\sum_{i=1}^{n} \frac{\epsilon}{2^{i}}$. From this it follows that

$$
\mu^{*}(C) \leq \lim _{m \rightarrow \infty} \mu^{*}\left(F_{n}\right) \leq \lim _{n \rightarrow \infty} \mu^{*}\left(C_{n}\right)+\epsilon
$$

Thus, $\mu^{*}(C) \leq \lim _{n \rightarrow \infty} \mu^{*}\left(C_{n}\right)$.
Proof (c)(iii): Clearly, $\emptyset \in \mathcal{H}$ and \mathcal{H} is closed under complementation. We first show that \mathcal{H} is an algebra. Let $H_{1}, H_{2} \in \mathcal{H}$. By part (c)(i),

$$
\mu^{*}\left(H_{1} \cup H_{2}\right)+\mu^{*}\left(H_{1} \cap H_{2}\right) \leq \mu^{*}\left(H_{1}\right)+\mu^{*}\left(H_{2}\right)
$$

and

$$
\mu^{*}\left(\left(H_{1} \cup H_{2}\right)^{c}\right)+\mu^{*}\left(\left(H_{1} \cap H_{2}\right)^{c}\right) \leq \mu^{*}\left(H_{1}^{c}\right)+\mu^{*}\left(H_{2}^{c}\right) .
$$

Adding both equations, and using that $H_{1}, H_{2} \in \mathcal{H}$ and the last conclusion of part (b)(i), we get

$$
2 \leq \mu^{*}\left(H_{1} \cup H_{2}\right)+\mu^{*}\left(\left(H_{1} \cup H_{2}\right)^{c}\right)+\mu^{*}\left(H_{1} \cap H_{2}\right)+\mu^{*}\left(\left(H_{1} \cap H_{2}\right)^{c}\right)=2 .
$$

Since, $\mu^{*}\left(H_{1} \cup H_{2}\right)+\mu^{*}\left(\left(H_{1} \cup H_{2}\right)^{c}\right) \geq 1$ and $\mu^{*}\left(H_{1} \cap H_{2}\right)+\mu^{*}\left(\left(H_{1} \cap H_{2}\right)^{c}\right) \geq 1$, we must have that $\mu^{*}\left(H_{1} \cup H_{2}\right)+\mu^{*}\left(\left(H_{1} \cup H_{2}\right)^{c}\right)=1$ and $\mu^{*}\left(H_{1} \cap H_{2}\right)+\mu^{*}\left(\left(H_{1} \cap H_{2}\right)^{c}\right)=1$. Thus, $H_{1} \cup H_{2}, H_{1} \cap H_{2} \in \mathcal{H}$ and \mathcal{H} is an algebra. Furthermore, from the above anlaysis we must have $\mu^{*}\left(H_{1} \cup H_{2}\right)+\mu^{*}\left(H_{1} \cap H_{2}\right)=\mu^{*}\left(H_{1}\right)+\mu^{*}\left(H_{2}\right)$ otherwise the sum of the first two displayed equations would be less than 2 , a contradiction. Thus, μ^{*} is additive on \mathcal{H}.
We now show that \mathcal{H} is a σ-algebra. Let $H_{1}, H_{2}, \cdots, \in \mathcal{H}$ and let $H=\bigcup_{n=1}^{\infty} H_{n}$. To show that $H \in \mathcal{H}$, it is enough to show that $\mu^{*}(H)+\mu^{*}\left(H^{c}\right) \leq 1$ (see part (c)(i)). Let $G_{n}=\bigcup_{m=1}^{n} H_{m}$. Since \mathcal{H} is an algebra, then $\left\{G_{n}\right\}$ is an increasing sequence in \mathcal{H} such that $H=\bigcup_{n=1}^{\infty} G_{n}$. Hence, by part (c)(ii), $\mu^{*}(H)=\lim _{n \rightarrow \infty} \mu^{*}\left(G_{n}\right)$. Let $\epsilon>0$, there exists a positive integer N such that $\mu^{*}(H) \leq \mu^{*}\left(G_{n}\right)+\epsilon$ for all $n \geq N$. Now, $H^{c} \subseteq G_{n}^{c}$, hence $\mu^{*}(H) \leq \mu^{*}\left(G_{n}^{c}\right)$ for all $n \geq 1$. For any $n \geq N$, we have

$$
\mu^{*}(H)+\mu^{*}\left(H^{c}\right) \leq \mu^{*}\left(G_{n}\right)+\mu^{*}\left(G_{n}^{c}\right)+\epsilon=1+\epsilon
$$

