Institute of Mathematics, Faculty of Mathematics and Computer Science, UU. Made available in electronic form by the $\mathcal{T}_{\mathcal{B}} \mathcal{C}$ of A-Eskwadraat In $2004 / 2005$, the course WISB 312 was given by Dr. K. Dajani.

Measure and Integration (WISB 312) 19 April 2005

Question 1

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be bounded Riemann integrable funcions. Show that $f g$ is Riemann integrable. (Hint: express $f g$ in terms of $(f+g)$ and $(f-g)$).
Proof: First notice that f and g are Riemann integrable funcions, hence $f+g$ and $f-g$ are also Riemann integrable funcions. By problem 4 Exercises2, it follows that $(f+g)^{2}$ and $(f-g)^{2}$ are Riemann integrable funcions. Now,

$$
f g=\frac{1}{4}(f+g)^{2}-\frac{1}{4}(f-g)^{2} .
$$

Hence $f g$ is Riemann integrable since it is the difference of two Riemann integrable funcions.

Question 2

Consider the measure space $\left(\mathbb{R}, \overline{\mathcal{B}}_{\mathbb{R}}, \lambda\right)$, where $\overline{\mathcal{B}}_{\mathbb{R}}$ is the Lebesgue σ-algebra over \mathbb{R}, and λ is Lebesgue measure. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)=\sum_{k=0}^{2^{n}-1} \frac{k}{2^{n}} \cdot 1_{\left[k / 2^{n},(k+1) / 2^{n}\right)}, n \geq 1
$$

a) Show that f_{n} is measurable, and $f_{n}(x) \leq f_{n+1}(x)$ for all $x \in X$.
b) Let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$, for $x \in \mathbb{R}$. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable.
c) Show that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(x) d \lambda(x)=\frac{1}{2}$.

Proof (a): Since for each $n \geq 1$ and $k \leq 2^{n}-1$ the set $\left[k / 2^{n},(k+1) / 2^{n}\right)$ is Lebesgue measurable, it follows from problem 3 Exercises 8 that f_{n} is measurable. Now let $x \in \mathbb{R}$. If $x \geq 1$ or $x<0$, then $f_{n}(x)=f_{n+1}(x)=0$. Suppose $x \in[0,1)$, then there exists a $k \leq 2^{n}-1$ such that $k / 2^{n} \leq x<(k+1) / 2^{n}$ and hence $f_{n}(x)=k / 2^{n}$. To determine $f_{n+1}(x)$ we divide the interval $\left[k / 2^{n},(k+1) / 2^{n}\right)$ into two equal parts $\left[2 k / 2^{n+1},(2 k+1) / 2^{n+1}\right)$ and $\left[(2 k+1) / 2^{n+1},(2 k+\right.$ 2) $\left./ 2^{n+1}\right)$. If $x \in\left[2 k / 2^{n+1},(2 k+1) / 2^{n+1}\right)$, then $f_{n+1}(x)=2 k / 2^{n+1}=k / 2^{n}=f_{n}(x)$. If $x \in$ $\left[(2 k+1) / 2^{n+1},(2 k+2) / 2^{n+1}\right)$, then $f_{n+1}(x)=(2 k+1) / 2^{n+1}>f_{n}(x)$. In all cases we see that $f_{n}(x) \leq f_{n+1}(x)$.
Proof (b): Since for each $x \in \mathbb{R},\left(f_{n}(x)\right)$ is an increasing sequence, it follows that $f(x)=$ $\lim _{n \rightarrow \infty} f_{n}(x)=\sup _{n} f_{n}(x)$. By problem 2 Exercises 8 and part (a), we see that f is measurable.
Proof (c): Each f_{n} is a measurable simple function, hence

$$
\int_{\mathbb{R}} f_{n}(x) d \lambda(x)=\sum_{k=0}^{2^{n}-1} \frac{k}{2^{n}} \lambda\left(\left[k / 2^{n},(k+1) / 2^{n}\right)\right)=\frac{1}{4^{n}} \sum_{k=0}^{2^{n}-1} k=\frac{\left(2^{n}-1\right) 2^{n}}{2 \cdot 4^{n}}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(x) d \lambda(x)=\lim _{n \rightarrow \infty} \frac{\left(2^{n}-1\right) 2^{n}}{2 \cdot 4^{n}}=\frac{1}{2}
$$

Question 3

Let $M \subset \mathbb{R}$ be a non-Lebesgue measurable set (i.e. $M \notin \overline{\mathcal{B}}_{\mathbb{R}}$.). Define $A=\left\{(x, x) \in \mathbb{R}^{2}: x \in M\right\}$, and let $g: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be given by $g(x)=(x, x)$.
a) Show that $A \in \overline{\mathcal{B}}_{\mathbb{R}^{2}}$. i.e. A is Lebesgue measurable. (Hint: use the fact that Lebesgue measure is rotation invariant).
b) Show that g is a Borel-measurable function, i.e. $g^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for each $B \in \mathcal{B}_{\mathbb{R}^{2}}$.
c) Show that $A \notin \mathcal{B}_{\mathbb{R}^{2}}$, i.e. A is not Borel measurable.

