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Question 1

Let f, g : [a, b] → R be bounded Riemann integrable funcions. Show that fg is Riemann integrable.
(Hint: express fg in terms of (f + g) and (f − g)).

Proof: First notice that f and g are Riemann integrable funcions, hence f + g and f − g are also
Riemann integrable funcions. By problem 4 Exercises2, it follows that (f + g)2 and (f − g)2 are
Riemann integrable funcions. Now,

fg =
1
4
(f + g)2 − 1

4
(f − g)2.

Hence fg is Riemann integrable since it is the difference of two Riemann integrable funcions.

Question 2

Consider the measure space (R,BR, λ), where BR is the Lebesgue σ-algebra over R, and λ is
Lebesgue measure. Let fn : R → R be defined by

fn(x) =
2n−1∑
k=0

k

2n
· 1[k/2n,(k+1)/2n), n ≥ 1.

a) Show that fn is measurable, and fn(x) ≤ fn+1(x) for all x ∈ X.

b) Let f(x) = limn→∞ fn(x), for x ∈ R. Show that f : R → R is measurable.

c) Show that limn→∞
∫

R fn(x)dλ(x) =
1
2
.

Proof (a): Since for each n ≥ 1 and k ≤ 2n−1 the set [k/2n, (k+1)/2n) is Lebesgue measurable,
it follows from problem 3 Exercises 8 that fn is measurable. Now let x ∈ R. If x ≥ 1 or
x < 0, then fn(x) = fn+1(x) = 0. Suppose x ∈ [0, 1), then there exists a k ≤ 2n − 1 such
that k/2n ≤ x < (k + 1)/2n and hence fn(x) = k/2n. To determine fn+1(x) we divide the
interval [k/2n, (k +1)/2n) into two equal parts [2k/2n+1, (2k +1)/2n+1) and [(2k +1)/2n+1, (2k +
2)/2n+1). If x ∈ [2k/2n+1, (2k + 1)/2n+1), then fn+1(x) = 2k/2n+1 = k/2n = fn(x). If x ∈
[(2k + 1)/2n+1, (2k + 2)/2n+1), then fn+1(x) = (2k + 1)/2n+1 > fn(x). In all cases we see that
fn(x) ≤ fn+1(x).

Proof (b): Since for each x ∈ R, (fn(x)) is an increasing sequence, it follows that f(x) =
limn→∞ fn(x) = supn fn(x). By problem 2 Exercises 8 and part (a), we see that f is measurable.

Proof (c): Each fn is a measurable simple function, hence∫
R

fn(x)dλ(x) =
2n−1∑
k=0

k

2n
λ([k/2n, (k + 1)/2n)) =

1
4n

2n−1∑
k=0

k =
(2n − 1)2n

2 · 4n
.

Thus,

lim
n→∞

∫
R

fn(x)dλ(x) = lim
n→∞

(2n − 1)2n

2 · 4n
=

1
2
.



Question 3

Let M ⊂ R be a non-Lebesgue measurable set (i.e. M /∈ BR.). Define A = {(x, x) ∈ R2 : x ∈ M},
and let g : R → R2 be given by g(x) = (x, x).

a) Show that A ∈ BR2 . i.e. A is Lebesgue measurable. (Hint: use the fact that Lebesgue
measure is rotation invariant).

b) Show that g is a Borel-measurable function, i.e. g−1(B) ∈ BR for each B ∈ BR2 .

c) Show that A /∈ BR2 , i.e. A is not Borel measurable.

Proof (a): Notice that A is a subset of the diagonal line L = {(x, y) : y = x}. So L is obtained
from the x-axis (i.e. R) by rotating through an angle of π/4. Since Lebesgue measure is rotation
invariant, and the Lebesgue measure of R (as a subset of R2) is zero, it follows that |A|e ≤ |L|e = 0.
Thus, A is Lebesgue measurable, i.e. A ∈ BR2 .

Proof (b): It is easy to see that the map g is continuous, and hence by Lemma 3.2.1 g is
Borel-measurable, i.e. g−1(B) ∈ BR for each B ∈ BR2 .

Proof (c): If A ∈ BR2 , then by part (b) we would have that M = g−1(A) ∈ BR ⊂ BR, which is a
contradiction.

Question 4

Let M = {E ⊆ R : |A|e = |A ∩ E|e + |A ∩ Ec|e for all A ⊆ R}, where |A|e denotes the outer
Lebesgue measure of A.

a) Show that M is an algebra over R. (Hint: A ∩ (E1 ∪ E2) = (A ∩ E1)
⋃

(A ∩ E2 ∩ Ec
1)).

b) Prove by induction that if E1, · · · , En ∈M are pairwise disjoint, then for any A ⊆ R

|A ∩ (
n⋃

i=1

Ei)|e =
n∑

i=1

|A ∩ Ei|e.

c) Show that if E1, E2, · · · ∈ M is a countable collection of disjoint elements of M, then
∞⋃

i=1

Ei ∈M.

d) Show that M is a σ-algebra over R.

e) Let C = {(a,∞) : a ∈ R}. Show that C ⊆ M. Conclude that BR ⊆ M, where BR denotes
the Borel σ-algebra over R.