Since, $\epsilon>0$ is arbitrary, it follows that $\mu^{*}(H)+\mu^{*}\left(H^{c}\right) \leq 1$. Thus, $H \in \mathcal{H}$, and \mathcal{H} is σ-algebra. Finally, we show that μ^{*} is σ-additive on \mathcal{H}. Let $H_{1}, H_{2}, \cdots, \in \mathcal{H}$ be pairwise disjoint, and let $G_{n}=G_{n}=\bigcup_{m=1}^{n} H_{m}$. Then, $\left\{G_{n}\right\}$ is an increasing sequence in \mathcal{H} such that $\bigcup_{n=1}^{\infty} H_{n}=\bigcup_{n=1}^{\infty} G_{n}$. By part (c)(ii) and the (finite) additivity of μ^{*} on \mathcal{H}, we get

$$
\mu^{*}\left(\bigcup_{n=1}^{\infty} H_{n}\right)=\lim _{n \rightarrow \infty} \mu^{*}\left(G_{n}\right)=\lim _{n \rightarrow \infty} \sum_{m=1}^{n} \mu^{*}\left(H_{m}\right)=\sum_{m=1}^{\infty} \mu^{*}\left(H_{m}\right) .
$$

Thus, μ^{*} is a measure on \mathcal{H}.
Proof (c)(iv): Since $\mathcal{A} \subseteq \mathcal{G}$, it is enough to show that $\mathcal{G} \subseteq \mathcal{H}$. Let $G \in \mathcal{G}$, and $\left\{A_{n}\right\}$ an increasing sequence in \mathcal{A} such that $G=\bigcup_{n=1}^{\infty} A_{n}$. By part (b), $\bar{\mu}(G)=$ $\mu^{*}(G)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$. Notice that for each $n \geq 1, \mu\left(A_{n}\right)=\bar{\mu}\left(A_{n}\right)=\mu^{*}\left(A_{n}\right)$, and $G^{c} \subseteq A_{n}^{c}$. Thus, for each $n \geq 1$,

$$
\mu\left(A_{n}\right)+\mu^{*}\left(G^{c}\right) \leq \mu\left(A_{n}\right)+\mu\left(A_{n}^{c}\right)=1
$$

Taking the limit as $n \rightarrow \infty$ we get,

$$
\mu^{*}(G)+\mu^{*}\left(G^{c}\right) \leq 1
$$

By part (c)(i), this implies that $\mu^{*}(G)+\mu^{*}\left(G^{c}\right)=1$, and hence $G \in \mathcal{H}$. Therefore, $\sigma(E ; \mathcal{A}) \subseteq \mathcal{H}$ and the restriction of μ^{*} to $\sigma(E ; \mathcal{A})$ is a measure extending μ.
5. Let $\overline{\mathcal{B}}_{\mathbb{R}^{N}}$ be the Lebesgue σ-algebra over $\mathbb{R}^{N}, \mathcal{B}_{\mathbb{R}^{N}}$ the Borel σ-algebra over \mathbb{R}^{N}, and $\mathcal{B}_{\overline{\mathbb{R}}}$ the Borel σ-algebra over $\overline{\mathbb{R}}=[-\infty, \infty]$. Denote by $\lambda_{\mathbb{R}^{N}}$ the Lebesgue measure on $\overline{\mathcal{B}}_{\mathbb{R}^{N}}$. Let $f: \mathbb{R}^{N} \rightarrow[-\infty, \infty]$ be Lebesgue measurable (i.e. $f^{-1}(A) \in \overline{\mathcal{B}}_{\mathbb{R}^{N}}$ for all $A \in \mathcal{B}_{\overline{\mathbb{R}}}$). Show that there exists a function $g: \mathbb{R}^{N} \rightarrow[-\infty, \infty]$ which is Borel measurable (i.e. $g^{-1}(A) \in \mathcal{B}_{\mathbb{R}^{N}}$ for all $A \in \mathcal{B}_{\overline{\mathbb{R}}}$) such that

$$
\lambda_{\mathbb{R}^{N}}\left(\left\{x \in \mathbb{R}^{N}: f(x) \neq g(x)\right\}\right)=0 .
$$