Proof (a): Notice that A is a subset of the diagonal line $L=\{(x, y): y=x\}$. So L is obtained from the x-axis (i.e. \mathbb{R}) by rotating through an angle of $\pi / 4$. Since Lebesgue measure is rotation invariant, and the Lebesgue measure of $\mathbb{R}\left(\right.$ as a subset of $\left.\mathbb{R}^{2}\right)$ is zero, it follows that $|A|_{e} \leq|L|_{e}=0$. Thus, A is Lebesgue measurable, i.e. $A \in \overline{\mathcal{B}}_{\mathbb{R}^{2}}$.
Proof (b): It is easy to see that the map g is continuous, and hence by Lemma 3.2.1 g is Borel-measurable, i.e. $g^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for each $B \in \mathcal{B}_{\mathbb{R}^{2}}$.
Proof (c): If $A \in \mathcal{B}_{\mathbb{R}^{2}}$, then by part (b) we would have that $M=g^{-1}(A) \in \mathcal{B}_{\mathbb{R}} \subset \overline{\mathcal{B}}_{\mathbb{R}}$, which is a contradiction.

Question 4

Let $\mathcal{M}=\left\{E \subseteq \mathbb{R}:|A|_{e}=|A \cap E|_{e}+\left|A \cap E^{c}\right|_{e}\right.$ for all $\left.A \subseteq \mathbb{R}\right\}$, where $|A|_{e}$ denotes the outer Lebesgue measure of A.
a) Show that \mathcal{M} is an algebra over \mathbb{R}. (Hint: $\left.A \cap\left(E_{1} \cup E_{2}\right)=\left(A \cap E_{1}\right) \bigcup\left(A \cap E_{2} \cap E_{1}^{c}\right)\right)$.
b) Prove by induction that if $E_{1}, \cdots, E_{n} \in \mathcal{M}$ are pairwise disjoint, then for any $A \subseteq \mathbb{R}$

$$
\left|A \cap\left(\bigcup_{i=1}^{n} E_{i}\right)\right|_{e}=\sum_{i=1}^{n}\left|A \cap E_{i}\right|_{e}
$$

c) Show that if $E_{1}, E_{2}, \cdots \in \mathcal{M}$ is a countable collection of disjoint elements of \mathcal{M}, then $\bigcup_{i=1}^{\infty} E_{i} \in \mathcal{M}$.
d) Show that \mathcal{M} is a σ-algebra over \mathbb{R}.
e) Let $\mathcal{C}=\{(a, \infty): a \in \mathbb{R}\}$. Show that $\mathcal{C} \subseteq \mathcal{M}$. Conclude that $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}$, where $\mathcal{B}_{\mathbb{R}}$ denotes the Borel σ-algebra over \mathbb{R}.

Proof (a): It is clear from the definition of \mathcal{M} that $\mathbb{R} \in \mathcal{M}$, and if $E \in \mathcal{M}$ then $E^{c} \in \mathcal{M}$, i.e. \mathcal{M} is closed under complements. We show that \mathcal{M} is closed under finite unions. Let $E_{1}, E_{2} \in \mathcal{M}$, and A any subset of \mathbb{R}. We need to show that $|A|_{e}=\left|A \cap\left(E_{1} \cup E_{2}\right)\right|_{e}+\left|A \cap\left(E_{1} \cup E_{2}\right)^{c}\right|_{e}$. Since outer Lebesgue measure is subadditive, it follows that $|A|_{e} \leq\left|A \cap\left(E_{1} \cup E_{2}\right)\right|_{e}+\left|A \cap\left(E_{1} \cup E_{2}\right)^{c}\right|_{e}$. We now prove the other inequality.

$$
\begin{aligned}
\left|A \cap\left(E_{1} \cup E_{2}\right)\right|_{e}+\left|A \cap\left(E_{1} \cup E_{2}\right)^{c}\right|_{e} & \leq\left|A \cap E_{1}\right|_{e}+\left|A \cap E_{1}^{c} \cap E_{2}\right|_{e}+\left|A \cap E_{1}^{c} \cap E_{2}^{c}\right|_{e} \\
& =\left|A \cap E_{1}\right|_{e}+\left|A \cap E_{1}^{c}\right|_{e} \\
& =|A|_{e} .
\end{aligned}
$$

The first inequality follows from the hint and the subadditivity of the outer Lebesgue measure, the first equality follows from the fact that $E_{2} \in \mathcal{M}$ and the second equality follows from the fact that $E_{1} \in \mathcal{M}$.

