FINAL EXAM 'INLEIDING IN DE GETALTHEORIE'

Thursday, 5th January 2016, 13.30 pm - 16.30 pm

Question 1

a) Find the continued fraction expansion of $\sqrt{33}$.
b) What number has the continued fraction expansion

$$
[5,1,4,1,10,1,4,1,10, \ldots] ?
$$

Question 2

Show that there is an infinite number of primes of the form $p=6 m+1$ with $m \in \mathbb{N}$. (Hint: consider expressions of the form $12 x^{2}+1$.)

Question 3

Let $a \in \mathbb{N}$. Assume that $\left(\frac{a}{p}\right)=1$ for every odd prime number $p \nmid a$. Show that then a has to be a square number.

Question 4

Give a proof of the identity

$$
\sum_{d \mid n}(-1)^{n / d} \phi(d)=\left\{\begin{array}{cll}
0 & \text { if } & n \in \mathbb{N} \text { is even } \\
-n & \text { if } & n \in \mathbb{N} \text { is odd }
\end{array}\right.
$$

Question 5

Is there a natural number $n \in \mathbb{N}$ such that $d(n)=7$ where $d(n)$ is the divisor function? Is there a natural numer n such that $\phi(n)=7$?

Question 6

A Pythagorean triangle is a triangle with one right angle and such that all the sides have integer length. We say that a pythagorean triangle has consecutive legs, if the difference between the two shortest sides is exactly equal to one. Find at least 2 different pythagorean triangles with consecutive legs and show how pythagorean triangles with consecutive legs are related to solutions of a certain Pell's equation.

Note: A simple non-programmable calculator is allowed for the exam.