(Hint: assume first that f is a non-negative simple function)
Proof: Assume first that f is a non-negative Lebesgue measurable simple function. Then f has the form $f=\sum_{i=1}^{n} a_{i} 1_{A_{i}}$, where $a_{1}, a_{2}, \cdots, a_{n}$ are all distinct, and $A_{1}, A_{2}, \cdots, A_{n} \in \overline{\mathcal{B}}_{\mathbb{R}^{N}}$ are pairwise disjoint. Since every Lebesgue set is the disjoint union of a Borel Set and Lebesgue set of Lebesgue measure zero, it follows that for each $i=1,2, \cdots, n A_{i}=B_{i} \cup N_{i}$, where $B_{i} \in \mathcal{B}_{\overline{\mathbb{R}}}$, and $\lambda_{\mathbb{R}^{N}}\left(N_{i}\right)=0$. Let $g=\sum_{i=1}^{n} a_{i} 1_{B_{i}}$, then g is Borel measurable, and $\lambda_{\mathbb{R}^{N}}\left(\left\{x \in \mathbb{R}^{N}: f(x) \neq g(x)\right\}\right) \leq$ $\lambda_{\mathbb{R}^{N}}\left(\cup_{i=1}^{n} N_{i}\right)=0$. Now assume f is a non-negative Lebesgue measurable function. Then there exists an increasing sequence $\left\{\phi_{n}\right\}$ of non-negative Lebesgue measurable simple functions such that $f=\lim _{n \rightarrow \infty} \phi_{n}=\sup _{n} \phi_{n}$. Each ϕ_{n} has the form $\phi_{n}=$ $\sum_{i=1}^{m_{n}} a_{i}^{(n)} 1_{A_{i}^{(n)}}$, where $a_{i}^{(n)}$ are all distinct and $A_{i}^{(n)} \in \overline{\mathcal{B}}_{\mathbb{R}^{N}}$. Further, $A_{i}^{(n)}=B_{i}^{(n)} \cup$ $N_{i}^{(n)}$ (disjoint union), where $B_{i}^{(n)} \in \mathcal{B}_{\overline{\mathbb{R}}}$ and $\lambda_{\mathbb{R}^{N}}\left(N_{i}^{(n)}\right)=0$. Set $g_{n}=\sum_{i=1}^{m_{n}} a_{i}^{(n)} 1_{B_{i}^{(n)}}$, then g_{n} is Borel measurable, $0 \leq g_{n} \leq \phi_{n}$ and $\lambda_{\mathbb{R}^{N}}\left(\phi_{n} \neq g_{n}\right) \leq \lambda_{\mathbb{R}^{N}}\left(\cup_{i=1}^{m_{n}} N_{i}^{(n)}\right)=0$. Let $g=\sup _{n} g_{n}$. Then g is Borel measurable, $0 \leq g \leq f$ and $\lambda_{\mathbb{R}^{N}}(f \neq g) \leq$
$\lambda_{\mathbb{R}^{N}}\left(\cup_{n=1}^{\infty} \cup_{i=1}^{m_{n}} N_{i}^{(n)}\right)=0$. Finally, let f be any Lebesgue measurable function. Then $f=f^{+}-f^{-}$with f^{+}, f^{-}non-negative Lebesgue measurable functions. By the above, there exist h_{1}, h_{2} Borel measurable such that $0 \leq h_{1} \leq f^{+}, 0 \leq h_{2} \leq f^{-}$, and $\lambda_{\mathbb{R}^{N}}\left(f^{+} \neq h_{1}\right)=\lambda_{\mathbb{R}^{N}}\left(f^{-} \neq h_{2}\right)=0$. Then, $h_{1}-h_{2}$ is a Borel measurable function (note that $h_{1}-h_{2}$ has never the value $\infty-\infty$ since $0 \leq h_{1} \leq f^{+}$and $0 \leq h_{2} \leq f^{-}$), and $\lambda_{\mathbb{R}^{N}}\left(f \neq h_{1}-h_{2}\right) \leq \lambda_{\mathbb{R}^{N}}\left(f^{+} \neq h_{1}\right)+\lambda_{\mathbb{R}^{N}}\left(f^{-} \neq h_{2}\right)=0$.
6. Let (E, \mathcal{B}, μ) be a measure space, and $f: E \rightarrow[0, \infty]$ a measurable simple function such that $\int_{E} f d \mu<\infty$. Show that for every $\epsilon>0$ there exists a $\delta>0$ such that if $A \in \mathcal{B}$ with $\mu(A)<\delta$ then $\int_{A} f d \mu<\epsilon$.

Proof: The proof is done by contradiction. Suppose there exists an $\epsilon>0$ such that for every $\delta>0$ there exists a measurable set A such that $\mu(A)<\delta$ but $\int_{A} f d \mu \geq \epsilon$. For $A \in \mathcal{B}$, let $\lambda(A)=\int_{A} f d \mu$. By problem 3 of Exercises $8, \lambda$ is a finite measure on \mathcal{B}. By our assumption, for each $n \geq 1$ there exists a measurable subset A_{n} such that $\mu\left(A_{n}\right)<\frac{1}{2^{n}}$ and $\lambda\left(A_{n}\right)=\int_{A_{n}} f d \mu \geq \epsilon$. Let $A=\lim \sup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}$. Since $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty$, then by Borel-Cantelli Lemma (problem 3(c) in Exercises 7) we have $\mu(A)=0$. But then $\lambda(A)=\int_{A} f d \mu=0$. Since λ is a finite measure, by problem 3(b) in Exercises 7, we have

$$
0=\lambda(A)=\lambda\left(\limsup _{n \rightarrow \infty} A_{n}\right) \geq \limsup _{n \rightarrow \infty} \lambda\left(A_{n}\right) \geq \epsilon,
$$

a contradiction. Therefore, for every $\epsilon>0$ there exists a $\delta>0$ such that if $A \in \mathcal{B}$ with $\mu(A)<\delta$ then $\int_{A} f d \mu<\epsilon$.
Note that in the proof we did not use the fact the f is a non-negative simple function, hence the proof holds for any non-negative measurable μ-integrable function on (E, \mathcal{B}, μ).