Proof (a): It is clear from the definition of M that R ∈ M, and if E ∈ M then Ec ∈ M, i.e.
M is closed under complements. We show that M is closed under finite unions. Let E1, E2 ∈M,
and A any subset of R. We need to show that |A|e = |A ∩ (E1 ∪ E2)|e + |A ∩ (E1 ∪ E2)c|e. Since
outer Lebesgue measure is subadditive, it follows that |A|e ≤ |A∩ (E1 ∪E2)|e + |A∩ (E1 ∪E2)c|e.
We now prove the other inequality.

|A ∩ (E1 ∪ E2)|e + |A ∩ (E1 ∪ E2)c|e ≤ |A ∩ E1|e + |A ∩ Ec
1 ∩ E2|e + |A ∩ Ec

1 ∩ Ec
2|e

= |A ∩ E1|e + |A ∩ Ec
1|e

= |A|e.

The first inequality follows from the hint and the subadditivity of the outer Lebesgue measure,
the first equality follows from the fact that E2 ∈M and the second equality follows from the fact
that E1 ∈M.



Proof (b): The equality is trivial for n = 1. Suppose it is true for i < n, then

|A ∩ (
i+1⋃
j=1

Ej)|e = |A ∩ (
i+1⋃
j=1

Ej) ∩ Ei+1|e + |A ∩ (
i+1⋃
j=1

Ej) ∩ Ec
i+1|e

= |A ∩ Ei+1|e + |A ∩ (
i⋃

j=1

Ej)|e

= |A ∩ Ei+1|e +
i∑

j=1

|A ∩ Ej |e

=
i+1∑
j=1

|A ∩ Ej |e.

The first equality follows from Ei+1 ∈ M, the second from the fact that E1, E2, · · · , Ei+1 are
pairwise disjoint and the third follows from our induction hypothesis.

Proof (c): Let E =
⋃∞

i=1 Ei, by subadditivity of the outer Lebesgue measure we only need to
show that |A∩E|e + |A∩Ec|e ≤ |A|e for any A ⊆ R. Let Fn =

⋃n
i=1 Ei, then by part (a) Fn ∈M.

By part (b) and monotonicity of the outer Lebesgue measure, we have

|A|e = |A ∩ Fn|e + |A ∩ F c
n|e ≥

n∑
i=1

|A ∩ Ei|e + |A ∩ Ec|e.

Taking the limit as n →∞, we get by σ-subadditivity of the outer Lebesgue measure that

|A|e ≥
∞∑

i=1

|A ∩ Ei|e + |A ∩ Ec|e ≥ |A ∩ E|e + |A ∩ Ec|e.

Proof (d): Let F1, F2, · · · ∈ M. Define E1 = F1 and En = Fn \ ∪n−1
j=1 Ej , n ≥ 2. Then, En ∈ M

(since M is an algebra) are pairwise disjoint, and
⋃∞

i=1 Ei =
⋃∞

i=1 Fi ∈ M (by part (c)). Hence,
M is a σ-algebra over R.

Proof (e): Let (a,∞) ∈ C and A ⊆ R. We need to show that |A|e ≥ |A∩(a,∞)|e + |A∩(−∞, a]|e.
If |A|e = ∞, then the inequality is trivially true. Suppose that |A|e < ∞ and let ε > 0. There exists
a countable collection of closed intervals [an, bn] such that A ⊂

⋃∞
n=1[an, bn] and

∑∞
n=1(bn−an) ≤

|A|e + ε (this follows from the definition of the outer Lebesgue measure). Let In = [an, bn]∩ (a,∞)
and I ′n = [an, bn] ∩ (−∞, a]. Notice that In and I ′n are disjoint and [an, bn] = In ∪ I ′n. Now,
|A ∩ (a,∞)|e ≤ |

⋃∞
n=1 In|e ≤

∑∞
n=1 |In|e, and |A ∩ (−∞, a]|e ≤

∑∞
n=1 |I ′n|e. Hence,

|A ∩ (a,∞)|e + |A ∩ (−∞, a]|e ≤
∞∑

n=1

(|In|e + |I ′n|e) =
∞∑

n=1

(bn − an) ≤ |A|e + ε.

Since ε > 0 is arbitrary, it follows that |A|e ≥ |A ∩ (a,∞)|e + |A ∩ (−∞, a]|e. This shows that
C ⊆M. Since BR is the smallest σ-algebra generated by C, it follows that BR ⊆M.


