Solutions for first midterm

Lennart Meier

October 25, 2019

In the solutions, I do not give all possible approaches, but just one or two. Please write to me if you find any typos or have other remarks.

Problem 1 (4 points). Write $\frac{1153}{140}$ as a continued fraction.
We need to do the Euclidean algorithm:

$$
\begin{aligned}
1153 & =8 \cdot 140+33 \\
140 & =4 \cdot 33+8 \\
33 & =4 \cdot 8+1 \\
8 & =8 \cdot 8+0 .
\end{aligned}
$$

Thus, the continued fraction expansion is $[8,4,4,8]$.

Problem 2 (8 points). Determine for $n=1236$ and $n=1153$ whether they are the sum of two squares. If yes, find one pair of integers (x, y) with $n=x^{2}+y^{2}$. (Hint: You may use that $140^{2}+1$ is divisible by 1153.)

We know that each number is congruent to its digit sum modulo 9. Thus,

$$
1236 \equiv 12 \equiv 3 \quad \bmod 9 .
$$

In particular, we see that the exponent of 3 in the prime factorizaion of 1236 is 1 , thus odd. Thus, 1236 is not the sum of two squares. [Alternative: The squares modulo 9 are $0,1,4$ and 7 . No sum of two of these is 3.]

In contrast, 1153 is $33^{2}+8^{2}=1089+64$. We used Cornacchia's algorithm to find these numbers.

Problem 3 (8 points). Show that for every natural number $a>2$, there is a Pythagorean triple (a, b, c). (Hint: Distinguish the cases a even and a odd.)

The problem is not correct as stated. Indeed if $a \equiv 2 \bmod 4$, there is no Pythoagorean triple (a, b, c). Indeed: We have seen in class that if (a, b, c) is a Pythogorean triple, then $a=2 s t$ or $a=s^{2}-t^{2}$ for relatively prime s and t that are not both odd. For such s and t, clearly $2 s t$ is
divisible by 4 as s or t is even and thus a cannot be written as $2 s t$. Moreover, $s^{2}-t^{2}$ is odd and thus a cannot be written as $s^{2}-t^{2}$.

The converse of the quoted theorem also holds: If s and t are relatively prime natural numbers, not both odd, then $\left(s^{2}-t^{2}, 2 s t, s^{2}+t^{2}\right)$ forms a Pythagorean triple. With the help of this theorem, we can solve the cases that a is odd or a divisible by 4 .

Suppose that a is odd. We can write it as $2 s+1$ with $s \in \mathbb{N}$. Setting $t=s+1$, we observe that $a=s^{2}-t^{2}$. Set $b=2 s t$ and $c=s^{2}+t^{2}$. Clearly s and t cannot be both odd and are relative prime.

If a is divisible by 4 , then we can write it as $4 s=2 s t$ with $t=1$ and s even. Again, s and t are relatively prime and not both odd.

If $a \equiv 2 \bmod 4$, we still obtain in the same manner b and c such that $a^{2}+b^{2}=c^{2}$, but a, b and c are all even and thus not relatively prime.

Problem 4 (8 points). Let n be a positive integer of the form $8 k+7$ with $k \in \mathbb{Z}$. Show that n is of the form $x^{2}+y^{2}+z^{2}+w^{2}$ with x, y, z and w positive integers.

First of all we know by Lagrange's four-square theorem that we can find (not necessarily positive) integers x, y, z and w with $n=x^{2}+y^{2}+z^{2}+w^{2}$. As $(-x)^{2}=x^{2}$, we can assume that $x, y, z, w \geq 0$.

Let $a \in \mathbb{Z}$. We have seen in class that a^{2} is congruent to 0,1 or 4 modulo 8. As $n \equiv 7$ $\bmod 8$, this implies that x^{2}, y^{2}, z^{2} and w^{2} must be (up to reordering) congruent to $1,1,1$ and 4 modulo 8 , respectively. Thus, x, y, z and w are nonzero and thus positive.