Proof (b): The equality is trivial for $n=1$. Suppose it is true for $i<n$, then

$$
\begin{aligned}
\left|A \cap\left(\bigcup_{j=1}^{i+1} E_{j}\right)\right|_{e} & =\left|A \cap\left(\bigcup_{j=1}^{i+1} E_{j}\right) \cap E_{i+1}\right|_{e}+\left|A \cap\left(\bigcup_{j=1}^{i+1} E_{j}\right) \cap E_{i+1}^{c}\right|_{e} \\
& =\left|A \cap E_{i+1}\right|_{e}+\left|A \cap\left(\bigcup_{j=1}^{i} E_{j}\right)\right|_{e} \\
& =\left|A \cap E_{i+1}\right|_{e}+\sum_{j=1}^{i}\left|A \cap E_{j}\right|_{e} \\
& =\sum_{j=1}^{i+1}\left|A \cap E_{j}\right|_{e} .
\end{aligned}
$$

The first equality follows from $E_{i+1} \in \mathcal{M}$, the second from the fact that $E_{1}, E_{2}, \cdots, E_{i+1}$ are pairwise disjoint and the third follows from our induction hypothesis.

Proof (c): Let $E=\bigcup_{i=1}^{\infty} E_{i}$, by subadditivity of the outer Lebesgue measure we only need to show that $|A \cap E|_{e}+\left|A \cap E^{c}\right|_{e} \leq|A|_{e}$ for any $A \subseteq \mathbb{R}$. Let $F_{n}=\bigcup_{i=1}^{n} E_{i}$, then by part (a) $F_{n} \in \mathcal{M}$. By part (b) and monotonicity of the outer Lebesgue measure, we have

$$
|A|_{e}=\left|A \cap F_{n}\right|_{e}+\left|A \cap F_{n}^{c}\right|_{e} \geq \sum_{i=1}^{n}\left|A \cap E_{i}\right|_{e}+\left|A \cap E^{c}\right|_{e}
$$

Taking the limit as $n \rightarrow \infty$, we get by σ-subadditivity of the outer Lebesgue measure that

$$
|A|_{e} \geq \sum_{i=1}^{\infty}\left|A \cap E_{i}\right|_{e}+\left|A \cap E^{c}\right|_{e} \geq|A \cap E|_{e}+\left|A \cap E^{c}\right|_{e}
$$

Proof (d): Let $F_{1}, F_{2}, \cdots \in \mathcal{M}$. Define $E_{1}=F_{1}$ and $E_{n}=F_{n} \backslash \cup_{j=1}^{n-1} E_{j}, n \geq 2$. Then, $E_{n} \in \mathcal{M}$ (since \mathcal{M} is an algebra) are pairwise disjoint, and $\bigcup_{i=1}^{\infty} E_{i}=\bigcup_{i=1}^{\infty} F_{i} \in \mathcal{M}$ (by part (c)). Hence, \mathcal{M} is a σ-algebra over \mathbb{R}.
Proof (e): Let $(a, \infty) \in \mathcal{C}$ and $A \subseteq \mathbb{R}$. We need to show that $|A|_{e} \geq|A \cap(a, \infty)|_{e}+|A \cap(-\infty, a]|_{e}$. If $|A|_{e}=\infty$, then the inequality is trivially true. Suppose that $|A|_{e}<\infty$ and let $\epsilon>0$. There exists a countable collection of closed intervals $\left[a_{n}, b_{n}\right]$ such that $A \subset \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$ and $\sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right) \leq$ $|A|_{e}+\epsilon$ (this follows from the definition of the outer Lebesgue measure). Let $I_{n}=\left[a_{n}, b_{n}\right] \cap(a, \infty)$ and $I_{n}^{\prime}=\left[a_{n}, b_{n}\right] \cap(-\infty, a]$. Notice that I_{n} and I_{n}^{\prime} are disjoint and $\left[a_{n}, b_{n}\right]=I_{n} \cup I_{n}^{\prime}$. Now, $|A \cap(a, \infty)|_{e} \leq\left|\bigcup_{n=1}^{\infty} I_{n}\right|_{e} \leq \sum_{n=1}^{\infty}\left|I_{n}\right|_{e}$, and $|A \cap(-\infty, a]|_{e} \leq \sum_{n=1}^{\infty}\left|I_{n}^{\prime}\right|_{e}$. Hence,

$$
|A \cap(a, \infty)|_{e}+|A \cap(-\infty, a]|_{e} \leq \sum_{n=1}^{\infty}\left(\left|I_{n}\right|_{e}+\left|I_{n}^{\prime}\right|_{e}\right)=\sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right) \leq|A|_{e}+\epsilon
$$

Since $\epsilon>0$ is arbitrary, it follows that $|A|_{e} \geq|A \cap(a, \infty)|_{e}+|A \cap(-\infty, a]|_{e}$. This shows that $\mathcal{C} \subseteq \mathcal{M}$. Since $\mathcal{B}_{\mathbb{R}}$ is the smallest σ-algebra generated by \mathcal{C}, it follows that $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}$.

